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Abstract

Despite the advances in Human Activity Recognition, the

ability to exploit the dynamics of human body motion in

videos has yet to be achieved. In numerous recent works, re-

searchers have used appearance and motion as independent

inputs to infer the action that is taking place in a specific

video. In this paper, we highlight that while using a novel

representation of human body motion, we can benefit from

appearance and motion simultaneously. As a result, bet-

ter performance of action recognition can be achieved. We

start with a pose estimator to extract the location and heat-

map of body joints in each frame. We use a dynamic encoder

to generate a fixed size representation from these body joint

heat-maps. Our experimental results show that training a

convolutional neural network with the dynamic motion rep-

resentation outperforms state-of-the-art action recognition

models. By modeling distinguishable activities as distinct

dynamical systems and with the help of two stream net-

works, we obtain the best performance on HMDB, JHMDB,

UCF-101, and AVA datasets.

1. Introduction

In recent years, the computer vision community has

made significant progress in the field of action recognition

and localization, thanks to large real-world human action

datasets. In addition to many advancements, datasets such

as UCF101 [32], HMBD51 [52], Kinetics [30], Moments in

Time [40], Something Something [16], Charades [47, 48],

HACS [72], DALY [62], YouTube-8M [1], Human 3.6M

[8, 24], Hollywood [39], NTU [45], UCF-Sports [51, 42],

and AVA [17] have led this task to a more challenging and

realistic problem. Also, challenges like THUMOS [23, 15]

and ActivityNet [13] have significantly contributed to the

advancement of different tasks in video analysis.
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Figure 1. Human body pose encapsulates useful information to

recognize the human action. Given a video, we extract pose heat-

map sequences and encode them with a dynamic based model to

achieve a comprehensive video representation for action classifi-

cation.

The early deep learning based approaches addressing

video classification primarily employed end-to-end sequen-

tial Convolutional Neural Networks (CNNs) in concate-

nation with Recurrent Neural Networks (RNNs), in order

to first capture appearance-based representations for action

prediction [11].

RNNs and Long-Short-Term Memory Networks

(LSTMs) have appeared to perform well in text-related

tasks such as speech recognition, language modeling,

translation, and image captioning [20, 27]. However,

their use for action recognition has yet to show significant

improvements. CNNs are very successful dealing with still

images in tasks such as image classification [31] and object

detection and segmentation [36], but there is a lot of room

to work on a sequence of images (frames) when processing

video clips.

Newer approaches have demonstrated the importance of

incorporating motion information to CNNs, by introducing

a two-stream architecture [49, 60] that trains networks in
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parallel for separate streams of still RBG images and stacks

of optical flow. Two-stream architectures are indeed benefi-

cial for video action recognition, since some activities could

be captured uniquely based on the appearance of the still

images and their context (for example swimming and bas-

ketball), whereas others might have divergent presentations

but similar dynamic cues (as in speaking and listening).

Nevertheless, very deep convolutional networks do not

exploit the dynamical structure present in both appearance-

based and motion-based feature maps by assuming a priori

that these representations will fall into very deep model dis-

tributions.

Adding information other than raw RGB frames can be a

great help to the task of activity recognition, as some of the

datasets [17] include audio as an additional modality to the

video sequences. Another example using different modali-

ties in action datasets is the addition of 2D/3D coordinates

of human body joints [30, 25, 44].

The goal of this paper is to incorporate dynamical infor-

mation from each pixel in the video, to better capture human

body motion for the task of activity recognition. Figure 1

shows an overview of the proposed method. The motion of

the human body is represented as a function of time, which

is mapped into a latent space, providing complimentary in-

formation for recognizing the activities.

Our work makes the following contributions:

• A novel dynamic encoder model that captures the tem-

poral information of body joint movements and pro-

duces a video level representation.

• Extensive experiments on using the dynamic motion

representation, called DynaMotion, and feeding them

to a CNN for the task of human action classification.

• We achieve the best performance on several action

recognition benchmark datasets by combining the

dynamic representation with appearance and motion

streams.

