
Does Face Recognition Accuracy Get Better With Age?

Deep Face Matchers Say No

Vı́tor Albiero, Kevin W. Bowyer

University of Notre Dame

Notre Dame, Indiana

{valbiero, kwb}@nd.edu

Kushal Vangara, Michael C. King

Florida Institute of Technology

Melbourne, Florida

kvangara2015@my.fit.edu, michaelking@fit.edu

Abstract

Previous studies generally agree that face recognition

accuracy is higher for older persons than for younger per-

sons. But most previous studies were before the wave of

deep learning matchers, and most considered accuracy only

in terms of the verification rate for genuine pairs. This pa-

per investigates accuracy for age groups 16-29, 30-49 and

50-70, using three modern deep CNN matchers, and con-

siders differences in the impostor and genuine distributions

as well as verification rates and ROC curves. We find that

accuracy is lower for older persons and higher for younger

persons. In contrast, a pre deep learning matcher on the

same dataset shows the traditional result of higher accuracy

for older persons, although its overall accuracy is much

lower than that of the deep learning matchers. Comparing

the impostor and genuine distributions, we conclude that

impostor scores have a larger effect than genuine scores

in causing lower accuracy for the older age group. We

also investigate the effects of training data across the age

groups. Our results show that fine-tuning the deep CNN

models on additional images of older persons actually low-

ers accuracy for the older age group. Also, we fine-tune and

train from scratch two models using age-balanced training

datasets, and these results also show lower accuracy for

older age group. These results argue that the lower accu-

racy for the older age group is not due to imbalance in the

original training data.

1. Introduction

Differences in face recognition accuracy across demo-

graphic groups have attracted a lot of attention in recent

years. In this paper, our goal is to develop a better un-

derstanding of how face recognition accuracy varies across

young, middle and older age groups.

Our experiments use a large, publicly available dataset

[1], that was originally assembled for studying face aging

[24]. Importantly, this is the largest generally available

dataset that has meta-data for subject age with each image.

Web-scraped datasets typically do not have such meta-data.

Contributions of this work include: (1) finding a consis-

tent qualitative effect across race, (2) investigation of how

genuine and impostor distributions contribute to accuracy

across age groups, (3) investigation of the effect of elapsed

time between genuine pairs, (4) insights on how the effect

of age difference between persons in an impostor pair de-

pends on the age groups, (5) investigation of the effects of

balancing the training data across age groups, and (6) use

of publicly available matchers and dataset, supporting re-

producible experiments.

2. Related Work

The 2002 Face Recognition Vendor Test [22] looked at

how identification rate varies with age for three commercial

matchers, and concluded that older persons are recognized

more accurately than younger. Beveridge et al. [5], using

the Face Recognition Grand Challenge dataset [23], found

that verification rate increases as subject age increases. In a

2009 meta-analysis of previous works, Lui et al. [19] found

that 20 out of 22 age-related results agree that the accuracy

is higher for older persons. In a 2018 review, Abdurrahim

et al. [2] found general agreement in the literature that older

persons are recognized more accurately.

Klare et al. [15] evaluated six matchers on the age groups

18-30, 30-50 and 50-70, using the Pinellas County Sher-

iff’s Office (PCSO) dataset. The three commercial match-

ers showed lower verification rates for 18 to 30 age group,

indicating that younger people are harder to verify. Also,

despite not agreeing on which age group has the highest ac-

curacy, the two non-trainable matchers (Local Binary Pat-

terns and Gabor filters) show an overall lower accuracy for

the young age group. Best-Rowden and Jain [3] reported re-

sults for two commercial matchers on a subset of the PCSO

dataset, separated to study the effects of elapsed time be-

tween genuine pairs. They conclude that the genuine scores
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significantly decrease over time for both matchers. An ex-

tended version of their work [4] added an additional dataset

and more matchers.

