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Abstract

Star trackers are state-of-the-art attitude estimation de-

vices which function by recognising and tracking star pat-

terns. Most commercial star trackers use conventional op-

tical sensors. A recent alternative is to use event sensors,

which could enable more energy efficient and faster star

trackers. However, this demands new algorithms that can

efficiently cope with high-speed asynchronous data, and are

feasible on resource-constrained computing platforms. To

this end, we propose an event-based processing approach

for star tracking. Our technique operates on the event

stream from a star field, by using multiresolution Hough

Transforms to time-progressively integrate event data and

produce accurate relative rotations. Optimisation via ro-

tation averaging is then used to fuse the relative rotations

and jointly refine the absolute orientations. Our technique

is designed to be feasible for asynchronous operation on

standard hardware. Moreover, compared to state-of-the-

art event-based motion estimation schemes, our technique

is much more efficient and accurate.

1. Introduction

On many space missions, it is vital to estimate the at-

titude of the spacecraft [27], which is the 3DOF orienta-

tion (roll, pitch, yaw) of the body frame of the spacecraft

w.r.t. an inertial frame, such as the celestial reference frame.

The importance of attitude estimation derives from the need

to control the bearing of the spacecraft or instruments on

board, in order to achieve the mission objectives. Different

types of sensors are available for calculating spacecraft at-

titude, such as sun sensors and magnetometers. It has been

established, however, that star trackers are state-of-the-art

in spacecraft attitude estimation [25], especially to support

high precision orientation determination.

A star tracker is an optical device that estimates space-

craft attitude by recognising and tracking star patterns [27,

Chap. 4]. Let I be an image of a star field captured by the

camera of a star tracker. Let Fref ∈ O(3) and F ∈ O(3)
respectively define the inertial reference frame, and space-

craft body frame at image I . For simplicity, we assume

calibrated cameras, thus F is also the camera frame at I .

The attitude at I is defined by the rotation matrix R, where

Fref = RF. (1)

In a typical star tracker, the process to determine R begins

by star identification [41]: matching the observed stars in

I with known stars in a celestial catalogue expressed in

Fref ; see Fig. 1. The matching can be done by compar-

ing local descriptors [23], geometric voting [22], or sub-

graph matching [18]. This establishes a set of 2D-3D cor-

respondences, which are then used to compute R via, e.g.,

SVD [27, Chap. 5] or more robust techniques [9]. In a prac-

tical system, a sequence of attitude estimates over time are

then jointly optimised (e.g., using EKF with a kinematic

model [27, Chap. 6]) to yield a set of refined attitudes.

Figure 1. In star identification, stars in an input image (top) are

identified and matched with known stars in a star catalogue (bot-

tom). This result was obtained using the technique of [23, 1].

1.1. Event cameras for star tracking

Recently, the feasibility of using event cameras for star

tracking has been established [8]. Unlike a conventional

optical sensor, an event sensor detects pixel-wise intensity

changes asynchronously [24]. Potential benefits of using

event cameras for star tracking are lower power consump-

tion and higher speeds [8]. When observing a star field (a
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Figure 2. (a) An event stream from a star field recorded using an event camera under ego-motion (event polarities not plotted; data provided

by [8]). (b)(c) Motion compensated event images (7) before and after relative rotation estimation by the proposed HT method on the data

in (a). Observe that (c) is a sharper star field image than (b), indicating that the proposed method has successfully estimated the ego-motion

which generated the event stream. In the proposed relative motion model, the angular velocity in the time period T is assumed constant.

scene with relatively few bright points in front of the space

void), a vast majority of the pixel locations will not “fire”.

This has been illustrated in fig. 2(a) which shows an event

stream triggered by a star field. Hence, the event sensor

may consume less power than a conventional sensor. An

event sensor also has a high temporal resolution (e.g., ini-

Vation Davis 240C has µs resolution), which could enable

higher-speed star tracking for ultra-fine attitude control.