The paper is organized as follows: in section 2 we re-

view the most recent works and categorize them in terms

of type of their approach, while section 3 speaks about the

core idea of dynamic encoding and provides background

details. Section 4 shows how we implement the proposed

method. Finally, in section 5 we extensively study the Dy-

naMotion model and its varieties, evaluating recognition ac-

curacy and comparing with state-of-the-art methods on the

UCF101, JHMDB and HMDB51 datasets, as well as AVA

in case of action localization.

2. Related work

Activity recognition aims to recognize common human

activities in real life settings. Datasets such as UCF101

and HMDB51, collected to help this field, provide real-

istic videos of different persons, performing different ac-

tions in controlled settings. In the following, we catego-

rize recent works for the task of activity recognition us-

ing four main approaches: 1) Combining multiple modal-

ities, such as raw RGB frames, optical flow, and audio

[66, 21, 70, 73] 2) Spatio-temporal convolutions and 3D

convolutions [65, 59, 22, 35, 50, 64], 3) Recurrent models

and Long Short-Term Memory based methods [33, 38], and

finally, 4) Video Representation methods, such as [4].

Using multiple modalities: Kalogeiton et al. [28] in-

troduced an Action Tubelet detector, which produces a se-

quence of bounding boxes with scores, where they used

the SSD detector to extract a set of anchor cuboids. An-

other work [55] used a network based on bottleneck mod-

ules, where each module has two sparse coding layers with

wide and slim dictionaries. [43] looked at the problem of

spatio-temporal localization and classification of concurrent

actions, using color images, optical flow, and motion detec-

tion scores, where they construct action tubes by solving

two energy maximization problems with dynamic program-

ming.

The work of [60] proposed a temporal segment network

(based on the idea of long-range temporal structure model-

ing) for video-based action recognition where they combine

a sparse temporal sampling strategy and video-level super-

vision. [46] focused on attention based modeling to find

out the salient portions while capturing the long-term de-

pendencies.

Spatio-temporal and 3D CNNs: A recent work [53]

showed the importance of aggregation of temporal and spa-

tial streams for the task of action recognition by distillation.

Wang et al. [61] proposed a pyramid network for spatial

and temporal feature fusion.

3D-convolution over short video clips - typically just a

few seconds - learn motion features from raw frames im-

plicitly and then aggregate predictions at the video level.

Karpathy et al. [29] demonstrated that their network is just

marginally better than single frame baseline, which indi-

cates learning motion features is difficult. In view of this,

Simonyan et al. [49] directly incorporated motion informa-

tion from optical flow, but only sampled up to 10 consec-

utive frames at inference time. The disadvantage of such

local approaches is that each frame/clip may contain only

a small part of the full videos information, resulting in a

network that performs no better than the naive approach of

classifying individual frames.

RNN and LSTM based models: Initial proposals

based on deep architectures for video recognition consisted

of a feature extraction block at the frame level through se-

quential CNNs, followed by a recurrent network, such that

they were jointly trained to simultaneously learn tempo-

ral dynamics and convolutional perceptual representations
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[11]. Several recent works have been inspired by this proce-

dure, such as [67], in which spatio-temporal CNN features

are extracted from video clips sliced with a fixed length

so that sequential appearance and dynamic information are

learned through a LSTM. In contrast, other proposed ap-

proaches are not trained end-to-end and use Bag of Words or

dominant motion as pre-computed feature descriptors, fol-

lowed by a LSTM-RNN [3].

Recent work by Yue-Hei Ng [68] considered several dif-

ferent ways to aggregate strong CNN image features over

long periods of a video (tens of seconds) including feature

pooling and recurrent neural networks.

In contrast, the Long Short Term Memory (LSTM) [11]

uses memory cells to store, modify, and access internal

state, allowing it to better discover long-range temporal re-

lationships.

Another approach [68] incorporated five stacked layers

of LSTMs after CNNs for temporal information extraction

(The CNN outputs are passed upwards to the LSTM lay-

ers and forward through time). They also analyze different

convolutional temporal feature pooling to better design a

CNN for this task. A recent work in action recognition [58]

improved dense trajectories by explicitly estimating camera

motion which results in a better video representation for ac-

tion recognition. They matched feature points for different

frames by SURF descriptors and dense optical flow.

