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Abstract

Distance estimation is required for advanced driver as-

sistance systems (ADAS) as well as self-driving cars. It

is crucial for obstacle avoidance, tailgating detection and

accident prevention. Currently, radars and lidars are pri-

marily used for this purpose which are either expensive or

offer poor resolution. Deep learning based depth or dis-

tance estimation techniques require huge amount of data

and ensuring domain invariance is a challenge. Therefore,

in this paper, we propose a single view geometric approach

which is lightweight and uses geometric features of the road

lane markings for distance estimation that integrates well

with the lane and vehicle detection modules of an existing

ADAS. Our system introduces novelty on two fronts: (1) it

uses cross-ratios of lane boundaries to estimate horizon (2)

it determines an Inverse Perspective Mapping (IPM) and

camera height from a known lane width and the detected

horizon. Distances of the vehicles on the road are then cal-

culated by back projecting image point to a ray intersecting

the reconstructed road plane. For evaluation, we used li-

dar data as ground truth and compare the performance of

our algorithm with radar as well as the state-of-the-art deep

learning based monocular depth prediction algorithms. The

results on three public datasets (Kitti, nuScenes and Lyft

level 5) showed that the proposed system maintains a con-

sistent RMSE between 6.10 to 7.31. It outperforms other

algorithms on two of the datasets while on KITTI it falls be-

hind one (supervised) deep learning method. Furthermore,

it is computationally inexpensive and is data-domain invari-

ant.

1. Introduction

Human error is one of the major causes of driving acci-

dents. At the heart of safe driving practices lies the driver’s

judgment to estimate their vehicle’s braking distance w.r.t

other road users. For this reason, Advanced Driver Assis-

tance Systems (ADAS) have evolved substantially over the

last few years and features such as pedestrian and tailgating

Figure 1. Sample image from nuScenes [3]. Estimated horizon

(green line) and computed distances (meters) by all methods for

each vehicle (1, 2 and 3) from the ego vehicle are displayed. Our

method is compared against deep learning based depth estimation

as well as radar. GT is the ground truth which is provided by the

high resolution lidar.

detection have been introduced to alert drivers in the run-up

to perilous maneuvers. Real-time logging of this informa-

tion is crucial in this regard and can help fleet managers in

scoring a driver’s behavior. It also makes an integral part

of autonomous driving in path planning, obstacle and col-

lision avoidance and hence in overall safety assessment of

the self-driving cars.

Active sensing in the form of Radars (Radio Detection

and Ranging) and Lidars (Light Detection and Ranging) are

a common choice for measuring distances to surrounding

obstacles. Radars have ranges up to 150m [29] but they

generally have low resolution. Lidars, on the other hand,

offer higher spatial resolution [19] but they are too expen-

sive (cheapest costs US$ 7, 500 [1]). The biggest advantage

of using active sensing is its real-time operation as mini-

mal post processing is required. Scene depth is estimated

in a quick scan and simple thresholding may do the job.

While improvement in the sensor technology and mass pro-

duction is expected to reduce the cost of lidars by 2022 [19],

they still have limitations of compromised performance in

adverse weather conditions such as rain, snow and fog. In

contrast, standard dashcams provide low cost and high reso-
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lution RGB images of the scene but will demand intelligent

post processing using robust algorithms and higher compute

power on board.

In computer vision, the problem of distance estimation

falls in the broader area of scene depth estimation. To this

end, various data-driven and geometric approaches have

been explored in literature. In data driven approaches,

depth of objects is learnt through either training a super-

vised depth regressor [10] or unsupervised disparity estima-

tor [13, 45]. On the other hand, geometric approaches take

into account the geometry of the features in the scene such

as Multi-View Stereo (MVS) and Single View Metrology

[43]. MVS has remained a primary focus for depth recov-

ery in the past [21]. It provides depth for each pixel via

dense matching of more than one image. MVS is limited

by the availability of texture in the scene, the efficiency of

the algorithms as well as the complexity of multi-camera

configuration. The accuracy of the depth map may not be

consistent throughout. Single view metrology, instead, uses

a single image to compute 3D measurements using perspec-

tive geometry [7]. Being ill-posed, it has remained limited

to images of structured environments where a combination

of parallel and orthogonal lines and surfaces are substan-

tially available. In this paper, we use monocular dashcam
images to estimate relative distances of vehicles on the road.

