
Can I teach a robot to replicate a line art

Raghav B. Venkataramaiyer

Indian Institute of Technology Kanpur

bvraghav@iitk.ac.in

Subham Kumar

Indian Institute of Technology Kanpur

subhamkr@iitk.ac.in

Vinay P. Namboodiri

Indian Institute of Technology Kanpur

vinaypn@iitk.ac.in

Abstract

Line art is arguably one of the fundamental and ver-

satile modes of expression. We propose a pipeline for a

robot to look at a grayscale line art and redraw it. The key

novel elements of our pipeline are: a) we propose a novel

task of mimicking line drawings, b) to solve the pipeline we

modify the Quick-draw dataset and obtain supervised train-

ing for converting a line drawing into a series of strokes

c) we propose a multi-stage segmentation and graph inter-

pretation pipeline for solving the problem. The resultant

method has also been deployed on a CNC plotter as well

as a robotic arm. We have trained several variations of the

proposed methods and evaluate these on a dataset obtained

from Quick-draw. Through the best methods we observe an

accuracy of around 98% for this task, which is a signifi-

cant improvement over the baseline architecture we adapted

from. This therefore allows for deployment of the method

on robots for replicating line art in a reliable manner. We

also show that while the rule-based vectorization methods

do suffice for simple drawings, it fails for more complicated

sketches, unlike our method which generalizes well to more

complicated distributions.

1. INTRODUCTION

Line is a fundamental building block in art form, and

so has been emphasised by pioneers of historical art move-

ments led by the likes of Picasso, Paul Klee, Kandinsky and

Piet Mondrian in the past. In modern times drawing as an

activity has been studied in the context of problem solv-

ing in a design process, while sampling mostly over line

art[19, 20].

There is one question that forms the under-current of our

investigation here,

If I provide any line drawing to a robot, how

can I teach it to look at it, and draw the same on a

paper using a pen.

This is a different challenge that has to the best of our

knowledge not been addressed previously. There are vec-

torization based methods in Computer Graphics that aim to

convert an input sketch into strokes. However, these would

lose salient stroke information and would not preserve the

line drawing (refer § 5.5). Other approaches aim to parse

sketch into semantic segments. Again, this would not be

useful for obtaining stroke information. In contrast to these,

we aim to replicate the line drawing by converting an input

raster line drawing image into a set of strokes (refer § 4)

and the corresponding instructions (refer § 4.4) that can be

used by an automated system. To obtain this, we present

an approach different from the popular vectorization mod-

els [1, 17], the segmentation models [14, 8], the interest-

ing developments of the drawing robots [4, 18] and further

present its applicability.

We treat this problem as a special case of vectorization,

by learning a function to map a line drawing from image

domain to a graph structure. To this effect, we deploy, as

a prior step in the pipeline, an image to image translation

to facilitate the inference, using a deep segmentation neural

network. There is also a post process step involved, to re-

trieve a sequence of strokes from the graph structure. This

is further translated to GCODE to input to a CNC plotter (re-

fer § 4.4), or used directly by factory software to compute

trajectory for a robotic arm.

We propose a novel U-Net based deep neural network

(DNN) to implement the image to image translation, trained

over a novel dataset built upon the Quick-draw dataset [6],

and through a tailor-made training objective. The novelty

in the dataset lies in generating on the fly, the segmentation

true labels.

We propose a simple yet effective method, to infer the

strokes as a graph data-structure, from the image domain.

We utilise the segmentation of the image into corners chan-

1933



nel, which for most practical cases have one to one corre-

spondence with vertices of the graph, and lines, that show a

similar behaviour of edges. The inference is made using an

iterative update to a parametrized filter criterion, that selects

a subset of the edges as graph proposal after every update.

To extract stroke sequences from the graph structure,

we effectively utilise a recursive approach and illustrate the

utility using two devices, namely CNC plotter, and a robotic

arm.

To conclude through this paper we make the following

main contributions:

• Propose a multistage pipeline, for segmentation, and

graph interpretation;

• Novel architecture for the deep segmentation network;

• Annotated dataset for training the network;

• Improvised loss function as the training objective; and

• Feedback based iterative update to infer graph struc-

ture from image domain.