A potential concern is that the sensor becomes “blind”

if the event camera is static w.r.t. the star field. Apart from

the orbital motion, a spacecraft (especially a nanosatellite)

usually experiences wobbling, which inevitably leads to the

generation of event streams.

Challenges of event-based star tracking To reap the po-

tential benefits of event sensors for star tracking, several

challenges must be met. First, the fundamentally differ-

ent kind of data requires new attitude estimation algorithms

that do not exist in the literature [27]. Second, the high data

rate (e.g., µs resolution) demands very efficient algorithms

that can process the event stream, and that are also simple

enough to be implemented on resource-constrained comput-

ing platforms or basic hardware such as FPGA or SoC.

1.2. Our contributions

We propose a novel event algorithm for star tracking.

At the core our technique is the usage of a bank of Hough

Transforms (HT) [28] at multiple time resolutions to incre-

mentally process events for calculation of relative attitudes.

The relative attitudes serve two purposes: track the camera

motion, and integrate event streams for star identification.

A rotation averaging formulation is then used to jointly op-

timise the attitude measurements to yield the final attitude

estimates. As we will show in Sec. 5, our technique yields

much more efficient and accurate star tracking than state-

of-the-art event processing methods [16].

Crucially, the part of our algorithm (HT for camera track-

ing) that processes the high-speed event stream is designed

to be feasible for parallel computation on an FPGA [43].

While refinement by rotation averaging is still required in

our pipeline, rotation averaging can be solved using cheap

algorithms that conduct just a series of small matrix mul-

tiplications [15, Algorithm 1]. As we will show in Sec. 5,

rotation averaging incurs only a small percentage of the to-

tal computational effort (i.e., 2s over a 45s event stream).

1.3. Previous work

Event sensing and processing are increasingly popular in

computer and robotic vision [3]. Many important capabil-

ities, such as optic flow computation, panomaric stitching,

SfM, and SLAM have been shown to be feasible with event

cameras. In fact, in settings where high-speed vision is nec-

essary (e.g., UAV flight [30]), event cameras have proven to

be superior than conventional cameras.

The application of event cameras to space engineering

problems is nascent. In [10], the feasibility of using event

cameras to detect objects in space was established. This

was followed by [7], where a probabilistic multiple hypoth-

esis tracker (PMHT) was used to track the objects through

time. Our work is inspired by [8] who first proposed

event cameras for star tracking. However, their algorithm

is completely synchronous, in that event streams are con-

verted into event images on which frame-based processing

is conducted. Moreover, their method depends on solv-

ing relatively costly robust point cloud registration, whose

event-driven version for resource-constrained platforms is

unknown. In Sec. 5, we will compare the efficacy of our

method against [8].

2. Event motion model

Over a time period T, the output of an event camera is

an event stream ST = {ei}Ni=1, where ei = (xi, ti, pi) is

a single event, xi are the 2D pixel coordinates of ei on the

image plane, ti ∈ T is the time when ei occurred, and pi ∈
{+,−} is the polarity of ei, i.e., whether it was due to an
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increase or decrease in intensity. Since stars are infinitely

far away, the ego-motion that can be resolved from ST is

restricted to the rotation group, i.e., a continuous rotational

motion [27]. For tractability, we first restrict T to be small

(e.g., 50−500 ms) relative to the angular rate of the camera,

such that the motion can be modelled as a single rotation RT

called the relative rotation. Figs. 2(b) and 2(c) illustrate the

feasibility of this model. In Secs. 2.1 and 2.2, we define RT

and survey existing methods to estimate it, before Secs. 3

and 4 describe our novel technique and overall star tracking

architecture.

2.1. Problem formulation

Despite the fundamentally different sensing principle,

the pinhole model can be used to describe the imaging pro-

cess of an event camera [14]. A pixel location x of an event

e can thus be backprojected to form a 3D ray

#»x =
K−1x̄

‖K−1x̄‖2
, (2)

where x̄ = [xT , 1]T is the augmented version of x, and K is

the camera intrinsic matrix. Conceptually, the edge point in

3D space that generated e lies along the ray. Existing cali-

bration techniques for event cameras [3, Calibration] can be

used to obtain K, thus we assume that K is known.