In the FRVT Ongoing effort at NIST, Grother [9] re-

ported higher false match rates (FMRs) for older persons

than for younger. With a fixed threshold to give an over-

all FMR of 1-in-10,000, a group of age 20-somethings had

a FMR of 1-in-100, but a group with 70-somethings had a

FMR of 5-in-100. On the other hand, they reported higher

false non-match rates (FNMRs) for younger subjects, 0.05

for 20-somethings, and 0.02 for 70-somethings.

Lu et al. [18] looked at results from four deep learn-

ing matchers for the IARPA JANUS Benchmark B (IJB-

B) dataset, which is a collection of web-scraped images.

The authors found that accuracy increases with age up until

age 50, which agrees with previous results in the literature.

They also found that after age 50, accuracy starts to drop.

However, the age annotations for IJB-B images were de-

rived using Amazon Mechanical Turk, and we are not aware

of how accurate they may be.

Cook et al. [7] analyzed demographic factors in the

2018 Biometric Technology Rally [13]. They used images

captured from eleven different image acquisition systems,

and matched them against same-day enrollment images

and against historical images using a commercial matcher.

Their age experiment was conducted using two age groups:

20 to 40; and 40 to 85. While the same-day matching shows

a similar result for both age ranges, they report higher accu-

racy for older persons in the historical matching.

Cao et al. [6] analyzed results of matching young (less

than 34 years) and mature (34 years or more) persons, us-

ing a deep CNN matcher. They report that matching young-

to-mature faces is harder than young-to-young or mature-

to-mature. They also report that mature-to-mature match-

ing results in higher similarity scores than young-to-young

matching.

Previous works generally focus on how match scores for

genuine pairs vary across age groups [5, 7, 6], and do not

explicitly consider both the impostor and genuine distribu-

tions. Some previous works use datasets that are not avail-

able [15, 9, 7]. Further, most previous work does not exper-

iment with race or gender subsets, which is important as an

imbalance in other demographics across age groups could

be a confounding factor for accuracy variations.

We present the most extensive analysis to date of how

face recognition accuracy varies across age groups. In ad-

dition to ROC curves, we analyze genuine/impostor score

distributions, and how they contribute to accuracy differ-

ences. We analyze how elapsed time between genuine pairs

and age difference between impostor pairs affects accuracy.

We also investigate how training data affects accuracy, with

models fine-tuned across age groups, age balanced datasets,

and trained from scratch on age balanced datasets.

Whole Dataset AA Male C Male

Group Subjects Images Subjects Images Subjects Images

Young 5,778 21,665 4,085 16,799 833 2,690

Middle 6,532 25,604 4,235 16,891 1,140 4,140

Old 1,074 3,622 726 2,387 221 837

Table 1: Division of age groups for whole dataset, African

American (AA) males and Caucasian (C) males.

3. Dataset

We identified the largest dataset that is available to the re-

search community and that has meta-data for subject age at

the time each image was acquired [24]. Many well-known

datasets do not have the age of the subject recorded with

each image. This is the case for the IJB datasets [27, 21],

MegaFace [14], and more generally, for any web-scraped

dataset. Some datasets used in previous studies are not

available to others. FG-NET [17] has images with anno-

tated ages, however the number of images with a subject

older than 50 years is only 23. In contrast, the MORPH

[24] dataset used in this work has recorded age meta-data

and a relatively large number of subjects and images across

the age groups, as it was collected to study face aging.

The MORPH dataset [24] was assembled from public

records and has been widely used in face aging research. We

curated a subset of MORPH Album 2, which, after removal

of a small number of images that do not contain a face or

that are repeated images, has 53,231 images of 13,119 sub-

jects. For each image, the meta-data includes a date of birth

(DOB) and date of acquisition. This makes it possible to

split the dataset into images of subjects for different age

ranges. The age ranges used are 16 to 29, 30 to 49, and 50

to 70, termed “young”, “middle” and “old”, respectively.