2. RELEVANT WORKS

Research in robotics has seen some recent developments,

while trying to create a drawing robot. Paul, the robotic

arm, was trained to sketch a portrait, with inherent inputs

from an artist, while deploying a stack of classical vision

methods into their pipeline [18]. More recently, [4, 3] in-

vestigated whether a similar feat can be achieved through

a quad rotor, with the aim of “applying ink to paper with

aerial robots.” Their contributions include computing a stip-

ple pattern for an image, a greedy path planning, a model for

strategically replacing ink, and a technique for dynamically

adjusting future stipples based on past errors. Primarily,

such efforts are based on space filling exercise, and focus

on the control systems, rather than the accuracy of the input

image. Our investigation deals more with capturing the line

nature of artwork, and is a different exercise altogether.

Robots with high quality manipulators [16] have been

used to draw line based art on uneven surface(s), exploit-

ing the availability of impedance control. Earlier, Fu et

al. [2] illustrated an effective use of graph minimisation

over hand crafted features to predict a reasonable ordering

of given strokes. However, these methods rely on vector

input. We on the other hand propose a pipeline that reads

from a grayscale image.

Sketch vectorization is very close to the graph structured

learning part of our pipeline, but it has its own set of inher-

ent problems [17]. Two specific approaches include skele-

ton based methods, that have to deal with corner artefacts,

and contour based methods, that deal with problems related

to one-to-one correspondences. Recent developments deal

with noise removal and Favreau et.al. [1] in particular, in-

vestigate a higher order problem of fidelity vs simplicity of

the method. Inherent to these approaches is the loss of infor-

mation from the image domain in order to mitigate the ba-

sic problems. We propose to use segmentation techniques

which are comparatively better at preserving the informa-

tion as shown further in § 5.5.

Segmentation and labelling of sketches has been sub-

ject to profound research in graphics and vision. Schneider

et al. [13] had successfully used an ensemble of Gaussian

Mixture Models and Support Vector Machines with Fisher

Vectors as distance metric to discriminate strokes; Further,

it was illustrated that use of Conditional Random Fields

over a relationship graph described by proximity and en-

closure between the strokes, performs well in assigning se-

mantic labels to strokes [14]. The classical methods use

hard coded features like SIFT, that was used here, as the

basic building block for learning algorithms.

Recently, convolutional neural networks have been

proven to be highly effective in classifying segmented

strokes as given labels [24]. Li et al. [9] have illustrated

the effectiveness of U-Net based deep neural network ar-

chitecture in the context of semantic segmentation, with the

help of 3D objects dataset. The problems involving se-

mantic segmentation whether used in classical context or

Figure 1. Left to Right. An artist drawing; digital copy of the drawing; segmented version; drawing by a CNC plotter.

1934



with the deep learning based methods, target a higher level

problem, namely semantics. We formulate our problem at

a much lower level, by distinguishing corners from lines.

Some problems also exploit the characteristics of dataset,

for example data synthesised out of 3D objects, used by Li

et al. [9], has a much stronger sense of enclosure, which are

not necessarily true for the hand drawn counterparts, that

form our dataset.

Sequence to sequence translation using deep learning

methods have shown to be successfully deployed both as

a discriminative model [22] as well as a generative model

in the context of sketch segmentation [8]. The genera-

tive model has been used to reconstruct a sketched sym-

bol. Sequences do make sense to work in stroke domain,

where a sequence of vector input is available to begin with.

Whereas, our work deals with image as an input.

3. PIPELINE

The pipeline as shown in Fig. 1 can be split to three sig-

nificant parts, namely

Image to Image Translation The first part takes the raw

sketch, a grayscale image as an input, and translates it into

a segmentation mask, one for each label, which in our case

are background, corners, and lines.

We implement this using a DNN, a variant of U-Net, that

avoids cropping the images, and retains the valid convolu-

tion operations. This has been further detailed out in § 4.1

and § 4.2.

Graph Interpretation The second part uses the segmen-

tation channels of lines and corners as input and infers a

graph structure, so that its vertices represent the cusp or

end points, and its edges represent the curve drawn between

them.

This is implemented in three stages; first is the inference

of vertices, using connected component analysis of corners

channel; second is a plausibility score of a given pair of ver-

tices, evaluated using the lines channel; and finally a filter

criterion based on a per edge threshold, that gets iteratively

updated using feedback from the input image. This has fur-

ther been detailed out in § 4.3.

Utility The last part takes the graph structure and parti-

tions into a sequence of strokes using a recursive approach.

