
Synthetic Examples Improve Generalization for Rare Classes

Sara Beery*⋄, Yang Liu*⋄, Dan Morris∧, Jim Piavis†,

Ashish Kapoor†, Markus Meister⋄, Neel Joshi†, Pietro Perona⋄

California Institite of Technology⋄ Microsoft AI for Earth∧, Microsoft Research†

1200 E California Blvd, Pasadena, CA 91125 14820 NE 36th Street, Redmond, WA, 98052

Abstract

The ability to detect and classify rare occurrences in im-

ages has important applications – for example, counting

rare and endangered species when studying biodiversity, or

detecting infrequent traffic scenarios that pose a danger to

self-driving cars. Few-shot learning is an open problem:

current computer vision systems struggle to categorize ob-

jects they have seen only rarely during training, and collect-

ing a sufficient number of training examples of rare events

is often challenging and expensive, and sometimes outright

impossible. We explore in depth an approach to this prob-

lem: complementing the few available training images with

ad-hoc simulated data.

Our testbed is animal species classification, which has a

real-world long-tailed distribution. We present two natural

world simulators, and analyze the effect of different axes of

variation in simulation, such as pose, lighting, model, and

simulation method, and we prescribe best practices for effi-

ciently incorporating simulated data for real-world perfor-

mance gain. Our experiments reveal that synthetic data can

considerably reduce error rates for classes that are rare,

that as the amount of simulated data is increased, accuracy

on the target class improves, and that high variation of sim-

ulated data provides maximum performance gain.

1. Introduction
1 In recent years computer vision researchers have made

substantial progress towards automated visual recognition

across a wide variety of visual domains [57, 20, 51, 68, 47,

67, 8]. However, applications are hampered by the fact that

in the real world the distribution of visual classes is long-

tailed, and state-of-the-art recognition algorithms struggle

to learn classes with limited data [69]. In some cases

(such as recognition of rare endangered species) classify-

ing rare occurrences correctly is crucial. Simulated data,

which is plentiful, and comes with annotation “for free”,

1* denotes equal contribution

has been shown to be useful for various computer vision

tasks [70, 50, 32, 53, 24, 61, 55, 49, 28, 26, 36]. However,

an exploration of this approach in a long-tailed setting is

still missing (see Section 2.4).

As a testbed, we focus on the effect of simulated data

augmentation on the real-world application of recognizing

animal species in camera trap images. Camera traps are

heat- or motion-activated cameras placed in the wild to

monitor animal populations and behavior. The processing

of camera trap images is currently limited by human review

capacity; consequently, automated detection and classifica-

tion of animals is a necessity for scalable biodiversity as-

sessment. A single sighting of a rare species is of immense

importance. However, training data of rare species is, by

definition, scarce. This makes this domain ideal for study-

ing methods for training detection and classification algo-

rithms with few training examples. We utilize a technique

from [8] which tests performance at camera locations both

seen (cis) and unseen (trans) during training in order to ex-

plicitly study generalization (see Section 3.1 for a more de-

tailed explanation).

We introduce two novel natural world simulators based

on popular 3D game development engines for generalizable,

realistic and efficient synthetic data generation. We investi-

gate the use of simulated data as augmentation during train-

ing, and how to best combine real data for common classes

with simulated data for rare classes to achieve optimal per-

formance across the class set at test time. We consider four

different data simulation methods (see Fig.1) and compare

the effects of each on classification performance. Finally,

we analyze the effect of both increasing the number of simu-

lated images and controlling for axes of variation to provide

best practices for leveraging simulated data for real-world

performance gain on rare classes.

2. Related work
2.1. Visual Categorization Datasets

Large and well-annotated public datasets allow scien-

tists to train, analyze, and compare the performance of dif-

ferent methods, and have provided large performance im-

863



(a) Real Camera Traps (b) TrapCam-Unity (c) TrapCam-AirSim (d) Sim on Empty (e) Real on Empty

Figure 1: Day and night examples for each simulation method. We compare four different simulation methods and

compare the effects of each on classification performance.

provements over traditional vision approaches [64, 34, 31].