In initial studies, we found that 1,708 of the 13,119 sub-

jects had inconsistent DOBs across their images. As ex-

treme cases, one subject had six different DOBs across

their images, and another had a 32-year difference across

the DOBs for their images. However, in the large major-

ity of cases, the inconsistent DOBs could be corrected in a

straightforward manner. If the DOB was consistent for 75%

or more of a subject’s images, then the inconsistent DOBs

for the subject’s other images were corrected to the consis-

tent DOB. This resolved DOB inconsistency for 1,364 sub-

jects. The DOB for the remaining 344 was deemed too in-

consistent to correct, and these subjects were dropped. Thus

the total number of subjects in the dataset for our analysis

is 12,775. The image names and meta-data corrections used

in this paper will be made available online.

The dataset with curated DOB was divided into the three

age ranges. Note that a particular subject may have images

in both the “young” and “middle” range, or the “middle”

and “old” range. However, if a subject has only one image

for a given age range, the subject and image were dropped
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(a) 22 and 25 years (b) 41 and 44 years (c) 58 and 61 years

Figure 1: Sample authentic pairs with 3 years difference in young, middle and old groups.

from that age range. The numbers of subjects and images

for the division of the whole dataset into young, middle and

old age ranges is given in Table 1.

Other research has shown that face recognition accuracy

is different for African-American and Caucasian, and for

male and female [15, 5, 7, 16]. The young, middle and old

ranges of our dataset may have varying demographic mix.

To create subsets with consistent demographic mix across

age ranges, we split the dataset into four subsets: African-

American male, African-American female, Caucasian male

and Caucasian female. However, the female old age range

had just 93 subjects and 286 images for African-American,

and 34 subjects and 112 images for Caucasian. This is too

few subjects and images for reliable analysis, and so the

subgroup analysis was done only for the two male subsets.

Sample authentic pairs are shown in Figure 1. Results of our

analysis are presented for the whole dataset, with its vary-

ing demographics across age ranges, and for the African-

American male and the Caucasian male subsets.

4. Deep Learning Face Matchers

We use three recent deep CNN face matchers. These

matchers are chosen to represent training with different

loss functions and different training sets: (1) VGGFace2

(ResNet-50) [12], trained on VGGFace2 dataset [6] with

standard softmax loss; (2) FaceNet [25], trained on MS-

Celeb-1M dataset [11] with triplet loss; and (3) ArcFace

[8] (ResNet-100), trained on MS-Celeb-1M V2 dataset with

additive angular margin loss. Each network was used with

pre-trained weights that are publicly available [20, 26, 10].

As input to the matchers, the faces were detected and

aligned using MTCNN [28], and resized to 224x224 pixels

(VGGFace2), 160x160 (FaceNet), or 112x112 (ArcFace).

For feature extraction, the last but one layer was used, which

corresponds to a 2048-d feature vector for VGGFace2, 128-

d for FaceNet, and 512-d for ArcFace. After extraction, the

features were matched using cosine similarity.

5. Experimental Results

This section first presents ROC results for the matchers,

for the whole dataset and for the African-American male

and Caucasian male cohorts. The relative accuracy shown

by the ROC curves across the age ranges is different from

what most past studies have found. To better understand

the effects of the two types of errors that are summarized

in the ROC curve, we next present the impostor and gen-

uine distributions. We further investigate how elapsed time

between impostor and genuine pairs affects their matching

scores across the age groups. Moreover, to understand why

our results differ from those of some previous studies, we

present results from a pre deep CNN face matcher as used

in a well-known previous work [15]. Finally, we analyze

how the training data affects the performance of the deep

models, by fine-tuning models on separate age groups, age

balanced subsets and training from scratch on age balanced

subsets.