We further detail out the algorithm in § 4.4.

4. METHODOLOGY

4.1. Discovering the segmentation network

U-Net, a variant of deep neural encoder-decoder ar-

chitecture with skip connections, was proposed by Ron-

neberger [12] and was an extension of fully convolutional

network (FCN) [15, 10].It was shown to be highly effec-

tive in the context of biomedical segmentation. Compared

to the FCN, U-Net proposed a symmetric architecture, to

propagate the skip connections, within the convolutional

network. Its effectiveness in the context of semantic seg-

mentation was also shown by Li et al. [9].

Additionally, since downsample/upsample is followed

by valid convolutions, U-Net forwards only a crop of the

activations as a skip connection. Consequently, the out-

put of the vanilla U-Net produces an output image with

size smaller than that of the input image, Hout,Wout <
Hin,Win. As a counter measure, the training and test im-

ages were augmented by tiled repetition at borders, for the

vanilla U-Net.

Figure 2. Reinterpretation of the U-Net architecture with modular blocks for downsampling, upsampling and bottom.

1935



Figure 3. Effect of the change in weights for cross entropy loss.

Left to Right. true labels highlighting selected area; blown up ver-

sion of selected area in true labels; prediction in selected area using

ω(ℓ(x)); prediction using max weights.

We on the other hand create an exact mirror of oper-

ations unlike the U-Net architecture, i.e. downsampling

is followed by valid convolutions and upsampling follows

valid transpose convolutions. This eliminates the need for

a tiling-based augmentation, and further gives way to nice

convolution arithmetic.

Yu et.al [23] observed that in the context of sketches, the

network is highly sensitive to the size of “first layer filters”,

the “larger” the better. Although they used a kernel size of

(15 × 15) for the first layer, we found that a size as low as

7× 7 is effective in our case.

Another notable difference, inspired by Radford et. al’s

observations [11], has been in the downsampling and up-

sampling operations. U-Net uses “2×2 max pooling opera-

tion with stride 2 for downsampling” [AND a corresponding

upsampling strategy.] We have, on the other hand, used

valid strided convolutions for downlasmpling, and valid

strided transpose convolutions for up-sampling.

Our network, as shown in the Fig. 2 is parameterised

with a 4-tuple,(k1 k2 d r), where

• k1 is the kernel (k1×k1) of the first convolution layer.

• k2 is the common kernel (k2 × k2) of all subsequent

layers.

• d is the depth of the encoder/decoder, that is to say

number of downsampling operations in the encoder or

upsampling operations in the decoder .

• r is the number of convolution operations along each

depth level.

4.2. Training Objective

We started with the standard, weighted softmax cross en-

tropy loss, as in the case of U-Net. For each pixel in the im-

age, x ∈ Ω;Ω ⊂ Z
2, if the network activation correspond-

ing to a given label i, be expressed as, ai(x); 0 < i 6 K,

K being the number of labels, we express the predicted

probability of the label i, as the softmax of the activation,

pi(x) = exp(ai(x))/
∑K

j exp(aj(x)). We want pℓ(x) ≈ 1
and pi(x) ≈ 0; i 6= ℓ(x) for the true label ℓ(x). So we

penalise it against the weighted cross entropy, as follows,

L =
∑

x∈Ω

w(x) log(pℓ(x)(x)) (1)

where w(x) ← ω(ℓ(x)); ω : Λ→ R, represents weight

map initialised inversely proportional to class frequencies in

the entire dataset to counter class imbalance in it, and Λ is

the set of labels.

Further, we investigated a variant using max weights,

w(x) ← ω(max(ℓ(x), ρ(x))), where ρ(x) is the predicted

label. This significantly improves the result, as shown in

Fig. 3. Even the prediction of very complicated structures

resembles the true distribution.

4.3. Graph Interpretation

There are two key observations in interpreting the graph

G(V,E) representing the strokes, from a segmentation

mask. Firstly, each corner is a set of strongly connected

components in the channel, so we collect their centroids into

the set of vertices, V : {centroid(i); 0 < i 6 N};V ⊂ R
2,

where N is the number of connected components in the cor-

ners channel.