Video Representation: Another work on video rep-

resentation for action recognition is the work of [5] where

they produced a single RGB image per video by rank pool-

ing on its raw image pixels. Dynamic images are used to

summarize actions and motions happening in a video by

temporal pooling as a layer in CNN. Another work [18]

built a fully convolutional feed-forward auto-encoder to

learn both the local features and the classifiers as an end-

to-end learning framework. The auto-encoder learned the

regularity dynamics in long-duration videos and can be use-

ful for identifying irregularity in the videos (abnormal event

detection). Also the low level motion features were learned

using a fully convolutional auto-encoder.

Our proposed method can be also categorized as a video

representation model. In this work we benefit from one of

the state-of-the-art methods in object detection and instance

segmentation, Mask R-CNN [19], which also provides key-

point estimation for a variety of objects. We approach the

problem of human activity recognition by estimating human

body pose (using Mask R-CNN to detect person, as one

class of object, along with its key-points and heat-maps).

This method efficiently detects multiple objects (in our case,

persons) in an image, while estimating human pose simul-

taneously, allowing us to further exploit the human body

dynamics from video frames.

3. Dynamic Motion Representation

In this section, we present our video representation

model, DynaMotion, to encode the human body motion. We

start with the heat-map extraction in section 3.1 and then

describe the dynamical encoder model in 3.2. Finally, we

show the best performing method as a three-streams net-

work consisting of RGB, optical flow, as well as the pro-

posed DynaMotion representation as parallel streams.

3.1. Body Joint Extraction and Heatmaps

Recent advances in 2D and 3D pose estimation make it

easy to obtain the coordinates of human body joints (and

other objects’ key-points) [6, 19]. One can also extract mid-

level features and heat-maps from the networks trained on

datasets with pose annotations. Heat-maps can be inter-

preted as an approximation to the probability of having a

body joint at each pixel. Here, we use the Mask R-CNN

[19] for extracting the joint heat-maps for action recogni-

tion, in addition to the person bounding boxes as part of

our model for action localization. We chose this model be-

cause it detects multiple objects and their key-points (in our

case, human body and joints) in a given image, provides

a mask for each object, and it is robust against occlusion.

In particular, we use the person bounding boxes and the

joint heat-maps from a pre-trained Mask R-CNN on COCO

dataset [34]. Detailed experiments and discussion on why

heat-maps are useful are provided in our ablation study, part

5.2.

We pass each frame through Mask R-CNN and extract

the heat-map for each key-point. The model extracts 17

body joints (5 for head and 3 for each of the 4 limbs), re-

sulting in an output with 18 channels: one heat-map for each

joint plus one channel for background. We then stack these

channels on top of each other to have a combined heat-map

for all the body joints. The spatial resolution of the heat-

map is lower than the original frame, which we up-sample

to a fixed size of 64× 64. In the implementation details, we

denote the size of the heat-map after re-scaling by W ×H .

The value for each pixel in the pose heat-map is between

0 and 1, representing the probability of the corresponding

pixel belonging to a specific body joint. In the following,

we propose an efficient approach for encoding the temporal

evolution of these heat-maps as an input to our network.

3.2. Affine Invariant Dynamic Motion Encoding

In [71] Zhang et al. modeled the motion of 3D hu-

man joints with linear time invariant systems and showed

that this representation can be successfully used for activity

recognition. Furthermore, in [2] Ayazoglu et al. showed that

all affine 2D projections of a 3D motion trajectory modeled

by a linear auto-regressive dynamical model can be repre-

sented using the same linear dynamical model. This sug-

gests capturing the dynamics of the heat-map of the joints
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to exploit viewpoint invariance. Thus, we propose to cap-

ture the dynamic information of the joints using the recently

proposed DYAN [37] dynamics-based encoder-decoder net-

work. DYAN was proposed in the context of video frame

prediction, but can be applied to any temporal sequence,

provided that it can be approximated by the output of a lin-

ear system and hence can be applied here. We chose this en-

coder because it uses very few parameters, it is easy to train

and has shown excellent predictive performance, but more

importantly, because the model exploits the affine viewpoint

invariance described above.