5.1. ROC Curve Comparison

ROC curves for the different age ranges are compared in

Figure 2. The general pattern of the ROC results is consis-

tent, whether considering the whole dataset with its varying

mixture of gender and race across age ranges, or consid-

ering either of the two same-race-same-gender subsets. It

is important to note that ROC curves are more appropri-

ately used to compare accuracy of different algorithms on

the same dataset. In this case, we are comparing the accu-

racy of the same algorithm for different datasets (different

age ranges). The ROC format hides the fact that the same

FMR for different age ranges is obtained at different de-

cision thresholds. For this reason, the decision threshold

value is marked on the plots for sample values of FMR.

We see that except for VGGFace2 on Caucasian males,

for all ROC curves, the old age range has higher thresholds

to achieve the same FMR. Following the old age range, the

young age range has the second highest thresholds. The

thresholds give an idea of how much the overlap of the im-

postor and genuine distributions is shifted towards higher

similarity scores, which can be correlated to a worse im-

postor distribution.

For six out of nine ROC curves, the young age range

has the best ROC, and the old age range has the worst.

For FaceNet and VGGFace2, the gap between middle and

old is noticeably larger than the gap between young and

middle. With the ArcFace matcher, the older group has a

slightly better ROC curve than the other two age groups,

but achieved using a higher threshold. In the whole dataset,

the ArcFace true positive rate (TPR) with a false match

rate (FMR) of 10−4 is 99.89%, 99.95% and 99.95% for the

young, middle and old age groups, respectively. Overall,
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(a) Whole dataset (b) African American males (c) Caucasian males

Figure 2: ROC curves for FaceNet (top), VGGFace2 (middle), and ArcFace (bottom). Annotated values correspond to

thresholds used for the correspondent FMR. ArcFace is displayed at a different scale for better visualization.

the pattern of ROC results disagrees with previous stud-

ies that found that older persons are easier to recognize

than younger persons. For this reason, the next section

presents the impostor and genuine distributions that under-

lie the ROC curves.

5.2. Impostor and Genuine Distributions

The impostor and genuine distributions that underlie the

ROC curves in Figure 2 are shown in Figure 3. We see

that in each of the nine plots, the impostor distribution for

the old group is the worst, with a noticeable shift toward

the genuine distributions. The impostor distribution for the

middle age range is the best, with a slight shift toward

lower similarity scores. And the impostor distribution for

the young age range is between the other two.

The young age range generally has the best genuine dis-

tribution, showing a higher peak of high-similarity scores

than the other two age ranges. There is not a noticeable

difference between the genuine distributions for the middle

and old age ranges.

From analyzing the impostor and genuine distributions,

we can infer that the main factor driving the poorer ROC

curves for the old age range is its poorer impostor distri-

bution. We can also infer that the main factor driving the

generally better ROC curves for the young age range is its

(slightly) better genuine distribution.

The impostor and genuine distributions are not perfectly

Gaussian. However, the d-prime statistic may still indicate

the relative separation of the two distributions. As shown

in Figure 3, in general, the d-prime values for younger and

middle age ranges are more similar, and the d-prime for the

old age range is noticeably worse.

In summary, the impostor distribution is the main cause

for the old age range having a worse ROC curve than the

other age ranges. In contrast, the young age range’s better

ROC curves are explained mostly by its genuine distribu-

tion; its impostor distribution is worse than the middle age

range.

5.3. Bootstrap Confidence Analysis

To check whether our results might be an accident of

the particular set of subjects and images, we randomly se-

lected 80% (860) of the subjects in the old group 100 times.

And to check whether our results might be partly due to the

different number of subjects and images in the age ranges,

we randomly selected 860 subjects in the young and middle

age groups 100 times, so that they have the same number of

subjects as the old age group. We then computed 100 ROC
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(a) Whole dataset (b) African American males (c) Caucasian males

Figure 3: Match scores distribution for FaceNet (top), VGGFace2 (middle), and ArcFace (bottom).

(a) FaceNet (b) VGGFace2 (c) ArcFace

Figure 4: ROC curves with 90% confidence interval using 860 subjects randomly selected 100 times. ArcFace is displayed

at a different scale for better visualization.

curves for each age range and ordered them by the area un-

der the curve (AUC) between a FMR of 10
−5 and 10

−3.