Secondly, along the line connecting centroids there is a

peak response from lines channel, Ylines. We define a plau-

sibility score, ηp,q of an edge between an arbitrary pair of

vertices, p,q ∈ V ;p 6= q, as the average value of the lines

channel masked by a region of interest (ROI) M between

them. M is defined as a narrow rectangular region, of width

β centred along the line segment pq. We define a per-pair,

threshold parameter τp,q based filter criterion, Cp,q as,

Cp,q = I [ηp,q > τp,q] (2)

ηp,q =
1

|M |

∑

x∈M

Ylines(x)

where, I is the indicator function.

Our experiments reveal that the threshold parameter

varies with vertex pairs (refer § 5.3). To this end, we adapt

τp,q, using a feedback loop which is triggered by a differ-

ence operation between the rendered strokes and the input

image, resulting in a residual image. Connected compo-

nents in the residual image, called blobs are further charac-

terised as a) absent blobs, that are present in input, but not

rendered, B+ : {bounding box ∀ absent blobs}; and b) su-

perfluous blobs, that are rendered, but not present in input,

B
− : {bounding box ∀ superfluous blobs}. We do an iter-

ative update of threshold parameter for all pairs of vertices

as:

1936



τ i+1
p,q = τ i

p,q(1 + λ δp,q) (3)

δp,q =





−1, if ∃ i st. (p,q) inside B+
i ∈ B

+;

1, if ∃ j st. (p,q) inside B−

j ∈ B
−;

0, otherwise

where λ is an update hyperparameter.

4.4. Strokes and Gcode

Algorithm 1 Get Sequence Recursive Procedure for

generating Sequence of a Stroke

1: procedure GET SEQUENCE(A,u,S,strokes cnt)

⊲ A is an adjacency list for N vertices. S is a list

of strokes. strokes cnt keeps track of total number of

strokes. pop edge(u,w) removes the edge (u,w) from

the graph. A[u].get vertex() returns a vertex from ad-

jacency list of u.

2:

3: If A[u] == Null

4: return

5: w ← A[u].get vertex()

6: pop edge(u,w)

7: S[strokes cnt].append(w)

8: GET SEQUENCE(A,w, S, strokes cnt)
9: end procedure

Algorithm 2 Strokes Gen Procedure for generating

strokes from undirected graph

1: procedure STROKES GEN(A)

⊲ Strokes Gen procedure called with adjacency list A

2:

3: strokes cnt = 0
4: while (A[v] ! Null ∀v) do

5: S[strokes cnt].append(v)

6: u← A[v].get vertex()

7: S[strokes cnt].append(u)

8: pop edge(v,u)

9: GET SEQUENCE(A, u, S, strokes cnt)
10: strokes cnt← strokes cnt + 1
11: end while

12: end procedure

In order to compute the strokes, we follow a recursive

approach, so that every edge that is traversed is popped

out of the graph, and revisiting the vertex is allowed. See

Algorithms 1, 2. The time complexity of the algorithm is

O(|E||V |).

The strokes are finally translated to GCODE
1 using a sim-

ple translation method, that is, issue for each stroke in the

set, the following commands sequentially,

• push first vertex, (Xff.ff Yff.ff),

• engage (G01 Z0),

• push rest of the vertices (Xff.ff Yff.ff ...),

and

• disengage (G00 Z-5)

There are two caveats to remember here. Firstly, to dis-

engage (G00 Z-5) at the start. And secondly to rescale

the coordinates as per machine, for example, Z-5 pertains

to 5 mm away from work, which in case of cm units or inch

units, should be scaled by an appropriate factor.

A very similar method is used to render to an SVG

Path [21], where each stroke is a series of 2D points,

expressed in XML as, <path d="M x0 y0 L x1 y1

[L x y ...]" /> This is input to the robotic arm to

draw on paper.

5. EXPERIMENTATION

Figure 4. Top. Samples from the Quick-draw dataset; Bottom.

Rendered true labels.

5.1. Dataset

We use the Quick-draw dataset [6] for the basic line

art. The sketches are available to us in the form of a list

of strokes, and each stroke is a sequence of points. The

data is normalised, centred to canvas, and re-scaled to ac-

commodate for stroke width, before being rasterised, using

drawing functions, in order to synthesise the input image,

X;X ∈ R
s×s.

For the purpose of segmentation, an active pixel is either

identified as a corner (node in the graph), a connecting line,

or the background; i.e. K = 3 classes. We compute the

intersections using the vector data from Quick-draw, and

append them to the accumulated set of corners, so that they

are rasterised as Ycorners. The difference operation, with

respect to the input, gives us the lines channel, Ylines =

1GCODE is a standard numerical control programming language gen-

erally used as instructions to a CNC machine. Refer https://en.

wikipedia.org/wiki/G-code for more information.