For evaluation, we used lidar data as ground truth and es-

tablished a comparison of the data-driven approaches with

the radar data. We propose an efficient and data indepen-

dent algorithm for real-time distance estimation for flat road

surfaces using single view geometry. With the help of any

available lane and vehicle detection modules (which are in-

tegral components of ADAS and self driving cars), it fully

exploits the structure in the scene. We will show that it com-

petes well with deep learning methods and under the geo-

metric constraints, it outperforms end-to-end deep learning

based methods as well as the radar data both in accuracy and

efficiency making it suitable for edge devices. Since the au-

tonomous driving is currently limited to high-way driving

scenarios, it is well suited for such tasks. And except for

the camera initialization phase, which is a one-time compu-

tation, it comes at almost no computational expense.

The breakdown of the paper is as follows: Section 2 pro-

vides a quick review of depth estimation literature. Section

3 discusses our approach in detail with ADAS modules for

lane and vehicle detection in section 3.1, camera initializa-

tion in section 3.2 and distance estimation in section 3.3.

Section 4 outlines the datasets, training and testing. Results

and a discussion on the results are presented in section 4.1

and section 5 concludes the paper.

2. Related work

In literature, only a few works have employed ap-

proaches similar to ours. Park and Hwang [32] used monoc-

ular imaging and average vehicle width in real world to esti-

mate horizon. Following that, the distance of the bottom of

the vehicle’s detected bounding box from the horizon pro-

vided a hint of its relative distance. But they assumed an al-

ready known camera height which can be difficult if done on

a multitude of vehicle across a fleet. In 2017, top perform-

ing submission to TuSimple’s velocity estimation challenge

employed deep learning based depth prediction techniques

combined with object (vehicle) detection to find relative ve-

locities [37]. Keeping this in view, we will have to look

into the research work done in the two domains i.e. our pro-

posal of single view geometry for depth estimation and the

state-of-the-art deep learning based depth prediction.

2.1. Single view geometry based depth estimation

In computer vision, single view based recovery of scene

geometry have been thoroughly studied [4, 36, 30, 17]. Lei-

botwzki used geometric properties such as parallelism and

orthogonality of structures to recover 3D models from one

or two views without explicitly knowing the metric proper-

ties of objects [26]. Lee et al. showed that even in the pres-

ence of clutter, full 3D model can be recovered from a single

image using geometric reasoning on detected line segment

produced from planar surfaces [24]. Recently, Zaheer et

al. used orthogonal lines in a multi planar single view, to

recover full 3D reconstruction of the scene [43]. These ap-

proaches are particularly interesting for indoor man-made

environments or for outdoor scenes with man made struc-

tures around. The reason is that human architecture involves

a profusion of parallel and orthogonal lines emanating from

planar surfaces.

Apart from 3D model recovery from a single view, sub-

stantial work has also been done in single view metrology.

Leibowitz and Zisserman proposed metric rectification of

planes from single perspective view and used it to measure

angles, lengths and ratios under given constraints of one

known angle, two unknown but equal angles and a known

length ratio [27]. Zaheer and Khan showed that projectively

distorted views of man-made 3D structures can be metric

rectified using orthogonal plane-pairs [42]. Liu et al. esti-

mated depth from a single view given semantic segmenta-

tion under geometric constraints [28]. On this topic, Crim-

inisi et al. explain single and multi view metric reconstruc-

tions in detail, especially determining camera pose, com-

puting distance between planes parallel to a reference plane

and also finding area and length ratios on any plane parallel

to the reference plane [7, 6].