Figure 4 shows the median ROC curve with a 90% confi-

dence interval using the ROC curves with 5-th and 95-th

AUCs.

It is clear that generally the old group has a much worse

ROC than the young and middle groups, even though all

three age ranges have the same number of subjects. Also,

the ROC curves from Figure 2 lay within the confidence in-

tervals, indicating that the previous results are not the result

of different subject/image quantity, or of an unusual distri-

bution of subjects. Finally, the middle age group shows a

wider confidence interval, which overlaps with the young

age confidence interval.

5.4. Influence of Elapsed Time

Figure 5 shows the average match score for impostor

pairs and for genuine pairs, as a function of age difference

between the person(s) in the two images. For genuine pairs,

this is age difference (time lapse) between images of the

same person. For impostor pairs, this is age difference be-

tween different persons. The concept is likely most famil-

iar for genuine matches. The average match score between

two images of the same person generally decreases with in-

crease elapsed time. A similar result holds for impostor

matches. Images of two different persons are on average

more similar if the persons are the same age, and increased

difference in ages generally decreases the average similar-

ity. The results are presented only for the whole dataset, as
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(a) FaceNet (b) VGGFace2 (c) ArcFace

Figure 5: Match scores with increasing elapsed time be-

tween authentic (top) and impostors (bottom) pairs for

whole dataset.

it has more images to break into separate bins of elapsed

time.

For the genuine score plots, we see that the younger age

range generally has the highest similarity scores and the

older age range generally has the lowest similarity scores,

for all time lapse bins and for all three matchers. In effect,

that data says that, on average, for the same length of time

lapse, two images of the same older person look less similar

than two images of the same younger person. Also, we see

a general trend of decreasing similarity score with increased

elapsed time, which was expected.

For the impostor score plots, the older age range gen-

erally has the worst (highest) average similarity scores and

the middle age range generally has the best (lowest) aver-

age similarity scores. For the young and middle age ranges,

there is a small decrease in scores as a function of age in-

crease between impostor pairs. In the other hand, the old

age range shows steady scores as the age difference between

impostor pairs increase.

Overall, we see no evidence that a difference in the dis-

tribution of time lapse between images across the different

age ranges is a driving factor in the observed accuracy dif-

ferences between the age ranges.

5.5. Comparison with Pre Deep CNN Algorithm

The best-known previous works comparing accuracy

across different age ranges date to before the wave of deep

CNN matchers; e.g. [15]. Also, previous works use dif-

ferent datasets from the one that we use. Therefore, our

results being different from previous results could poten-

tially be due to (a) newer deep learning matchers having

different properties than older matchers, and / or (b) our

dataset being different somehow from those used in previ-

ous work. The PCSO dataset analyzed in [15] is no longer

available. However, we re-implemented the Local Binary

(a) Whole dataset (b) AA males (c) C males

Figure 6: ROC curves for LBP matcher for whole dataset,

African American (AA) males, and Caucasian (C) males.

Annotated values correspond to thresholds used for the cor-

respondent FMR.

Patterns (LBP) matcher as described in [15] and used it to

analyze our dataset.

Figure 6 shows ROC curves for the LBP matcher. We

can see that the trend across age ranges for the LBP matcher

is the opposite of the trend for the deep CNN matchers. For

the LBP matcher on our dataset, the young age range con-

sistently has the worst performance, and the old age range

has the best performance in two of the subsets. Thus the re-

sults of the LBP matcher on our dataset agree qualitatively

with the results of the LBP matcher on the PCSO dataset as

reported in [15]. This indicates that our results differ from

those of past studies due to modern deep CNN matchers op-

erating differently from older matchers and not because of

some difference in the datasets.