Let s(t) be the pixel coordinates of a star at time t ∈ T.

As mentioned above, by restricting T to be small enough,

the coordinates of the star at t = α and β obey

#»s (α) = RT
#»s (β). (3)

Re-expressing RT using axis-angle representation yields

#»s (α) = exp (θT
#»aT)

#»s (β) (4)

where θT and #»aT are respectively the angle and axis of RT,

and exp denotes the exponential map.

Since the non-spurious events are generated by the edges

of star blobs, it is reasonable [16] to expect that for each

non-spurious event ei ∈ ST, the following holds

#»x
(α)
i = exp (θT

#»aT)
#»x

(β)
i , (5)

where x
(α)
i and x

(β)
i are the pixel positions of the edge that

generated ei if it was observed at t = α and β. Further,

by assuming that T is small enough such that the angular

velocity is constant in T [16], we have that

#»x
(α)
i = exp

(

ti − α

β − α
θT

#»aT

)

#»x i. (6)

Again, Fig. 2(c) illustrates the feasibility of assuming con-

stant angular velocity when estimating RT over small T.

2.2. Previous event processing methods

Using event images Following [8], events near the start

and end of ST, say {ei ∈ ST | α ≤ ti ≤ α + ∆} and

{ei ∈ ST | β−∆ ≤ ti ≤ β} are used to generate two event

images Iα and Iβ [29]. Since the observed stars are points

in the images, the rotation RT can be estimated by robustly

registering the point clouds [6] in the images.

A disadvantage of [8] is conceptual: converting event

streams to images somewhat defeats the purpose of using

event sensors. In Sec. 5, we will compare our method

against [8].

Contrast maximisation The state-of-the-art technique

for motion estimation from event streams is contrast max-

imisation (CM) [16], which readily applies to rotation com-

putation. Unlike previous methods (e.g., [21, 12, 17, 35]),

which rely on panoramic map and optic flow computation,

CM is more elegant and shown to be superior.

CM finds the motion parameters that maximise the con-

trast of the “motion-compensated” event image

H(x | θT, #»aT) =

N
∑

i=1

piκ(x− x
(α)
i ) (7)

where κ is a smoothing kernel (e.g., Gaussian), and

x
(α)
i =

K(1:2) #»x
(α)
i

K(3) #»x
(α)
i

(8)

is the projection of #»x
(α)
i , which is a function of θT,

#»aT (6),

and K(1:2) and K(3) are the first-2 and 3rd rows of K. The

contrast of (7) is approximated by the variance σ2 of the

image, which is a function of θT,
#»aT:

σ2(θT,
#»aT) =

1

D

∑

x

[H(x | θT, #»aT)− µH ]
2
, (9)

where D is the number of pixels in the image, and µH is the

mean 1
D

∑

x
H(x | θT, #»aT). To estimate RT, we solve

max
θT,

#»
a T

σ2(θT,
#»aT) (10)

under the constraints 0 ≤ θT ≤ π and ‖ #»aT‖ = 1. Prob-

lem (10) is usually solved gradient ascent methods [16].

A downside of contrast maximisation is the relatively

complex optimisation algorithm required to solve (10). In

the following, we propose a much more efficient technique

for star tracking, and compare against [16] in Sec. 5.

3. Event-based relative rotation estimation

By ignoring polarity, we convert ST into the 3D point set

PT = {zi}Ni=1, where zi = [xT
i , ti]

T . (11)
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Figure 3. (a) Point correspondences extracted from the lines found in Fig. 4. (b) Overall architecture of our event-based attitude estimation

method. Note that in practice the frequency of absolute attitude estimates R̃t is much lower than suggested by this diagram.