2.2. Data­driven depth prediction

Digressing from a geometric approach, data-driven

depth prediction techniques have used both supervised and

unsupervised learning for stereo as well as monocular im-

ages. Sinz et al. used stereo images in Gaussian process re-
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gression to estimate pixel wise depth map avoiding compli-

cations of stereo calibration [35]. Saxena et al. used monoc-

ular images of a variation of unstructured outdoor scenes

for training Markov Random Fields (MRFs) on both local

and global features for the recovery of fairly accurate depth

maps [34]. Ladicky et al. designed a stereo matching classi-

fier for predicting likelihood of matching pixel in one image

offset by disparity in second image [23].

Owing to little success, the data-driven approaches for

depth estimation could not acquire a lot of attention until

the advent of deep learning. Deep learning based depth es-

timation made a huge impact in terms of holistic and ac-

curate depth prediction so much so that a significant num-

ber of contributions have surfaced over a short span of time

[40, 46, 25, 41, 45]. Žbontar and LeCunn trained a small

convolutional neural network for matching stereo pairs in-

stead of handcrafted feature matching and showed results

better in terms of both the accuracy of depth maps as well

as efficiency [44]. Eigen et al. used two deep networks in

cascade [8] to predict high-level global depth followed by

refinement to low-level local depth in a supervised regres-

sion framework. This approach acquired a lot of traction

and several improvements followed such as adding Condi-

tional Random Fields (CRFs) by Li et al. [39]. Cao et al.

transformed monocular depth estimation from regression to

a supervised classification problem [5]. Fu et al. used an or-

dinal regression loss in supervised training to eliminate slow

convergence during training and sub-optimal minimas [10].

Their method is the best performing one on Kitti benchmark

[2] with iRMSE 12.98 (1/km), RMSE 2.6 (m).

Supervised learning requires ground truth depth data

which in case of deep learning becomes challenging to ac-

quire. Therefore, recently, some unsupervised approaches

have appeared that have performed exceptionally well.

Garg et al. proposed a convolutional encoder network in

which they use one of the stereo-pair style images and pre-

dict a disparity map [11]. An inverse warp of the sec-

ond image is then produced from the known inter-view dis-

placement and the disparity map, which is then used to re-

construct the first image. The photometric error in the re-

construction defines the network loss. An improvement to

this monocular depth learning from stereo pairs was intro-

duced by Godard et al. by integrating left-right consistency

check [13]. Kundu et al. employed unsupervised adversar-

ial learning for depth prediction [22].

3. Our approach

We use single view geometry for distance estimation. As

argued earlier, single view geometry depends on the per-

spective of the parallel or orthogonal lines and planes in the

image. As lane lines are generally parallel, we exploit the

parallelism for this matter. We start with unknown camera

extrinsics because it is usually difficult to obtain this infor-
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Figure 2. Block diagram of our algorithm.

mation as it may change from time to time. Instead, we

propose an automated way of finding camera height using

horizon through cross-ratios of parallel lines [15]. Deter-

mination of camera height completes camera initialization

which only needs to be done once for each rigid camera as-

sembly. Road plane is then reconstructed and the distance

from other vehicles on the road can be calculated through

simple math. A block diagram of our full pipeline is shown

in Figure 2. For camera initialization, we assume a straight

and flat road surface. Lane boundaries and vehicles can be

detected using any off-the-shelf lane and vehicle detection

algorithms. In the following section, we will now briefly de-

scribe lane and vehicle detectors that are used in evaluation

for distance estimation in this paper.