During unsupervised training, DYAN learns a structured

dictionary D of size T ×N to encode input sequences y1:T
of length T using a set of N dynamic-based atoms. These

atoms (columns of D) are the impulse responses of low or-

der (first and second order) linear time invariant systems,

which are parameterized by the magnitude ρi and phase Φi

of their poles pi = ρie
jΦi :

D =
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Then, the encoding of a sequence y1:T is given by a very

sparse vector of coefficients c that selects and weighs the

atoms in the dictionary. The vector c is found by solving an

sparsification problem:

min
c

1

2
‖y1:T −Dc‖2

2
+ λ‖c‖1

where the first term seeks a good fitting of the input data

while the second term penalizes higher order systems. That

is, the encoding seeks to explain the input data using as few

as possible poles, i.e. as the output of the “simplest” linear

system that fits well the input data, where “complexity” of

the system is measured by the number of its poles (For more

details please refer to DYAN [37]). Note that the vector c

has dimension N , i.e. the number of atoms, regardless of

the length of the input, and as mentioned above, it should

be sparse.

3.3. Appearance and Dynamics Aggregation

We use the encoding method mentioned above to obtain

a fixed size video clip representation for each input video.

By training a convolutional neural network on top of the

dynamic encoded video representation, the model is able

to learn the dictionary D. Therefore, we can classify the

action happening in a sequence of frames, given the vector

of coefficients c selecting the set of atoms for each class of

actions. This information focuses on the motion of the actor

and it is complimentary to the context information coming

from the original frames and their optical flow (as parallel

RGB and OF streams). We use a pre-trained state-of-the-

art model, called I3D [7], and fine-tune it for each dataset

in the experiments. Finally, we aggregate the information

coming from each stream to obtain the classification score

for a given video clip. More details on how to merge scores

coming from each of these three streams are provided in

section 4.2.

4. Implementation Details

In this section we start in 4.1 with a description on how

to incorporate the dynamical atom-based encoder with pose

heat-maps in order to classify actions. Then, in section 4.2

we explain the network architecture for our dynamic based

encoder followed by some implementation details.

4.1. Dynamic Encoding

We start by processing each frame of the input video

with the Mask R-CNN model and exporting the heat-map

for body joints as well as person bounding boxes. The rest

of the DynaMotion method uses the person crop in order to

avoid the background impact on the performance and com-

putational cost. We stack 18 channels of the resulting heat-

maps in a singe channel and then flatten a set of T consec-

utive W ×H heat-maps into WHT × 1 vectors. Then, we

feed these vectors into a DYAN encoder layer [37]. The out-

put of the dynamic encoder layer is a set of sparse WH vec-

tors of dimension N × 1, which we reshape to W ×H ×N

features. Thus, the encoder produces a feature vector of the

same spacial size of the input (W × H) with N channels

(number of atoms). This layer is followed by a shallow net-

work described in 4.2 that gives a classification score for a

given video. Following [37], we define the number of atoms

N to be 161 (we initialize the dictionary D with 40 poles

in the first quadrant, within a ring around a unit circle, and

their 3 mirror images in the other quadrants, plus a fixed

pole at p = 1 to represent constant inputs). The overall ar-

chitecture learns the dictionary D, i.e. the set of poles of the

encoder layer, by minimizing a loss function that penalizes

the classification error for the actions.

4.2. Network Architecture

We studied a variety of networks to train on top of the

dynamic motion representation and observed that using a

shallow network with six convolutional layers and one fully

connected layer we can achieve the best results. Thus,

the resulting architecture is a shallow network compared

against to standard CNNs. We find that given the texture

of our dynamic motion representation, the network does not

need to be deep and can be easily trained from scratch (no

pre-training). The input to the first convolution layer is the

output of our encoder, which is of size W×H×N . Figure 2

shows a sketch of the architecture of our proposed network.
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Figure 2. DynaMotion Representation Network.

The network consists of one encoding layer followed by

three blocks, each block with two convolutions. The filter

size for all convolution layers is 3, while the stride for the

first convolution layer in each block is 2 and the second

convolution in each block has stride of 1. In each block, the

spacial resolution of the input is reduced, while the number

of channels is doubled (first block with 128 channels and

last block with 512 channels). We use batch normalization

after each convolution layer followed by a ReLU. After the

third block, we insert an average pooling layer, followed

by a fully connected layer and softmax classifier to get the

action class score. This score will be later on merged with

the scores coming from the RGB and OF streams (from I3D

model), resulting in a single score per frame (the merging is

done by averaging the scores).