5.6. Training Data Analysis

Using an CNN age predictor [10], we predicted the sub-

ject age in the images in the three datasets that were used in

training the three CNN matchers. The age predictor mean

absolute error (MAE) on the whole MORPH dataset is 8.55,

and is 4.1 on the validation set. Because the age predictor

has MAE around 4 on the validation test, we classified faces

predicted as 34 or less years as young, 54 or less as middle

age, and 55 or more as old. Table 2 clearly shows that all

three datasets are imbalanced, with the middle age range

having the most representation and the older age range hav-

ing the least. This shows that the better accuracy observed

for the young age range is not directly caused by the frac-

tion of young faces in the training data, as the middle age

range represents a larger fraction of the training data. It also

demonstrates that the much better and more similar accu-

racy of ArcFace across age groups is not due to the training

data being more balanced than for the other matchers, but

mostly because of its better loss function.

To further investigate the effects of the subjects’ ages

in the training data, we fine-tuned the two higher-accuracy

matchers using subjects in a specific age range. The age

range with the smaller amount of images and subjects is the

old range, which was selected as the starting point for each

training group preparation. First, for each age range, we

removed all subjects that have less than 50 images, which
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Number of Images

Dataset Young Middle Old

VGGFace2 1.01M (32.5%) 1.74M (55.9%) 0.36M (11.6%)

MS1M 2.97M (35.2%) 4.49M (53.1%) 0.99M (11.7%)

MS1M V2 1.66M (28.6%) 3.26M (56.1%) 0.89M (15.3%)

Table 2: Number of images and ratio of young, middle and

old age groups in the training datasets.

yields 2,009 subjects with 308,640 images for VGGFace2,

and 5,033 subjects with 348,742 images for MS1M V2.

Then, we randomly selected the same number of subjects

and images for the young and middle age groups, to make

training subsets balanced on number of subjects and images.

Using each age group separately, we fine-tuned the VG-

GFace2 matcher using data from the MS1M V2 dataset,

and the ArcFace matcher using data from the VGGFace2

dataset, so that we do not re-use images from a matcher’s

original training data as fine-tuning data. Table 3 (upper

half) shows the TPR at a FMR of 10−4 for each fine-tuned

model. We observe that the performance dropped for all the

fine-tuned models compared to the original results (shown

in middle), which may be expected as there are many fewer

images and subjects, thus less generalization capacity. In

general, no matter the age range used for fine-tuning, the old

age group has the worst accuracy. Contrary to what might

be expected, the best results for each age group are not cor-

related to fine-tuning on the same age range, e.g. the young

age range had better accuracy when the matcher was fine-

tuned either on a middle age group (VGGFace2) or an old

age group (ArcFace). For the VGGFace2 matcher, in gen-

eral, the best accuracy for the three age groups were with the

fine-tuning on the middle age group, with d-prime values

in the whole dataset of 5.273, 5.518 and 5.082 for young,

middle, and old age groups, respectively. ArcFace achieved

better accuracy for all age groups when fine-tuned on an

old age group, with d-prime values in the whole dataset of

7.919, 7.908, 7.247 for young, middle, and old age groups,

respectively. Moreover, in five out of six results, the dif-

ference between the best and worst group was lower when

the matcher was fine-tuned using an old age group. When

fine-tuning with a young age group, the difference between

the best and worst age group is much higher for both match-

ers, which indicates that middle to old faces are better for a

more uniform and higher accuracy between age groups.

It is possible that the worse accuracy for the old age

range across the fine-tunings is due to some bias in the ini-

tial training. To explore that, we combined the three age

subsets together, creating age balanced datasets. Then, we

fine-tuned and trained from scratch the VGGFace2 and Ar-

cFace matchers on the age balanced datasets.

Table 3 (lower half) shows results for the matchers fine-

tuned and trained from scratch on the age balanced datasets.