The most popular datasets used for this purpose are Ima-

geNet, COCO, PascalVOC, and OpenImages, all of which

are human-curated from images scraped from the web [17,

44, 21, 39]. These datasets cover a wide set of classes across

both the manufactured and natural world, and are usually

designed to provide “enough” data per class to avoid the

low-data regime. More recently researchers have proposed

datasets that focus specifically on long-tailed distributions

[68, 8, 41]. The Caltech Camera Traps dataset [8] intro-

duced the challenge of learning from limited locations, and

generalizing to new locations.

2.2. Handling Imbalanced Datasets

Imbalanced datasets lead to bias in algorithm perfor-

mance toward well-represented classes [12]. Algorithmic

solutions often use a non-uniform cost per misclassifica-

tion via weighted loss [19, 30, 29]. One example, focal

loss, was recently proposed to deal with the large fore-

ground/background imbalance in detection [43].

Data solutions employ data augmentation, either by 1)

over-sampling the minority classes, 2) under-sampling the

majority classes, or 3) generating new examples for the mi-

nority classes. When using mini-batch gradient descent,

oversampling the minority classes is similar to weighted

loss. Under-sampling the majority classes is non-ideal, as

this reduces information about common classes. Our pa-

per falls into the third category: generating new training

data for rare classes. Data augmentation via pre-processing,

using affine and photometric transformations, is a well-

established tool for improving generalization [40, 33]. Data

generation and simulation have begun to be explored as data

augmentation methods, see Section 2.4.

Algorithmic and data solutions for imbalanced data are

complementary, algorithmic advances can be used in con-

junction with augmented training data.

2.3. Lowshot Learning

Low-shot learning attempts to learn categories from few

examples [42]. Wang and Herbert [71] do low-shot classifi-

cation by regressing from small-dataset classifiers to large-

dataset classifiers. Hariharan and Girshick [27] look specif-

ically at ImageNet, using classes that are unbalanced, some

with large amounts of training data, and some with little

training data. Metric learning learns a representation space

where distance corresponds to similarity, and uses this as

a basis for low-shot solutions [15]. We consider the low-

shot regime with regard to real data for our rare target class,

but investigate the use of added synthetic data based on a

human-generated articulated model of the unseen class dur-

ing training instead of additional class-specific attribute la-

bels at training and test time. This takes us outside of the

traditional low-shot framework into the realm of domain

transfer from simulated to real data.

2.4. Data Augmentation via Style Transfer, Gener
ation, and Simulation

Image generation via generative adversarial networks

(GANs) and recurrent neural networks (RNNs), as well as

style transfer and image-to-image translation have all been

considered as sources for data augmentation [11, 25, 35, 52,

66, 45, 74]. These techniques require large amounts of data

to generate realistic images making them non-ideal solu-

tions for low-data regimes. Though conditional generation

allows for class-specific output, the results can be difficult

to interpret or control.

Graphics engines such an Unreal [7, 72] and Unity [6]

leverage the expertise of human artists and complex physics

864



models to generate photorealistic simulated images, which

can be used for data augmentation. Because ground truth

is known at generation, simulated data has proved particu-

larly useful for tasks requiring detailed and expensive anno-

tation, such as keypoints, semantic segmentations, or depth

information [70, 50, 32, 53, 24, 61, 55, 49, 28]. Varol et

al. [70] use synthetically-generated humans placed on top

of real image backgrounds as pretraining for human pose

estimation, and suggest fine-tuning a synthetically-trained

model on real data. [61] uses a combination of unlabeled

real data and labeled simulated data of the same class to

improve real-world performance on an eye-tracking task by

using GANs [24]. This method requires a large number of

unlabled examples from the target class. [50, 32, 53] find

that simulated data improves detection performance, and

the degree of realism and variability of simulation affects

the amount of improvement. They consider only small sets

of non-deformable man-made objects. Richter et al. [55]