Figure 4. Lines in event stream found by Algorithm 1.

As shown in Fig. 4, PT consists of points that form linear

structures, as well as spurious points (gross outliers). Intu-

itively, in ST from a short time span, the linear structures

consist of events that correspond to stars. Our method for

estimating RT from ST exploits this observation.

Our method does not use the polarity data, though it

might be beneficial to do so—we leave this for future work.

3.1. Relative rotation from 3D lines

In the 3D spatio-temporal domain z = [xT , t]T obtained

by ignoring polarity, a line ℓ can be characterised by

zℓ + λz̄ℓ ≡
[

xℓ

tℓ

]

+ λ

[

x̄ℓ

t̄ℓ

]

, (12)

where zℓ is a point on ℓ, z̄ℓ is a unit vector that represents the

direction of ℓ, and λ is a scalar. Given noisy points Z ⊆ PT

that belong to ℓ, by orthogonal least squares [40],

zℓ =
1

|Z|
∑

zi∈Z

zi, (13)

i.e., the sample mean of Z . Let Z be the matrix formed by

horizontal concatenation of the vectors in Z , and

Z̄ = Z− zℓ ⊗ 11×|Z| (14)

be the mean-adjusted matrix. Then, z̄ℓ is the most signifi-

cant left singular vector of Z̄. In other words, the procedure

to estimate ℓ is to perform PCA on Z [40].

If ℓ is due to a star, we seek the “end points” of ℓ at time

α and β. Equating tℓ+λt′ℓ with α and β respectively yields

s(α) = xℓ +
α− tℓ

t′ℓ
x′
ℓ, s(β) = xℓ +

β − tℓ

t′ℓ
x′
ℓ. (15)

These end points are exactly the image coordinates s(α) and

s(β) of the star at time α and β; see (3).

If we are able to extract K linear structures from PT, by

the above calculations we yield the point correspondences

{(s(α)k , s
(β)
k )}Kk=1. (16)

Fig. 3(a) illustrates correspondences from stars in ST. The

relative rotation RT can then be estimated from such a cor-

respondence set [4, 39]. Specifically, let

C =
[

#»s
(α)
1 , . . . , #»s

(α)
K

] [

#»s
(β)
1 , . . . , #»s

(β)
K

]T

∈ R
3×3, (17)

and C = USVT be the SVD of C. Then,

RT = VUT (18)

is the least squares estimate of the relative rotation.

3.2. Exact incremental HT for relative rotation

Our technique to estimate RT finds the linear structures

in PT using HT, from which a set of star correspondences

are extracted for estimation of RT; see Algorithm 1. More

details are provided in this section.

Note that although HT has been used previously for

event processing [11, 32, 31, 38, 42], we are the first to con-

duct event-based relative rotation estimation for star track-

ing. Second, our algorithm is designed to be feasible for

asynchronous operation on standard hardware [43]. Specif-

ically, each new event ei triggers an analytically exact up-

date of the intermediate states, such that when all events are

processed, matrix C ∈ R
3×3 as defined in (17) is complete.

Moreover, each event is processed in constant time (per ac-

cumulator cell), which supports high-speed tracking.
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Algorithm 1 Event-based HT to estimate relative rotation.

Require: Time period T = [α, β], camera intrinsic matrix

K, Hough cells D × U × V , peak threshold δ.

1: for each Hough cell τ ∈ D × U × V do

2: votes[τ ] ← 0, z
[τ ]
ℓ ← 0, z̄

[τ ]
ℓ ← 0.

3: end for

4: C← 03×3.

5: while current time is within T do

6: for each newly arrived event ei = [xT
i , ti, pi]

T do

7: zi ← [xT
i , ti]

T .

8: for each z̄ ∈ D do

9: (u, v)← Project zi onto plane along z̄ (19).

10: [u, v]← Cell in U × V that contains (u, v).
11: τ ← [z̄, u, v].
12: votes[τ ] ← votes[τ ] + 1.