3.1. Lane and vehicle detection

To exploit road geometry, detection of lane boundaries

is a crucial step for which we used the lane detection

network by Khan et al. [20] which uses a fully convolu-

tional deep network for detecting keypoints sampled along

the lane boundaries. The network architecture diagram

is shown in Figure 3(a). It consists of an encoder block

(ResNet50 [16] in this case), responsible for feature extrac-

tion, and a decoder block that learns the relationship among

extracted features and makes decision on top of it. The de-

coder block comprised of four convolutional layers, a single

transpose-convolution layer (that upsamples feature map by

4x) followed by the output convolution layer. In the output

layer, just like Mask-RCNN, one-hot mask for each key-

point is generated, where only the keypoint pixel is encoded

(marked high or foreground).

For training the lane detection network, CULane[31]

dataset has been used. Every lane boundary ground truth

was sampled into 40 keypoints, this number was chosen

based on the best possible trade-off between efficiency and

accuracy [20], with greater density of points closer to the

road plane horizon (Figure 3(b)). This is done by split-

ting every lane into three vertical segments and sampling

equally spaced keypoints (20, 10 and 10) from each seg-

ment starting from the one closer to the horizon. At in-

ference time, line/curve is fitted on the predicted keypoints

using RANSAC [9]. A best fit line must have a minimum

number of inlier markers, which in case of 40 markers/lane

boundary were kept at 10.
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Figure 3. (a) The architecture of our lane detection network. The

encoder is ResNet50 and the decoder consists of 4 convolution

layers, 1 transpose-convolution layer followed by a fully convo-

lutional output layer with one channel for each keypoint (b) The

input image and keypoints sampled from the ground truth lane line

are overlayed on the image. Number of keypoints increase towards

the vanishing point.

For vehicle localization, any detection framework can

be used. We fine-tuned COCO pre-trained Faster-RCNN

model [33] with Resnet-50 backbone on Kitti vehicle

dataset [12].

3.2. Camera initialization

Camera initialization involves finding camera height and

road plane normal. This is our first contribution in this pa-

per as along with camera intrinsics, we use road geometry

and lane width which has not been used before in this re-

gard. Integrating these known priors makes the process of

initialization self-sufficient and fully automatic. It’s a one-

off calculation for every camera and stays constant until the

camera is displaced or replaced altogether. It involves the

following sub-modules:

3.2.1 Inverse Perspective Mapping

Inverse Perspective Mapping (IPM) is used to remove the

perspective distortion in an image. Application of an IPM

can synthetically rotate the camera into a top (bird’s eye)

view thus rendering the intersecting lines as parallel; the

way they actually are in the real-world. This is required in

order to find the camera height which is required for dis-

tance estimation. Therefore, we introduce a novel, accurate

Figure 4. (Left) Point pi from the bottom of the detected vehicle is

back projected to a ray γr intersecting road plane at a point which

gives the distance dr of the point from the camera on road plane

with normal vector n̂ (Right) Synthetically rotated camera view

to estimate camera height hc given focal length fc, lane width in

rectified image Lwp and lane width in real world Lwr

and robust way of estimating an IPM by exploiting road ge-

ometry with no prior knowledge of the camera pose.

Our approach is aimed for a forward looking dashcam

installed inside the driver’s cabin. Configuration was done

in a right-handed frame of reference. The road plane normal

n̂ was along the Z-axis (upwards), Y-axis was in the driving

direction and X-axis towards the right side of the driver as

shown in Figure 4(Left).

The estimation of IPM used a planar road scene having

no elevation and more than one lane (3 or more lane bound-

aries), such as a typical highway scenario (Figure 5). Crit-

ical part of initialization was the estimation of a vanishing

line or horizon which required at least three parallel lines in

the rectified image.

3.2.2 Horizon estimation

The horizon must be known to estimate the required cam-

era rotation for an IPM. A horizon is a vanishing line of a

plane which, in our case, is the road. In order to find van-

ishing line, we need two vanishing points. The first one can

be simply calculated through the cross product of the vec-

tors of any two lane lines expressed in homogeneous coor-

dinates (see Figure 5 (a)). We call it the forward vanishing

point (V). Finding a second vanishing point, however, is a

bit involved.