showed that a segmentation model for city scenes trained

with a subset of their real dataset and a large synthetic set

outperforms a model trained with the full real dataset. [49]

proposes a dataset and benchmark for evaluating models for

unsupervised domain transfer from synthetic to real data

with all-simulated training data, as opposed to simulated

data only for rare classes. While this literature is encour-

aging, a number of questions are left unexplored. The first

is a careful analysis of when simulated data is useful and,

in particular, if it is useful in generalizing to new scenar-

ios. Second, whether simulated data can be useful in highly

complex and relatively unpredictable scenes such as natu-

ral scenes, as opposed to indoors and urban scenes. Third,

whether it is just the synthetic objects or also the synthetic

environments that contribute to learning.

2.5. Simulated Datasets

Previous efforts on synthetic dataset generation focus on

non-deformable man-made objects and indoor scenes [62,

58, 73, 32, 53, 38], human pose/actions [70, 16], or urban

scenes [56, 22, 55, 18, 26, 36].

Bondi et al. [10] previously released the AirSim-w data

simulator within the domain of wildlife conservation, fo-

cused on creating aerial infrared imagery. The resolution

and quality of the assets is designed to replicate data from

100 meters in the air, but is not realistic close-up. We con-

tribute the first image data generators specifically for the

natural world with the ability to recreate natural environ-

ments and generate near-photorealistic images of animals

within the scene, including real-world nuisance factors such

as challenging pose, lighting, and occlusion.

3. Data and Simulation
3.1. Real Data

Our real-world training and test data comes from the

Caltech Camera Traps (CCT) dataset [8]. CCT contains

243, 187 images from 140 camera trap locations covering

30 classes of animals, curated from data provided by the

United States Geological Survey and the National Park Ser-

vice. We follow the CCT-20 data split laid out in [8], which

was explicitly designed for in-depth generalization analy-

sis. The split uses a subset of 57, 868 images from 20

camera locations covering 15 classes in CCT to simulta-

neously investigate performance on locations seen during

training and generalization performance to new locations.

Bounding-box annotations are provided for all images in

CCT-20, whereas the rest of CCT has only class labels. In

the CCT-20 data split, cis-locations are defined as locations

seen during training and trans-locations as locations not

seen during training (see Fig.3). Nine locations are used for

trans-test data, one location for trans-validation data, and

data from the remaining 10 locations is split between odd

and even days, with odd days as cis-test data and even days

as training and cis-validation data (a 95% of data from even

days for training, 5% for testing).

To study the effect of simulated data on rare species,

we focus on deer, which are rare in CCT-20, with only

44 deer examples out of the 13, 553 images in the train-

ing set (see Fig.3). To focus on the performance of a single

rare class, we remove the other two rare classes in CCT-20:

badgers and foxes. We note that there are no deer images

in the established CCT-20 trans sets. In reality, deer are

far from uncommon: unlike a truly rare species, there ex-

ist sufficient images of deer in the CCT dataset outside of

the CCT-20 locations to rigorously evaluate performance.

To facilitate deeper investigation of generalization we have

collected bounding-box annotations for an additional 16K

images from CCT across 65 new locations, which we add

to the trans-validation and trans-test sets to cover a wider

variety of locations and classes (including deer). We call

this augmented trans set trans+ (see Fig.3) and will release

the annotations at publication. To further analyze general-

ization, we also test on data containing deer from the iNat-

uralist 2017 dataset [68], which represents a domain shift

to human-captured and human-selected photographs. We

consider Odocoileus hemionus (mule deer) and Odocoileus

virginianus (white-tailed deer) images from iNaturalist, the

two species of deer seen in the CCT data. In Supplementary

Material we show results on an additional class, wolf.