1937



Figure 5. Validation Accuracy (IOU’s) using models check-pointed during the training. (x-axis:Training epochs, y-axis:IOU)

Figure 6. Validation Loss using models check-pointed during the training. (x-axis:Training epochs, y-axis:Loss)

X − Ycorners. Everything else is the background, Ybg =
1 − (Ycorners + Ylines). Thus, we obtain the true labels,

Y ∈ R
K×s×s. A glimpse of the dataset can be seen in

Fig. 4.

We created a set of∼ 65k samples for the training, and∼
10k samples for testing; each sample being a pair of images,

namely the input image and the true labels. We will make it

available to public domain after acceptance of this paper.

5.2. Segmentation

We experimented with various combinations of network

architectures, and training objectives, to find a suitable seg-

mentation network. The most promising ones that have

been presented here are: a) Net (9 3 2 2) with cross-entropy

loss (XENT); b) Net (9 3 3 2) with XENT; c) Net (7 3 4 3)
with XENT; d) Net (7 3 4 3) with max-weighted cross-

entropy loss (MWX). (For network nomenclature, refer § 4.1

and Fig. 2.) Additionally, we also trained a variant of vanilla

U-Net with XENT, where we replaced ‘valid’ convolutions

with padded-convolutions to obtain consistent image sizes

on our dataset. As per our nomenclature, the vanilla U-Net

corresponds to (3 3 4 2) architecture. The optimiser used

was RMSProp [7], with β = 0.9.

The validation accuracy and losses during the training

are reported in the Fig. 5,6. The x-axis represents number of

epochs of training in both the figures. The y-axis represents

the average IOU (“intersection over union”) in Fig. 5, and

in Fig. 6, it represents the average loss. The model was

evaluated using validation set. We can see that net (7 3 4 3)
with MWX stabilises fastest and promises the most accurate

results. A quantitative summary of our evaluation over the

test set, is shown in the Table 1. Here also we see a similar

trend, as expected, i.e. (7 3 4 3) with MWX is a winner by

far. Qualitatively, the implication of a better segmentation

is most prominently visible in fairly complicated cases, e.g.

Fig. 3. This improvement in the results is attributed to the

design of max-weighted cross entropy loss (refer § 4.2).

5.3. Graph

For graph interpretation, we analysed the distribution of

plausibility score over the test dataset, as defined in Eq. 2,

with a view, that there should be a clear separation between

the pairs of centroids containing edges and the pairs with-

out edges. To investigate this, we experimented with three

1938



Table 1. Accuracy measure of segmentation networks

Architecture Loss Function IOU (%)
Net (7 3 4 3) MWX 98.02%

Net (9 3 4 2) MWX 91.24%

Net (7 3 4 3) XENT 92.57%

Net (9 3 3 2) XENT 75.09%

Vanilla U-Net XENT 94.23%

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.1  0.2  0.3  0.4

thresh @ beta=3

thresh @ beta=5

thresh @ beta=7

thresh - mean @ beta=3

thresh - mean @ beta=5

thresh - mean @ beta=7

Figure 7. Histogram of approximate plausibility threshold τ̂ and

its distance from the average value of corresponding plausibility

score η for different values of mask widths β. (x-axis:Threshold

values)

values of mask width parameter β ∈ {3, 5, 7}. For a given

image in the dataset, we already know the number of lines,

Figure 8. The top row shows the input. The subsequent rows show

reconstruction using a graph interpreted from segmentation mask,

with values of mask width and threshold (β, τ) set as (2, 0.3), (3,

0.22), (5, 0.2), (7, 0.15) respectively downwards.

which we leverage to find the approximate threshold τ̂ , by

sorting the plausibility scores ηp,q in reverse and truncat-

ing. We smoothen out the value of τ̂ by averaging over a

neighbourhood of size k = 3. Further, we collect the val-

ues of τ̂ and average plausibility score η for selected values

of β, across the images in test set. The histograms for τ̂
in Fig 7 show a single prominent peak and light tail; and

the histograms of τ̂ − η show that there is a comfortable

margin between τ̂ and η, which suggests that, for our dis-

tribution from Quick-draw dataset, there indeed is a clear

separation between the pairs of centroids containing edges

and the pairs without edges.