13: if votes[τ ] < δ then

14: UpdatePCA(z
[τ ]
ℓ , z̄

[τ ]
ℓ , zi) (20)–(25).

15: else if votes[τ ] = δ then

16: UpdatePCA(z
[τ ]
ℓ , z̄

[τ ]
ℓ , zi) (20)–(25).

17: s(α), s(β) ← End points of z
[τ ]
ℓ + λz̄

[τ ]
ℓ (15).

18: C← C+ #»s (α)( #»s (β))T .

19: else

20: s(α), s(β) ← End points of z
[τ ]
ℓ + λz̄

[τ ]
ℓ (15).

21: C← C− #»s (α)( #»s (β))T .

22: UpdatePCA(z
[τ ]
ℓ , z̄

[τ ]
ℓ , zi) (20)–(25).

23: s(α), s(β) ← End points of z
[τ ]
ℓ + λz̄

[τ ]
ℓ (15).

24: C← C+ #»s (α)( #»s (β))T .

25: end if

26: end for

27: end for

28: end while

29: (U,S,V)← SVD of C ∈ R
3×3.

30: return RT ← VUT .

Hough domain parametrisation We follow the Hough

parametrisation of [20, 13] for the line z + λz̄ in 3D. The

line direction z̄ = [z̄1, z̄2, z̄3]
T , with ‖z̄‖2 = 1, is discre-

tised as a set D of 1281 vertices of an icosahedron after 4
recursive steps of polygonal subdivision of each triangular

mesh (see [13, Fig. 2]), which is sufficient for our problem.

Instead of discretising R
3 for the point z = [z1, z2, z3]

T

on the line (which leads to a non-minimal parametrisation),

we project z along z̄ onto the plane that passes through the

origin that is orthogonal to the line, yielding the 2D point

u =

(

1− z̄21
1 + z̄3

)

z1 −
(

z̄1z̄2

1 + z̄3

)

z2 − z̄1z3,

v =

(

z̄1z̄2

1 + z̄3

)

z1 +

(

1− z̄22
1 + z̄3

)

z2 − z̄2z3;

(19)

see [36] for details. The 2D space (u, v) is then discretised

as U × V . By keeping the duration of ST constant (e.g., to

100ms) and re-centring PT such that the centroid is at the

origin, U × V is kept within a fixed bounded region.

Exact updating Each new event ei within T votes for the

discrete set of line parameters in D × U × V . Apart from

the usual vote accumulator, in each cell τ ∈ D×U ×V , we

also maintain the least squares-refined line parameters z
[τ ]
ℓ

and z̄
[τ ]
ℓ that fit the points that voted for τ .

The key to exact event-triggered updating is to esti-

mate the refined line parameters incrementally. This can

be achieved using incremental PCA [37]. For each ei that

voted for τ , updating z
[τ ]
ℓ is straightforward:

z
[τ ]+
ℓ =

votes[τ ] − 1

votes[τ ]
z
[τ ]−
ℓ +

1

votes[τ ]
zi, (20)

where votes[τ ] is the number of votes to τ inclusive of ei,

and z
[τ ]−
ℓ and z

[τ ]+
ℓ are vector z

[τ ]
ℓ before and after updating.

The trick to update z̄[τ ] is to also maintain the left sin-

gular vectors P[τ ] ∈ R
3×3 and non-zero singular values

Σ[τ ] ∈ R
3×3 of the mean-adjusted matrix (14) of the points

that voted for τ (recall that z̄
[τ ]
ℓ is the left-most vector of

P[τ ]). Given the new zi, compute “difference” matrix

B̂ =
[

03×1

√

votes[τ]−1
votes[τ]

(

zi − z
[τ ]−
ℓ

)
]

∈ R
3×2 (21)

and its orthogonal projection onto span(P[τ ])

B̃ = QR
(

B̂−P[τ ](P[τ ])T B̂
)

∈ R
3×2. (22)

Then, compose the mean-adjusted singular value matrix

E =

[

Σ[τ ] (P[τ ])T B̂

02×3 B̃T
(

B̂−P[τ ](P[τ ])T B̂
)

]

∈ R
5×5 (23)

and compute its SVD

E = P̃Σ̃Q̃T . (24)

Then, P[τ ] and Σ[τ ] are updated as

P[τ ] =
[

P[τ ] B̃
]

P̃ and Σ[τ ] = Σ̃, (25)

and the revised z̄
[τ ]
ℓ is taken as the left-most column of P[τ ].