3.2. Synthetic Data

To assess generality we leverage multiple collections of

woodland and animal models to create two simulation en-

vironments, which we call TrapCam-Unity and TrapCam-

AirSim. Both simulation environments and source code to

generate images will be provided publicly, along with the

data generated for this paper. To synthesize daytime im-

ages we varied the orientation of the simulated sun in both

azimuth and elevation. To create images taken at night we

used a spotlight attached to the simulated camera to sim-

865



(a) Training images

(b) Cis test images

(c) Trans+ test images

(d) iNaturalist images

Figure 2: Cis vs. Trans: The cis-test data can be very simi-

lar to the training data: animals tend to behave similarly at a

single location even across different days, so the images col-

lected of each species are easy to memorize intra-location.

The trans data has biases towards specific angles and light-

ing conditions that are different from those in the cis loca-

tions, and as such is very hard to learn from the training

data. iNaturalist data represents a domain shift to human-

curated images.

ulate a white-light or IR flash and qualitatively match the

low color saturation of the nighttime images. To simulate

animals’ eyeshine (a result of the reflection of camera flash

from the back of the eye), we placed small reflective balls

on top of the eyes of model animals.

TrapCam-AirSim. We create a modular natural envi-

ronment within Microsoft AirSim [60] that can be randomly

populated with flora and fauna. The distribution and types

of trees, bushes, rocks, and logs can be varied and randomly

seeded to create a diverse set of landscapes, from an open

plain to a dense forest. We used various off-the-shelf com-

ponents such as an animal pack from Epic Studios [1] (An-

imals Vol 01: Forest Animals by GiM [2]), background

terrain also from Unreal Marketplace [7], vegetation from

SpeedTree [4], and rocks/obstructions from Megascans [3].

The actual area of the environment is small, at 50 meters,

op
os

su
m

ra
bb

it

co
yo

te ca
t

sq
ui

rr
el

ra
cc

oo
n

do
g

bo
bc

at

bi
rd

ro
de

nt

sk
un

k

de
er

Classes

102

103

N
um

be
r o

f t
ra

in
in

g 
im

ag
es Other Classes

Deer

Tr
ai

n

C
is

 V
al

C
is

 T
es

t

Tr
an

s V
al

Tr
an

s T
es

t

Tr
an

s+
 V

al

Tr
an

s+
 T

es
t

Data Split

101

102

103

104

N
um

be
r o

f i
m

ag
es

Figure 3: (Top) Number of training examples for each

class. Deer are rare in the training locations from the CCT-

20 data split. We focus on deer as a test species in order

to investigate whether we can improve performance on a

“rare” class. Since deer are not rare at other camera loca-

tions within the CCT dataset, we have enough test data to

thoroughly evaluate the effect. (Bottom) Number of ex-

amples for each data split, for deer and other classes. In

the CCT-20 data split there were no trans examples of deer.

We added annotations to the trans val and test sets for an

additional 16K images across 65 new locations from CCT,

including 6K examples of deer. We call these augmented

sets trans+.

but the modularity allows many possible scenes to be built.

TrapCam-Unity. Unity 3D game development engine is

a popular game development tool that offers realistic graph-

ics, real time performance and abundant 3D assets. We

take advantage of the “Book of The Dead” environment

[5], a near-photorealistic, open-source forest environment

published by Unity to demonstrate its high definition ren-

dering pipeline. This off-the-shelf environment is large and

rich in details, it has a diversity of subregions with signifi-

cantly different statistics. We change the lighting and move

throughout this large, static environment to collect data with

various background scenes. We make use of 17 animated

deer models from five off-the-shelf model sets, purchased

from Unity Asset Store and originally developed for game

development, including the GiM models used in TrapCam-

AirSim. A single gaming PC (Core i7 5820K, 16GB RAM,

GTX 1080Ti) generates over 300,000 full-HD images with

pixel-level instance annotation per day and the throughput

linearly scales to additional machines.