Further we qualitatively tested the method with values

of mask-width β and a fixed plausibility threshold of τ set

to (2, 0.3), (3, 0.22), (5, 0.2) and (7, 0.15) respectively.

The results are shown in Fig. 8. We see that a fixed value

of threshold is not able to capture the edges based on the

plausibility score.

Thereafter, we tested the adaptive update method, de-

signed in Eq. 3, with heuristically set parameters: mask

width β = 1.8, initial plausibility threshold τ (0) = 0.35,

update rate λ = 0.05. Typically, we found satisfactory re-

sults with N = 10 updates. In Fig. 9, the second row is a

rendering of graph interpreted with τ (0), and has missed a

few strokes. In almost all the cases after N = 10 updates

(bottom row) the missing strokes have been fully recovered!

5.4. Application

We tested the results for application with two robots.

First is a traditional CNC milling machine “EMCO Concept

Mill 250,” where we used pen as a tool to plot over a plane

surface. This machine accepts GCODE as input. Second is

a modern robotic arm “Dobot Magician Robotic Arm,” that

holds a pen to draw on paper. This machine accepts line

drawings in SVG format, such that each stroke is defined

Figure 9. The results of feedback loop in graph interpretation.

Rows top to bottom. the input image; naı̈ve graph interpretation;

interpretation after N = 5 updates; and after N = 10 updates.

1939



as a path element. The method of post processing the list

of strokes to either create GCODE for CNC plotter or create

SVG for a robotic arm is detailed out in § 4.4. For prac-

tical purposes, we fixed the drawings in either case to be

bounded within a box of size 64mm × 64mm and set the

origin at (25mm, 25mm) Fig. 11 shows a still photograph

of the robots in action. Reader is encouraged to watch the

supplementary video for a better demonstration.

5.5. Generalisation

Figure 10. Comparison of our segmentation (left column) against

Favreau’s vectorization (right column). Top to Bottom. A simple

line sketch from Favreau’s examples; A simple line sketch from

Quick-draw dataset; A complicated hatch pattern with zoomed in

details.

A deep learning based method is generally preferred

for it generalises well. Here we qualitatively inspect our

model against Favreau et al.’s vectorization method[1] to

line drawing vectorization, using three different samples,

namely a simple sketch from their samples; a simple sketch

from Quick-draw; and a complicated sketch, representing a

hatch pattern, commonly used to represent walls in archi-

tectural graphics. In Fig. 10, we see that our method pro-

duces satisfactory segmentation on both the simple cases,

and also gracefully degrades its performance in the com-

plicated case; whereas, the latter method, compromises on

details, e.g. few open strokes near the wheels of the auto-

mobile, and thus fails miserably on the complicated task of

vectorizing a hatch pattern, missing out several details.

6. CONCLUSION

We have portrayed an alternate method for a drawing

robot in the context of line drawings, which maps image

domain to a graph structure that represents the original im-

age, and retrieve a set of actionable sequences.

There is definitely, a scope of improvement here. We see

the following points to be most significant,

• The segmentation model is highly sensitive to noise,

and similar phenomenon has been observed in the con-

text of deep learning by Goodfellow et.al [5]. This

problem is subject of contemporary research.

• Graph interpretation method is sensitive to initial

choice of threshold parameter τ and the update hyper-

parameter λ, refer eq. 3.

The pipeline proposed by us is a multi utility technique,

the use of which we have portrayed through a CNC machine

as well as through a robotic arm as shown in Fig. 11

Figure 11. Demonstration of the applicability of our output using

two different machines, namely, the CNC plotter in the left, and the

robotic arm in the right.

References

[1] J.-D. Favreau, F. Lafarge, and A. Bousseau. Fidelity vs.

simplicity: A global approach to line drawing vectorization.