According to Hartley and Zisserman Chapter 2 [14], if

there are three co-linear points in an image a′, b′ and c′ (as

shown in Figure 5 (a)) with known real world length ratios

(ab
bc
) of their corresponding real world points (a, b and c) as

shown in Figure 5 (b), we can find a point on the vanishing

line of the plane on which these points lie. Lets call this

point the lateral vanishing point or V ′.
We take this concept and map it to our problem i.e. the

road plane. For this, we will need three co-linear points

existing on the road plane having known real world length
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Figure 5. (a) Perspective view of road plane. Lane lines (l′1, l′2 and

l′3) are shown in red and an arbitrary line l′ (blue) cuts all lane lines

at points a′, b′ and c′. Forward vanishing point (V) is obtained by

the cross product of any two lane lines (b) Real world top-down

view of the road plane. d1 and d2 are the distances between lane

lines l1, l2 and l2, l3 respectively. Since all lane lines are parallel

△1 and △2 are similar triangles which implies ab
bc

= d1
d2

ratios. Since we already have detected lane lines in the im-

age which lie on the road plane, we can find three co-linear

points by drawing any line l′ which intersects all three lane

lines at points a′, b′ and c′ respectively.

The points a′, b′ and c′ are in fact images of their real

world counter parts a, b, and c which lie on a line l as shown

in Figure 5 (b). The line l′ is the image of line l. In order

to find the lateral vanishing point of the road plane, accord-

ing to the description above, we need to know the length

ratios between these real world points. The fact that these

three points lie on three (parallel) lane lines (l1, l2 and l3), it

can be established through trigonometry that the ratio of the

line segments ab
bc

is equal to d1

d2

where d1 and d2 are the dis-

tances between lines l1, l2 and l2, l3 respectively, as shown

in figure (b). Here d1 and d2 are the lane widths.

Although the algorithm will still work if neighbouring

lanes don’t have same width (only requires ratio of the

widths i.e. d1

d2

to be known), we assume the ratio to be

1 (d1=d2=lane width), since the lane lines are generally

equidistant. Since the initialization is required only once

for a camera, it can be done on a highway or a section of the

highway where lanes are consistent/equidistant (using gps).

After getting two vanishing points (VPs) per frame, we

collected all the sets of the vanishing points across all the

frames of a video clip. The horizon was found as the best

fitted line to the VPs as described in Algorithm 1.

Algorithm 1: Best fitting Horizon (lh) estimation

Input: Detected markers by lane detector

Output: Estimated Horizon line

1 Find forward and lateral VP for each frame in a video:

2 initialize;

3 for i ≤ num frames in video do

4 Fit lines to keypoints (B = num lines) ;

5 if B ≥2 then

6 for j ≤=
BC2 do

7 forward vpij = crossprod(line 1, line 2)

8 end

9 end

10 if B ≥3 then

11 for k ≤=
BC3 do

12 Get lateral vpik using cross ratios as described

in Section 3.2.2
13 end

14 end

15 end

16 RANSAC for best fitting horizon across video:

17 initialize;

18 s = random int between 1 to num forward vps;

19 t = random int between 1 to num lateral vps;

20 while iterations ≤ t OR num inliers ≤ max inliers do

21 Fit line lh to forward vp(s) and lateral vp(t);

22 if dist(lh,forward vp(s)) ≤ threshold s &

dist(lh,lateral vp(t)) ≤ threshold t then

23 record and count inlier points

24 end

25 end

3.2.3 Image rectification

Now that the horizon has been determined, the IPM could

be found. We computed road plane normal n̂ using camera

intrinsic matrix K and horizon lh [14] by n̂ = KT lh. The

IPM is then computed using HIPM = KRK−1, where R =

[lh×n̂; (lh×n̂)×−̂n; −̂n] is the rotation matrix and HIPM

is the rectification homography which will rotate the camera

view to align its Z-axis with the road’s normal as shown in

Figure 4(Right). Frames could now be simply rectified into

a bird’s eye view by applying this IPM (Figure 4(Right)).