5. Ablation Study

In this section, we report extensive results evaluating the

performance of action classification and localization while

using the proposed dynamic motion representation on four

datasets. We start by introducing the datasets used in these

experiments in section 5.1, then provide the details for our

dynamic encoder model and its network parameters in sec-

tions 5.2 and 5.3, respectively. In order to understand the

effectiveness of our model, we provide experimental results

showing the impact of using our network in section 5.4. Fi-

nally, section 5.5 shows the comparison of our best model

against the state of the art on three main datasets for activity

recognition and one dataset for action localization.

5.1. Datasets

For the task of activity recognition we use three main

datasets (HMDB51, UCF101, and JHMDB) to examine our

model’s ability to learn dynamics of human body motion in

different scenarios. We also use our model for the task of

action localization on the AVA dataset.

HMDB51 [32] is a dataset consisting of 51 classes of ac-

tions with a minimum of 101 clips per class. This dataset

has 6,849 video clips in total, from movies and YouTube,

that come with pre-computed features such as HoG and

STIP. We only use the video files for training our models.

Joints information for 21 classes of HMDB51 has been

provided in the JHMDB dataset [25]. This dataset includes

puppet optical flow and mask as well as joint position per

frame for 928 videos. Labels for these videos are in the form

of one action class per clip. There is also a meta label per

clip, e.g. number of people, view point, etc. Therefore, one

can use the pose annotations of this dataset to train a model

for activity recognition using pose in a supervised manner.

The UCF-101 dataset [52] has 101 action categories

in three splits (about 13K video clips in total). Same as

HMDB, there is one label per video clip.

AVA The Atomic Visual Actions [17] dataset consists of

80 action classes, 430 video clips in total (divided in 235

for training, 64 for validation, and 131 for testing). This

dataset has localized action labels in space and time, in total

1.58M labels, as well as bounding boxes around the person

involved in an action. We use version 2.1 of AVA dataset in

our work.

5.2. Encoding Pose

We used the encoder layer of DYAN [37] to extract the

dynamic motion representations and feed them to the CNN.

Using the code provided by the authors, we set the number

of poles to 40 and time horizon (number of input frames)

to T = 30. As explained above, the underlying assump-

tion is that human activities can be modeled as low order

dynamical models, and the method learns how many atoms

(i.e the order of the system) and which ones to choose from

the pool of atoms. For more details please refer to part 3.2

of DYAN paper [37]. We tested using the dynamic encoder

on both joint locations (coordinates) as well as joint heat-

maps (as two different input types). Table 1 shows the use

of heat-maps versus joint location (coordinates) as the input

data type to our encoder. Our experiments show that our

model performs best using heat-maps, as they convey more

information per pixel.

We also trained a 3D convolution based type of network,

C3D [56], on top of the heat-maps (instead of encoded heat-

map, as in DynaMotion) to show the effectiveness of encod-

ing dynamics with our model. As shown in the third row of

table 1, our network outperforms the C3D network, even

though both networks use temporal evolutions of pose heat-

maps as their input.

5.3. Dynamic Motion CNN

In this section we study the parameters of the DynaMo-

tion network and the impact of augmentation for training

purposes. We examined our network using shallow archi-
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Method JHMDB-GT JHMDB HMDB UCF101

DynaMotion with heat-maps 69.7 % 60.2 % 49.1 % 63.5 %

DynaMotion with joint coordinates 63.8 % 53.4 % 40.3 % 52.9 %

C3D [56] with heat-maps 57.7 % 37.3 % 31.5 % 44.0 %

Table 1. Mean classification accuracy using DynaMotion with

heat-maps, DynaMotion with joint coordinates, and C3D with

heat-maps.

Augmentation JHMDB HMDB UCF101

flip (right to left) 60.2 % 49.1 % 63.5 %

no augmentation 51.4 % 46.3 % 61.9 %

Table 2. Accuracy with and without data augmentation for three

different datasets.