Note that the mean-adjusted matrix Z̄ (14) (which grows

with the number of events) need not be maintained. For

more information of the above procedure, see [37].

In Algorithm 1, if the number of votes in a cell exceeds

the pre-determined threshold δ, the least squares-fitted line

of the cell is used to extract a star correspondence, follow-

ing (15). However, instead of simply collecting the star

correspondences, to facilitate asynchronous operation, the

“covariance” matrix (17) is directly updated. Note that

C =

K
∑

k=1

#»s
(α)
k ( #»s

(β)
k )T , (26)
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hence, the contribution of a new correspondence (s(α), s(β))
to C can simply be introduced by adding the outer product
#»s (α)( #»s (β))T to C. If the correspondence from the pre-

update line of the cell has contributed to C, the outer prod-

uct term due to the old correspondence is first subtracted.

As can be seen in Algorithm 1, as soon as all events

within T are processed, matrix C is complete and the ro-

tation RT can directly be extracted from C via SVD.

Complexity analysis For each incoming event ei, at most

|D|Hough cells (|D| = 1281 in our experiments) are visited

(see loop starting in Step 8 in Algorithm 1). As is standard

in hardware implementation of HT [43], Hough cell voting

and its associated operations can be parallelised. Also note

that the SVDs can be computed efficiently on FPGA [26].

For the per-event computations to be constant time, it

remains to show that the least squares line and covariance

matrix updating are constant time. The main cost in the for-

mer requires the QR decomposition of a 3×2 matrix B̃ (22)

and SVD of a 5× 5 matrix E (24). Note that although (25)

seems to increase the sizes of P[τ ] and Σ[τ ], only the top-

left 3 × 3 submatrix of the updated results are meaningful

for data in 3D space, hence, the sizes of P[τ ] and Σ[τ ] can

be kept constant at 3× 3. Lastly, updating the 3× 3 covari-

ance matrix C by adding/subtracting the outer product of a

single operation is clearly constant time. Note that there are

also no “racing” issues with updating C in parallel, since

each cell contributes to C independently.

4. Overall architecture for attitude estimation

Fig. 3(b) shows the overall architecture of our event-

based attitude estimation technique. SymbolAα,β indicates

the instance of the proposed HT (Algorithm 1) for the time

period [α, β]. We use a bank of HTs at multiple time reso-

lutions (specifically, 400ms, 200ms, 100ms; these can be

changed to accommodate data with different angular rates)

to track rotational motions over longer time periods.

For each time resolution, two HT instances separated by

a stride half of the resolution (e.g., for 400ms, the two HTs

differ by a stride of 200ms) are employed, leading to a to-

tal of six HTs. Each HT processes incoming events asyn-

chronously (Sec. 3). When the period of a HT is finished, a

relative rotation over that period is returned (e.g., A100,300

outputs the relative rotation R100,300), and the HT is imme-

diately restarted for the next period (e.g., A300,500).

A relative rotation describes the relative attitude change

across a time period. In star tracking, however, the quan-

tity of interest is the “absolute” attitude [27] (see Sec. 1).

Moreover, simply chaining the relative attitudes will lead

to drift errors. Thus, in our pipeline, motion-compensated

event images (7) are generated using the HT results (we use

the 100ms HTs for this purpose) and subject to star identi-

fication and absolute attitude estimation using [23, 1]. The

frequency of absolute attitude estimation is much lower, due

to the higher cost of star identification, e.g., minutes.