ACM Transactions on Graphics (TOG), 35(4):120, 2016. 1,

2, 8

[2] H. Fu, S. Zhou, L. Liu, and N. J. Mitra. Animated con-

struction of line drawings. In Proceedings of the 2011 SIG-

GRAPH Asia Conference on - SA ’11, page 1, Hong Kong,

China, 2011. ACM Press. 2

[3] B. Galea, E. Kia, N. Aird, and P. G. Kry. Stippling with aerial

robots. In Proceedings of the Joint Symposium on Computa-

tional Aesthetics and Sketch Based Interfaces and Modeling

and Non-Photorealistic Animation and Rendering, Expres-

sive &apos;16, pages 125–134, Lisbon Portugal, 2016. Eu-

rographics Association. 2

1940



[4] B. Galea and P. G. Kry. Tethered flight control of a small

quadrotor robot for stippling. In 2017 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS),

pages 1713–1718, Vancouver, BC, Sept. 2017. IEEE. 1, 2

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-

ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014. 8

[6] D. Ha and D. Eck. A Neural Representation of Sketch Draw-

ings. arXiv:1704.03477 [cs, stat], Apr. 2017. 1, 5

[7] G. E. Hinton, N. Srivastava, and K. Swersky. Overview of

mini-batch gradient descent. 6

[8] K. Kaiyrbekov and M. Sezgin. Stroke-based sketched sym-

bol reconstruction and segmentation. arXiv:1901.03427

[cs], Jan. 2019. 1, 3

[9] L. Li, H. Fu, and C.-L. Tai. Fast Sketch Segmentation and

Labeling with Deep Learning. IEEE Computer Graphics and

Applications, pages 1–1, 2018. 2, 3

[10] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional

Networks for Semantic Segmentation. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2015. 3

[11] A. Radford, L. Metz, and S. Chintala. Unsupervised Repre-

sentation Learning with Deep Convolutional Generative Ad-

versarial Networks. arXiv:1511.06434 [cs], Nov. 2015. 4

[12] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Con-

volutional Networks for Biomedical Image Segmentation.

arXiv:1505.04597 [cs], May 2015. 3

[13] R. G. Schneider and T. Tuytelaars. Sketch classification

and classification-driven analysis using Fisher vectors. ACM

Trans. Graph., 33(6), Nov. 2014. 2

[14] R. G. Schneider and T. Tuytelaars. Example-Based Sketch

Segmentation and Labeling Using CRFs. ACM Trans.

Graph., 35(5):151:1–151:9, July 2016. 1, 2

[15] E. Shelhamer, J. Long, and T. Darrell. Fully Convolutional

Networks for Semantic Segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(4):640–651,

Apr. 2017. 3

[16] D. Song, T. Lee, and Y. J. Kim. Artistic Pen Drawing on

an Arbitrary Surface Using an Impedance-Controlled Robot.

In 2018 IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 4085–4090, Brisbane, QLD, May

2018. IEEE. 2

[17] K. Tombre and S. Tabbone. Vectorization in graphics recog-

nition: To thin or not to thin. In Proceedings 15th Interna-

tional Conference on Pattern Recognition. ICPR-2000, vol-

ume 2, pages 91–96, Barcelona, Spain, 2000. IEEE Comput.

Soc. 1, 2

[18] P. Tresset and F. Fol Leymarie. Portrait drawing by Paul the

robot. Computers & Graphics, 37(5):348–363, Aug. 2013.

1, 2

[19] D. G. Ullman, S. Wood, and D. Craig. The importance of

drawing in the mechanical design process. Computers &

Graphics, 14(2):263–274, 1990. 1

[20] W. Visser. The Cognitive Artifacts of Designing. CRC Press,

2006. 1

[21] World Wide Web Consortium (W3C). Paths — SVG 2.

https://www.w3.org/TR/SVG/paths.html, Oct. 2018. 5

[22] X. Wu, Y. Qi, J. Liu, and J. Yang. Sketchsegnet: A Rnn

Model for Labeling Sketch Strokes. In 2018 IEEE 28th In-

ternational Workshop on Machine Learning for Signal Pro-

cessing (MLSP), pages 1–6, Sept. 2018. 3

[23] Q. Yu, Y. Yang, F. Liu, Y.-Z. Song, T. Xiang, and T. M.

Hospedales. Sketch-a-Net: A Deep Neural Network that

Beats Humans. International Journal of Computer Vision,

122(3):411–425, May 2017. 4

[24] X. Zhu, Y. Xiao, and Y. Zheng. Part-Level Sketch Segmen-

tation and Labeling Using Dual-CNN. In L. Cheng, A. C. S.

Leung, and S. Ozawa, editors, Neural Information Process-

ing, volume 11301, pages 374–384. Springer International

Publishing, Cham, 2018. 2

1941