Method JHMDB-GT JHMDB HMDB UCF101

DynaMotion 69.7 % 60.2 % 49.1 % 63.5 %

C3D [56] 56.4 % 56.4 % 51.5 % 82.1 %

C3D [56] + DynaMotion 71.3 % 69.4 % 65.3 % 93.4 %

R(2+1)D [57] 79.2 % 79.2 % 77.9 % 95.1 %

R(2+1)D [57] + DynaMotion 86.2 % 85.7 % 82.6 % 96.3 %

I3D [7] 87.0 % 87.0 % 82.1 % 97.7 %

I3D [7] + DynaMotion 89.2 % 87.2 % 84.2 % 98.4 %

Table 3. Mean classification accuracy for split 1 using combina-

tion of DynaMotion with state-of-the-art two-stream networks and

spatio-temporal convolutions methods.

tectures as well as deeper networks, but the best accuracy

was obtained with the six layers CNN on top of DYAN’s

encoder. We trained our model for 100 epochs for each

dataset.

Based on our experiments, augmenting the data by flip-

ping frames (right to left) helps increasing the mean clas-

sification accuracy. Table 2 shows the data augmentation

impact on mean classification accuracy for split one of the

JHMDB, HMDB51, and UCF101 datasets. The impact of

data augmentation for UCF101 dataset is about 2%, while

it increases the accuracy for JHMDB by almost 10%. The

accuracy gain in the case of HMDB51 is about 3%. This

makes sense since it is smaller than UCF101 and larger than

JHMDB in terms of data size. Based on this observation, we

augmented all datasets for our experiments.

5.4. Impact of the DynaMotion Representation

In order to understand the importance of using a dynamic

motion representation, we compared results with and with-

out the dynamic motion encoding. For this set of experi-

ments we used C3D [56], R(2+1)D [57], and I3D [7] net-

works to combine with our dynamic motion network. We

used split 1 of HMDB51, JHMDB, and UCF101 in order to

evaluate the advantage of using the proposed DynaMotion

representation.

Table 3 shows the mean classification accuracy to verify

whether the DynaMotion representation is useful and com-

plimentary to two stream networks as well as 3D convolu-

tional networks. In this table, JHMDB-GT is the case where

we use the ground truth puppet pose annotation to train our

network instead of using Mask R-CNN to estimate the pose

for each frame. The 2D annotation from JHMDB includes

the x, y coordinates of each joint (15 in total) which we used

to synthetically generate the pose similar to [19] joint heat-

map for training. As in table 3 using the ground truth joint

shows almost 9% improvements for our DynaMotion repre-

sentation (first row).

The rest of the rows compare the impact of our video

level representation on existing multi-stream networks as

well as 3D convolutions (the original models do not use

pose for training, therefore their accuracy for both JHMDB

and JHMDB-GT is the same). For the purpose of this com-

parison, we fine-tuned C3D, R(2+1)D, and I3D for each

dataset and then merged their scores with the scores com-

ing from our model (the merging was done by averaging the

scores coming from each stream and DynaMotion). Based

on this table, the gain in accuracy as a result of adding Dy-

naMotion is about 10% for the case of C3D, and up to 7%

for R(2+1)D. While using the more recent model, I3D [7],

we observed a slight improvement for each dataset (up to

2%), since I3D was pre-trained on Kinetics [30] which is a

richer dataset. Based on these results, we conclude that Dy-

naMotion brings complimentary information to the existing

3D convolutions and two-stream networks, and has higher

impact on models with less training data.