866



Simulated animals on empty images. Similar to the

data generated in [70], we generate synthetic images of deer

by rendering deer on top of real camera trap images contain-

ing no animals, which we call Sim on Empty (see Fig.1). We

first generate animal foreground images by randomizing the

location, orientation in azimuth, pose and illumination of

the deer, then paste the foreground images on top of the real

empty images. A limitation is that the deer are not in real-

istic relationships or occlusion scenarios with the environ-

ment around them. We also note that the empty images used

to construct this data come from both cis and trans loca-

tions, so Sim on Empty contains information about test-set

backgrounds unavailable in the purely simulated sets. This

choice is based on current camera trap literature, which first

detects the presence of any animal, and then determines an-

imal species [47, 8]. After the initial animal detection step,

the empty images are known and can be utilized.

Segmented animals on empty images. We manually

segment the 44 examples of deer from the training set and

paste them at random on top of real empty camera trap im-

ages, which we call Real on Empty (see Fig.1). This allows

us to analyze whether the generalization challenge is related

to memorizing the training deer+background or memoriz-

ing the training deer regardless of background. Similar to

the Sim on Empty set, these images do not have realistic

foreground/background relationships and the empty images

come from both cis and trans locations.

4. Experiments

Beery, et al. [8] showed that detecting and localizing the

presence of an “animal” (where all animals are grouped into

a single class) both generalizes well to new locations and

improves classification performance. We focus on classifi-

cation of cropped ground-truth bounding boxes as opposed

to training multi-class detectors in order to disambiguate

classification and detection errors. We specifically inves-

tigate how added synthetic training data for rare classes ef-

fects model performance on both rare and common classes.

We find that the Inception-Resnet-V2 architecture [63]

works best for the cropped-box classification task, based

on performance comparison across architectures (see Sup-

plementary Material). Most classification systems are pre-

trained on Imagenet, which contains animal classes. To en-

sure that our “rare” class is truly something the model is un-

familiar with, as opposed to something seen in pretraining,

we pretrain our classifiers on no-animal ImageNet, a dataset

we define by removing the “animal” subtree (all classes un-

der synset node n00015388) from ImageNet. We use an ini-

tial learning rate of 0.0045, RMSprop with a momentum of

0.9 [65], and a square input resolution of 299. We employ

random cropping (containing at least 65% of the region),

horizontal flipping, color distortion, and blur as data aug-

mentation. Model selection is performed using early stop-

0 ... 101 102 103 104 105 106

Number of simulated images

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Trans+ deer
Trans+ other classes
Cis deer
Cis other classes
iNat deer

Figure 4: Error as a function of number of simulated

images seen during training. We divide this plot into

three regions. The leftmost region is the baseline perfor-

mance with no simulated data, shown at x=0 (Note x-axis

is in log scale). In the middle region, additional simulated

training data increases performance on the rare class and

does not harm the performance of the remaining classes

(trend lines are visualized). The rightmost region, where

many simulated images are added to the training set, results

in a biased classifier, hurting the performance of the other

classes (see Fig.5 (b-c) for details). We compare the class

error for “deer” and “other classes” in both the “cis” and

“trans+” testing regimes. Lines marked “deer” use only the

deer test images for the error computation. Lines marked

“other classes” use all the images in the other classes (ex-

cluding deer) for the error computation. Error is defined as

the number of incorrectly identified images divided by the

number of images.

ping based on trans+ validation set performance [9].