3.2.4 Parallel line fitting

Parallel lines can be represented as:

a1x+ b1y + c1 = 0, a2x+ b2y + c2 = 0
where the co-efficients a1 = a2 and b1 = b2 and only the

intercept c1 and c2 are different. After a minimum number

of inlier constraint is satisfied, parallel lines are fitted to the

inlier markers using least squares by solving Ax = 0.

Here A contains the inlier points (subscript) for each par-

allel line (superscript) in the rectified view. This system is

solved using singular value decomposition for the least sin-

gular value.
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Figure 6. Sample results on Kitti [12] (top) and nuScenes [3] (bottom). Displayed numbers are the distances in meters. Vehicles are

numbered for clarity.

3.2.5 Lane Width Initialization

In the rectified view of a given frame, a pair of consecutive

parallel lines were selected and the distance between the

lines was calculated per frame through:

LWp =

∑

f
|c2−c1|√
a2+b2

f
. (1)

where f is the number of inlier frames and LWp is the

average initialized lane width. A frame is considered an

inlier frame if it has at least one forward and one lateral

vanishing point.

3.2.6 Camera height estimation

Now that we have lane width in pixels LWp, we can use the

camera focal length (fc) to compute viewing angle α alpha

using trigonometry

α = 2× tan−1(
LWp/2

fc
) (2)

Once camera viewing angle α is known, camera height hc
is given by

hc =
LWr

2

tan(α
2
)

(3)

Here LWr is the lane width in real world and considering

the fact that lane widths are usually standard across high-

ways, Lwr is generally known. Determining camera height

completes camera initialization. This is depicted in Figure

4 (Right).

3.3. Distance estimation

Once the camera is initialized, we know the camera

height and road plane normal. We can then reconstruct the

road plane:

πr =

[

n̂
−hc

]

(4)

where n̂ is the road plane normal and πr is 4× 1 recon-

structed road plane vector. A ray from the point pi in the

image plane of the camera is given by γr = K−1pi. So the

distance from the image plane to point where this ray inter-

sects the reconstructed road plane in the real-world can be

found by solving:

πT
r

[

drγr
1

]

= 0 (5)

where dr is the distance where γr intersects the plane:

dr =
hc

n̂ · γr
(6)

This is depicted in Figure 4 (Left). It is this simple arith-

metic calculation that estimates the distance of the detected

objects on the reconstructed road plane which makes it com-

putationally inexpensive. Shift in the horizon which can be

caused by changing slope of the road can impart difference

to the observed distances. The best way to investigate the

extent of error is to evaluate our algorithm on publicly col-

lected datasets and compare them against the computation-

ally expensive but state-of-the-art deep learning approaches.

4. Experimental setup

To evaluate our distance estimation algorithm, we used

the well known datasets i.e. KITTI [12], nuScenes [3]

and the recently released Lyft level 5 dataset [18]. All the

datasets have color images along with Lidar data which is

used as distance ground truth. nuScenes also provide front

Radar data. In order to localize vehicles in the scenes, we

used our vehicle detector as described in section 3.1. During

the assessment, among the overlapping vehicle boxes only
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Algorithm δ < 1.25 δ < 1.252 δ < 1.253 Abs.Rel RMSE RMSE log Sq.Rel