5.5. Comparison with Stateoftheart

In this section we compare our results with the state-of-

the-art in activity recognition models. Table 4 shows our

results comparing to state-of-the-art methods on all splits

of the three datasets (JHMDB, HMDB, and UCF101). For

this experiments, we used our best model (with data aug-

mentation and in combination with I3D), based on our pre-

vious experiments described above. We outperform all ex-

isting models (comparing to their best results using dif-

ferent modalities), including the models that benefit from

pose [10, 75]. For JHMDB we outperform the PoTion rep-

resentation model by almost 2%. On HMDB we report

84.2%, which is an improvement of almost 3% comparing

to SVMP+I3D [59]. We also outperform the mean accu-

racy on UCF101 by a small margin (some results are shown

in Figure 4 for a few randomly selected videos). Some of

the models reported in this table were pre-trained on dif-

ferent datasets (Kinetics [7], Sports-1M [56]) using differ-

ent modalities of input data, therefore the comparison might

not be entirely fair. Overall, we outperform state-of-the-art

models in human action recognition for JHMDB, HMDB,

and UCF101. As shown in Figure 3, our model increases the

per-class accuracy for most of the JHMDB classes, com-

plementing the information coming from RGB and OF to

further increase the classification accuracy with the help of
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Method JHMDB HMDB UCF101

CNN+hid6 [69] - - 79.3 %

FV+IDT [41] - - 84.8 %

PoseFlow [70] - 51.74 % -

MiCT [74] - 63.8 % 88.9 %

P-CNN [9] - 72.2 % -

Chained 3D-CNN [75] 76.1 % 69.7 % 91.1 %

Attention Cluster [38] - 69.2 % 94.6 %

CoViAR+OF [63] - 70.2 % 94.9 %

TVNet [12] - 72.6 % 95.4 %

OFF [54] - 74.2 % 96.0 %

R(2+1)D [57] - 78.7 % 97.3 %

I3D [7] - 80.7 % 98.0 %

I3D + PoTion [10] 85.5 % 80.9 % 98.2 %

SVMP+I3D [59] - 81.3 % -

DynaMotion + I3D 87.3 % 84.2 % 98.4 %

Table 4. Mean per-class accuracy for JHMDB, HMDB51 and

UCF101 (averaged over 3 splits) in comparison with state-of-the-

art.

body pose (for example in the case of golf, clap and jump,

where the pose is well-defined).

We also compared our model for the task of action local-

ization (ActivityNet challenge [66], task B). For this pur-

pose, we used the bounding boxes extracted from Mask

R-CNN model to localize subjects and used our DynaMo-

tion representation for the cropped frames. Table 5 shows

our performance in comparison with state-of-the-art on the

AVA dataset [17]. We report mean average precision (mAP)

of 25.8% for the validation set of AVA (for IoU=0.5).

For this experiment, we used our best model results (Dy-

naMotion+I3D) on action classification with localization re-

sults coming from Mask R-CNN [19] (as person detection

bounding boxes). We used a time horizon of T = 30 for

this experiment, having 30 frames of video as input to our

DynaMotion network.

Discussion Overall, the gain in mean accuracy for the

task of action recognition shows the significant impact of

our DynaMotion representation. As seen in table 3, bene-

fiting from pose and the dynamic representation adds to the

power of action classification for all models, depicting the

role of human body motion in addition to the context infor-

mation coming from RGB and Optical Flow streams. As

expected, our model performs better when the activity in-

volves a more clear human body motion, such as jump or

sit. For the classes in which the difference in human motion

is negligible, our model performance is lower and therefore

appearance of the subject and the context of the video has a

bigger impact than pose.

Figure 3. Accuracy improvements (per-class) for JHMDB split 1

using DynaMotion with I3D.

Figure 4. Action recognition results on UCF101 sample videos.

6. Conclusion

In this work we introduced Dynamic Motion Representa-

tion (DynaMotion) to encode human body motion in video

clips. Using this novel video representation model, we are

able to train a shallow network to classify human actions

in videos. We showed that our DynaMotion representa-

tion leads to the state-of-the-art performance on UCF101,

HMDB, JHMDB, and AVA datasets. As a future work, end-

to-end training of the joint heat-map estimation and Dy-

naMotion network is desired in order to study the impact

563



Model Modalities mAP@IoU0.5

AVA baseline [17] RGB+Flow 18.4 %

Girthar et al. [14]+JFT RGB 22.8 %

RTPR [33] RGB+Flow 22.3 %

YH Tech [66] RGB+Flow 22.2 %

Jiang et al. [26] RGB+Flow 25.6 %

Ours RGB+Flow+Pose 25.8 %

Table 5. Per frame mean average precision for AVA validation set,

using IoU=0.5

of different body joints in specific action classes.
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