The small set of absolute attitudes are used to “ground”

the relative rotations via a rotation averaging process, which

also denoises the measured quantities and produce the final

set of refined (absolute) attitude estimates. Let

{R̃α,β}〈α,β〉∈N (27)

be the set of measured relative attitudes, where N encodes

the periods T = [α, β] processed by a HT instance, and let

{R̃γ}γ∈M (28)

be the set of absolute attitude measurements. Note that N
must be a connected graph, in that it is always possible to

find a path between any two “time stamps” α and β. Define

T = {0,∆t, 2∆t, 3∆t, . . . } (29)

be the time stamps of the set of absolute attitudes that will

be optimised by rotation averaging, where the value of ∆t is

a common denominator of the time resolutions of the HTs

employed. For the architecture in Fig. 3(b), we set ∆t =
50ms, which also ensuresM⊂ T .

Following [8], we formulate rotation averaging as

min
Rβ RG

∑

〈α,β〉∈N

∥

∥

∥
Rα − R̃α,βRβ

∥

∥

∥

F

+ α
∑

Rγ∈M

∥

∥

∥
Rγ − R̃γRG

∥

∥

∥

F

subject to RG = I,

(30)

where RG is a “dummy” attitude variable, I is the identity

matrix, and α is a positive constant that defines the rela-

tive importance of the relative and absolute rotations. Intu-

itively, adding error terms of the form
∥

∥

∥
Rγ − R̃γRG

∥

∥

∥

F
=

∥

∥

∥
Rγ − R̃γ

∥

∥

∥

F
, γ ∈M (31)

encourage consistency between some of the attitude esti-

mates and the measured absolute rotations, which is then

propagated to the rest of the sequence.

To solve (30), we temporarily ignore the constraint

RG = I optimise the attitudes using an existing rotation

averaging algorithm (we used [5] in our work). Then,

right multiply each of the optimised absolute attitudes R̂t

with R̂−1
γ = (R̂γ)

T to re-orient the system. It has been

shown that rotation averaging is quite insensitive to initiali-

sations [33, 15], thus, when solving (30) we simply initialise

all rotation variables as the identity matrix.

In a practical system, instead of solving ever-growing in-

stances of (30), rotation averaging can be executed over a

fixed-sized temporal sliding window. However, in this case,

we solved the rotation averaging for the entire sequence of

45 seconds.
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Figure 5. Comparison of relative rotation estimation accuracy using three methods (HT, TICP and CM) on 6 event streams/sequences.

5. Results

To evaluate the proposed event-based star tracking tech-

nique, we used the event data from [8, 2], where there are 11

event streams from observing star fields using an iniVation

Davis 240C event camera (see details in [8] on data genera-

tion and event camera calibration). Each event stream con-

tains ground truth absolute attitudes across the full stream.

Our evaluation focussed on the accuracy and runtime of

relative attitude estimation and absolute attitude estimation.

For both experiments, we compared against:

• The baseline method of [8] conducts robust registration

using a variant of ICP called trimmed ICP [6] (henceforth

referred as “TICP”) on event images to estimate relative

rotations.

• The state-of-the-art event-based motion estimation algo-

rithm of contrast maximisation [16] (henceforth, “CM”).

See Sec. 2.2 for a summary of these methods. Due to space

contraints, we were able to fit the results of only 6 event

streams; see supplementary material for more results.

To compare estimated R̃ and ground truth R∗ rotations

in our evaluation, we used the angular distance [19]

∠(R̃,R∗) = 2 arcsin

(

2√
2
‖R̃−R∗‖F

)

. (32)

5.1. Accuracy of relative attitude estimation

For each event stream, as per the multi-resolution archi-

tecture in Fig. 3(b), we estimated relative rotations from

event “chunks” using HT, TICP and CM. Since each stream

is about 45s long, there are 224 chunks of 400ms long, 449

chunks of 200ms long, and 899 chunks of 100ms long.