Only one out of six results shows closer performance be-

tween the worst and best group for the fine-tuning re-

sults. For all other five results, a more similar performance

was achieved training from scratch. With the VGGFace2

matcher, the accuracy with the fine-tuning is much higher

than when trained from scratch, but the performance is still

lower for the old group, and the d-prime values for the

whole dataset are 4.563, 4.661, and 4.315 for young, mid-

dle, and old age groups, respectively. On the other hand,

ArcFace achieved better performance when training from

scratch on the MS1M V2 dataset, with a higher accuracy for

the old group compared to the young, but still with a lower

d-prime value for the old group, which is 6.876, compared

to 7.06 for the young group, and 7.367 for middle group.

Moreover, ArcFace training and fine-tuning on VGGFace2

dataset also show worse results for the old group compared

to the other two groups. Finally, the results show that even

when the dataset is age balanced, in general, the old group

has lower performance than young or middle.

6. Conclusions and Discussion

Younger people are easier, older people are harder.

Previous works have found that people in the old age range

are easier to recognize (have higher accuracy) than peo-

ple in the young age range. However, we find the oppo-

site. For two of the three modern deep CNN face matchers

used in our work, the old age range has a noticeably worse

ROC curve than the young age range, and the other matcher,

which has much higher accuracy for all age ranges, shows

similar accuracy because all age groups are basically “at

ceiling”. The bootstrap results also confirm that this pat-

tern is not due to number of subjects or particular age group

distributions of the dataset.

The genuine distributions for the three age ranges seem

more similar than their impostor distributions. Therefore it

seems that the impostor distribution for the old age range is

driving its worse ROC. Also, the d-prime values show how

much worse the separation between the old group distribu-

tions is compared to young and middle.

The new deep CNN face matchers are different. The

different pattern of accuracy across age ranges in our re-

sults could, in principle, be due to a difference in testing

datasets or to modern face matchers having different prop-

erties. Cao et al. [6] describe an experiment involving two

age groups, “young” (less than 34 years) and “mature” (34

years or more), in which they report that “mature” is rec-

ognized more accurately than “young” with the VGGFace2

matcher. This result appears to align better with the tra-

ditional expectation for young/old accuracy, than with our

result. However, this result is based just on 100 subjects.

Also, it uses 2 “templates” of 5 images each, for each age

range for each subject, for a total of just 2,000 images. Ex-

amining the 20 images in the templates for the first subject

number of the 100 subjects, we found that there are du-

267



Whole Dataset African American Males Caucasian Males

Matcher@Trainining subset Young Middle Old Diff. Young Middle Old Diff. Young Middle Old Diff.

VGGFace2@MSM1V2 Young 92.32 87.3 81.39 10.93 94.43 91.05 87.06 7.37 94.33 90.96 84.18 10.15

VGGFace2@MSM1V2 Middle 93.24 90.44 85.64 7.6 95.41 93.2 90.16 5.25 94.82 93.44 85.76 9.06

VGGFace2@MSM1V2 Old 88.54 86.67 80.75 7.79 91.02 90.41 88.45 2.57 92.93 91.75 89.17 3.76

ArcFace@VGGFace2 Young 98.39 98.47 95.08 3.39 99.12 99.14 97.32 1.82 98.69 99.31 97.41 1.9

ArcFace@VGGFace2 Middle 98.19 98.33 95.77 2.56 98.93 98.93 97.41 1.52 98.41 98.93 97.97 0.96

ArcFace@VGGFace2 Old 99.37 99.37 99.27 0.1 99.47 99.51 99.35 0.16 99.55 99.94 99.81 0.39

VGGFace2 Baseline 96.94 96.94 90.51 6.43 97.49 97.02 94.04 3.45 96.3 95.71 90.81 5.49

ArcFace Baseline 99.89 99.95 99.95 0.06 99.89 99.95 99.95 0.06 99.91 99.95 99.96 0.05

VGGFace2@MS1MV2 All ft 95.84 93.23 89 6.84 96.83 95.15 93.51 3.32 95.92 94.08 90.69 5.23