(a) KITTI dataset

DORN[10] 0.92 0.96 0.98 0.11 2.44 0.18 0.44

MonoDepth[13] 0.82 0.94 0.98 0.13 6.34 0.21 1.36

Ours 0.53 0.89 0.98 0.29 6.24 0.30 2.02

(b) nuScenes dataset

DORN[10] 0.55 0.85 0.96 0.25 7.43 0.33 1.83

MonoDepth[13] 0.56 0.81 0.93 0.23 8.38 0.36 2.16

Radar 0.73 0.80 0.85 0.48 11.66 0.71 13.25

Ours 0.78 0.94 0.97 0.15 6.10 0.24 1.29

(c) Lyft Level 5 dataset

DORN[10] 0.11 0.30 0.67 0.73 11.43 0.57 7.91

MonoDepth[13] 0.03 0.12 0.45 0.50 12.23 0.77 5.50

Ours 0.69 0.87 0.93 0.17 7.31 0.32 1.53

Table 1. Distance estimation results on (a) KITTI (b) nuScenes (c) Lyft Level 5 datasets. Metrics in Red means higher is better. Metrics

are explained in [8, 13]. Metrics in Blue means lower is better. Best scores are in bold. The scores of our algorithm are underlined.

(a)

(b)
Figure 7. Sample images from nuScenes [3]. Displayed numbers

are the distances in meters. Sub-optimal horizon as compared to

Figure 1 due to (a) downwards slope and (b) upwards slope. Re-

calculation required in this case.

the foremost box was selected. Hence only the un-occluded

vehicles were used. Maximum distance cap of 70m was

set since some lidars do not perform at larger distances. Be-

sides, 70m braking distance provides enough room for a fair

assessment.

Distance was in meters and we used the metrics de-

fined in [8, 13], namely, Ratio threshold δ, Absolute Rel-

ative difference (Abs Rel), Squared Relative difference (Sq

Rel), RMSE (linear) and RMSE log for evaluation. Apart

from our algorithm which is based on single view geom-

etry, we also compared distance estimates of a supervised

deep learning based method, DORN by Fu et al. [10] which

has shown the best performance on Kitti depth estimation

benchmark [2]. We used their model which is trained on

the KITTI data for color images with lidar as ground truth.

From unsupervised deep learning methods, we use Mon-

oDepth by Godard et al. [13]. We used the model shared

by the authors which is trained on Kitti’s stereo data. Mon-

oDepth predicts disparity which is converted into depth us-

ing the stereo configuration used in the data acquisition

[Depth in meters = (FocalLength × Baseline in meters) /

Disparity]. Lidar and radar data were projected on the im-

age plane using camera matrix to produce depth maps. The

vehicle depth was computed by averaging all the non zero

depth values inside the vehicle box for lidar, MonoDepth

and DORN. The detected box size was reduced by 50% in

height and width with the same center in order to reduce the

influence of the background. For radar however, we took

the non zero minimum value inside the full sized box due

to the sparsity of the data (works best for radar). For our

algorithm, we took the middle point of the bottom of the

full sized box for distance estimation because our algorithm

requires the point to be on the road plane.

4.1. Results and Discussion

4.1.1 Tests on KITTI

KITTI dataset includes images from two color 1.4 MP

PointGrey Flea2 cameras (left one is used in these exper-

iments) and a Velodyne HDL-64E lidar data. Lidar data

was mapped to the cameras. It does not have radar data. We

used its six video clips which have the lidar as well as the

corresponding video data in the KITTI validation split.

Table 1 (a) show the results and Figure 6 top-row shows

some sample KITTI results. Based on the RMSE, we

can see that supervised depth estimation by DORN per-

formed much better than either MonoDepth or our algo-

rithm. Both data driven approaches, DORN and Mon-

oDepth were trained on the training and quiet possibly the

validation sets of KITTI before the authors submitted the

results to the KITTI test set benchmark [2]. Please note

that the KITTI data was recorded by driving around the

city of Karlsruhe, Germany, in the rural areas as well as on

the highways [38]. And although our algorithm fell behind

DORN in performance, still it had lower RMSE than the un-
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supervised deep learning model (MonoDepth). Therefore,

even after aiming for a highway driving scenario, it is still

competing the state-of-the-art data driven approaches on a

variety of road types. For a fair assessment of robustness

and domain in-variance of the algorithms in consideration,

we tested these models along with our algorithms on some

other public datasets.