To objectively test the efficacy of the algorithms, we ex-

ecuted them on a common platform: Matlab on an Intel i7

2.7 GHz machine, and using fmincon to solve CM (10).

Since our focus here is relative rotation accuracy, it was not

necessary to execute HT in a streaming fashion.

To assess the accuracy of a relative rotation estimate

R̃α,β from a time period T = [α, β], we computed the an-

gular distance of R̃α,β to the ground truth relative rotation

R∗
α,β = R∗

α(R
∗
β)

T , (33)

where R∗
α and R∗

β ground truth absolute attitudes. Fig. 5

shows the root mean square (RMS) angular distance

√

∑

〈α,β〉

∠(R̃α,β ,R
∗
α,β)

2 (34)

separated according to the length of the time periods T (200,

300 and 400 ms). The RMS error of HT is conclusively

lower than CM on most of the input cases, followed by

TICP which has lower error than HT in 4 of the 6 sequences.

It should be reminded, however, that TICP does not

intrinsically support asynchronous processing of event

streams; moreover, it depends on much more complex rou-

tines (sorting, nearest neighbour search, alternating opti-

misation, etc.). In contrast, HT is designed to be simple
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Figure 6. Comparison of absolute attitude estimation accuracy using three methods (HT, TICP and CM) on 6 event streams/sequences.

|T| Me- Sequence number

(ms) thod 1 2 3 4 5 6

100
HT 1.23 1.85 1.49 2.11 1.31 1.67

CM 16.46 28.31 21.89 33.15 19.43 24.36

200
HT 1.88 2.39 2.01 2.14 1.93 2.09

CM 45.68 61.45 53.46 65.78 48.91 61.24

400
HT 2.51 2.98 2.67 3.11 2.63 2.83

CM 82.45 114.78 103.56 118.32 89.12 109.25
Table 1. Runtime (in seconds) of event-based processing methods

(HT, CM) for relative rotation estimation on six event streams.

enough to be parallelised on standard hardware (e.g., FPGA

and SoC). Thus, it is not surprising that TICP can be more

accurate than HT. In any case, as we show later, the accu-

racy of the final attitude estimates of HT is very competitive.

Table 1 presents the average runtime of the event-

processing methods to compute relative rotations. Note that

as the time period increases, the runtime of CM increases

much more rapidly than HT. While a better solver than

fmincon can potentially speed up CM, even with an or-

der of magnitude speedup, HT is still faster than CM. Note

that the runtime of TICP does not change with the size of

the event chunk, since it always aligns two event images;

due to this different computational paradigm, the runtime

of TICP is not shown. The runtime reported for HT can be

further optimised with an implementation that exploits the

inherent parallelism of the algorithm. The cost of rotation

averaging is around 2 seconds per sequence.

5.2. Accuracy of absolute attitude estimation

Fig. 6 plots the “raw” and RMS angular distances be-

tween ground truth and estimated absolute attitudes, based

on performing the proposed rotation averaging technique

(Sec. 4) on the relative rotations (computed by HT, TICP

and CM) and a small set of “grounding” absolute atti-

tudes (28) (5 per event stream, distributed uniformly across

45 seconds, and computed using [23, 1] on the motion com-

pensated event image by HT on 100 ms chunks). As can

be seen, the accuracy of the optimised absolute attitudes

using HT satisfies the requirements of a commercial star

tracker [34] ( 1◦ RMS angular error).

Towards the end of Sequence 3, the error of TICP in-

creases drastically unlike the proposed HT method. This

was because there were much fewer stars in the FOV in that

period.

6. Conclusion

In this paper, we proposed an event-based star track-

ing algorithm using a novel multiresolution asynchronous

HT technique to accurately and efficiently estimate rela-

tive rotations on event streams. Our results show that our

technique is superior to existing event-based processing

schemes for motion estimation with its accuracy sufficiently

fulfilling the requirements of a commercial star tracker.
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