VGGFace2@MS1MV2 All 77.01 75.53 69.05 7.96 77.35 76.66 74.94 2.41 76.82 74.04 73.03 3.79

VGGFace2@VGGFace2 All 71.21 70.99 67.85 3.36 72.15 73.18 74.19 2.04 76.28 75.28 70.3 5.98

ArcFace@VGGFace2 All ft 98.27 98.56 97.16 1.4 98.74 99 98.29 0.45 98.26 99.06 98.51 0.8

ArcFace@VGGFace2 All 95.82 96.72 95.02 1.7 96.55 97.69 96.44 1.25 95.66 97.36 96.82 1.7

ArcFace@MS1MV2 All 98.85 99.21 99.27 0.42 99.05 99.39 99.12 0.34 98.2 99.14 99.68 1.48

Table 3: True positive rates (%) with a false match rate of 10−4 and difference (best − worst) for models fine-tuned with

different age group subsets (top half), and fine-tuned (ft) or trained from scratch on all age groups combined (bottom half).

The baseline results are shown in the middle of the table.

plicate images, incorrect identity labels, incorrect age cat-

egory labels, as well as images with extreme pose variation.

(These 20 images are shown in the Supplemental Materi-

als.) Given these issues with the images and meta-data,

combined with the small number of subjects and images,

the young/mature result found by Cao et al. [6] simply may

not be reliable.

Lu et al. [18] report results across five age ranges (that

were predicted using crowd sourcing) with deep CNN face

matchers. Their results show increasing accuracy until the

age of 50, then a drop in accuracy, which agrees with our

results on the old age group, but disagrees on the young age

group. However, as the dataset used is unconstrained, there

are many factors that can be affecting one age group more

than other, e.g., pose, illumination, and facial expression.

So, it is possible that the lower performance of subjects in

the middle 20s is not related to their ages, but to external

factors.

As far as we know, MORPH [24] is the only currently

available dataset with recorded age meta-data, enough sub-

jects across ages, and consistent quality, so, we cannot re-

produce the experiments on another dataset. However, we

re-implemented a pre deep CNN face matcher (LBP) as de-

scribed in [15] and ran it on our dataset and obtained results

similar to those in [15]. This indicates that the pattern of

results in our work is due to newer deep CNN matchers,

rather than a property of the dataset.

Deep CNN face matching technology seems to have

changed the default expectation for differences in accuracy

across age ranges. The datasets that current deep CNN

matchers have been trained on do not have a large frac-

tion of older subjects. For instance, all the datasets used

to train the matchers tested in this work, have less than 16%

of the images with a subject older than 50 years. It would

be possible that models trained on a dataset with a more

balanced age distribution would have a similar performance

across age groups. However, the highest-accuracy matcher,

ArcFace, achieves more similar results across age groups,

and has a very imbalanced training dataset. To further in-

vestigate the training data effect, we fine-tuned two match-

ers on different age groups, and the results are generally

worse for the old age group, no matter the age subset fine-

tuned on. Moreover, fine-tuning or training from scratch on

an age balanced dataset does not achieve the same perfor-

mance across ages, showing in general worse results for the

older age group and better results for the younger or mid-

dle groups. Therefore, we conclude that balanced training

data is not the simple answer to achieve same performance

across ages; rather, better loss functions are desirable.

Time-lapse changes impostor as well as genuine. The

“template aging” effect is well known - increasing time

lapse between images in an genuine pair results in a lower

similarity score. We show that an increased difference in the

age between two persons in an impostor pair also results in

a lower similarity score. This is perhaps intuitive – images

of two different persons of the same age are likely to look

more alike than images of two different persons with large

age difference. This result appears consistent with results

presented by Grother [9]. However, our result for the old

age range is atypical on this point; increased age difference

between persons in an impostor pair has a less predictable

effect, staying about the same or even increasing slightly in

one case. We do not yet have any confident speculation for

the cause of this effect.
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