4.1.2 Tests on nuScenes

nuScenes dataset contains recorded videos of mainly city

scenes. It has 1000 video clips out of which 150 com-

prise the validation set that we used in this assessment. The

dataset contains clips from multiple cameras installed on the

vehicle. We used the front mounted camera CAM FRONT

for evaluation. Table 1 (b) show the results.

The results show that unlike KITTI, the deep learning

networks both supervised and unsupervised, do not perform

as well. Our algorithm however, performs better than all in-

cluding radar in both δ (0.78) and RMSE (6.10). Figure 6

bottom row shows some results of nuScenes where horizon

was estimated correctly and our algorithm performed well.

In contrast, Figure 7 display example with sub-optimal hori-

zon estimation and hence incorrect distance estimate which

is a limitation of our system.

4.1.3 Tests on Lyft Level 5 Dataset

Lyft dataset is the newest and the largest of all datasets.

The setup is similar to nuScenes. We used the data from

the forward looking Cam0 which includes 22680 sample

images and collected on relatively planar roads as opposed

to nuScenes making it the largest dataset in our evaluation

setup. Table 1 (c) show the results. Since Monodepth and

DORN are trained on KITTI, their performance is compro-

mised on a new camera and its settings with RMSE of 12.23

and 11.43, respectively. Our algorithm, however, outper-

forms with an RMSE of 7.31.

4.2. Processing efficiency

In USA, the traffic rules require 3 to 5 secs headway

from the vehicle in the front. Therefore, for an ADAS sys-

tem, real-time operation is imperative as the response time

is very short and compute power onboard is very limited.

As argued earlier, this is one of the reasons for using lidars

and radars. In this regard, we compared our algorithm with

others for the processing time and the results are shown in

Table 2. Deep networks require high compute power. As far

as our method is concerned, there is no specific processing

requirements. It is just a single division and a dot product

which takes 2.31e−05 secs on Core i7 CPU. The initializa-

tion part can use any available Lane detection framework

which will be in operation anyway within an ADAS or self-

driving car. Our lane detection network discussed in section

3.1 runs at 0.125 secs/frame. But it’s a one-off calcu-

lation for a limited number of frames and re-Initialization

Algorithm DORN MonoDepth Ours

GPU 2.10 0.124 —

CPU 130 0.795 23e−06

Table 2. Processing time per frame in secs averaged over 100

frames of nuScenes. GPU: Nvidia GTX-1080 with 8 GB on chip

RAM, CPU:Intel Core i7 7820HK 2.9 GHz with 32 GB system

RAM. Our algorithm’s time is post initialization run-time for dis-

tance calculation. During initialization, our lane detector was also

used at 0.124 secs/frame (one-time execution per camera).

will not be required until the camera configuration is dis-

turbed. This brings our algorithm at par with radar and lidar

data processing without demanding any excessive compute

power on onboard edge devices.

5. Conclusion

In this paper we have presented a single view geome-

try based relative distance estimation algorithm for road ve-

hicles. We have compared our algorithm with data driven

deep learning (DL) based methods. Supervised deep learn-

ing performed exceptionally well on KITTI data. The com-

promise of the DL based algorithms on nuScenes and Lyft

dataset was perhaps due to domain variance since the mod-

els were trained on KITTI data only. Therefore, although

data driven approaches are the future, they do have their

short comings. We instead proposed a geometry based al-

ternative that is simple, intuitive, independent of data and

performs almost equally on all the tested datasets keeping

RMSE within a very narrow range i.e. 6.10 to 7.31. Our

algorithm uses ADAS module of lane detection only for the

initialization part which is computationally expensive since

it’s usually a DL based method. But initialization is a one-

off calculation and after that, our distance estimation works

real-time.

In this work, we also conclude that both geometric as

well as deep learning frameworks are strong contestants to

replace active sensors for ADAS systems as well as self-

driving cars which will be a great help in reducing the cost

of the intelligent transport systems of the future.
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