4.1. Effect of increase in simulated data

We explore the trade-off in performance when increas-

ing the number of simulated images, from 5 to 1.4 million,

spanning 5 log units (see Fig.4). Very little simulated data

is needed to see a trans+ performance boost: with as few as

5 simulated images we see a 10% decrease in per-class error

on trans+ deer, with < 0.5% increase in average per-class

error on the other trans+ classes. As we increase the number

of simulated images, trans+ performance improves: with

100K simulated images we see a 39% decrease in trans+

deer error, with < 0.5% increase in error for the other trans

classes. There exists some threshold (> 325K) where, if

passed, an increase in simulated data noticeably biases the

classifier towards the deer class (see Fig.5): with 1.4 mil-

lion simulated images, our trans+ deer error decreases by

88%, but it comes at the cost of a 13% increase in average

per-class error across the other classes. At this point there is

an overwhelming class prior towards deer: the next-largest

867



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr
ec
is
io
n

0
5
17
120
5K
22K
100K
325K
830K
1.4M

(a) Trans+ deer precision-recall curves

(b) Confusion matrix: 100K (c) Confusion matrix: 1.4M

Figure 5: (a) Trans+ PR curves for the deer class: Note

the development of a biased classifier as we add simulated

training data. The baseline model (in blue) has high preci-

sion but suffers low recall. The model trained with 1.4M

simulated images (in grey) has higher recall, but suffers a

loss in precision. (b-c) Evidence of a biased classifier:

Compare the deer column in the confusion matrices, the

model trained with 1.4M simulated images predicts more

test images as deer.

class at training time would be opossums with 2, 514 im-

ages, 3 orders of magnitude less.

Unsurprisingly, cis deer performance decreases with

added simulated data. Although the images were taken on

different days (train from even days, cis-test from odd days)

the animals captured were to some extent creatures of habit.

Thus, training and test images can be nearly identical from

within the same locations (see Fig.2). Almost all cis test

deer images have at least one visually similar training im-

age. As simulated data is added at training time, the model

is forced to learn a more complex, varied representation of

deer. As a result, we see cis deer performance decrease.

To quantify robustness, we ran the 100K experiment three

times. We found that trans+ deer error had a standard de-

viation of 2% and cis deer error had a standard deviation

of 4%, whereas the average error across other classes had a

standard deviation of 0.2% for both cis and trans.

We also investigate performance on deer images from

iNaturalist [68], which are individually collected by humans

and are usually relatively centered and well-focused (and

therefore easier to classify) but represent a domain shift (see

Fig.2). Adding simulated data improves performance on

the iNaturalist deer images (see Fig.4), demonstrating the

trans+
deer

cis
deer

trans+
other
(avg)

cis
other
(avg)

Test set

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

CCT
fPLM
fPM
fLM
fPL
fPM with night
Vary all

Figure 6: Error as a function of variability of simulated

images seen during training: 100K simulated deer im-

ages. Error is calculated as in Fig.4, and all data is from

TrapCam-Unity. Trans+ deer performance is highlighted.

In the legend “CCT” means the model was trained only

on the CCT-20 training set with no added simulated data.

“P” means “pose,” “L” means “lighting,” and “M” means

“model,” while the prefix “f” for “fixed” denotes which of

these variables were controlled for a particular experiment.

For example “fPM” means the pose and the animal model

were held fixed, while the lighting was allowed to vary. The

variability of simulated data is extremely important, and

that while all axes of variability matter, simulating night-

time images has the largest effect.

robustness and generality of the representation learned.

4.2. Effect of variation in simulation

In order to understand which aspects of the simulated

data are most beneficial, we consider three dimensions of

variation during simulation: pose, lighting, and animal

model. Using the TrapCam-Unity simulator, we generate

100K daytime simulated images for each of these experi-

ments. As a control, we create a set of data where the pose,

lighting, and animal model are all fixed. We then create sets

with varied pose, varied lighting, and varied animal model,

each with the other variables held fixed. An additional set of

data is generated varying all of the above. Unsurprisingly,

widest variation results in the best trans+ deer performance.

The individual axes of variation do have an effect of per-

formance, and some are more “valuable” than others (see

Fig.6). There are many more dimensions of variation that

could be explored, such as simulated motion blur or varia-

tion in camera perspective. For CCT data, we find adding

simulated nighttime images has the largest effect on perfor-

mance. We have determined that for deer 49% of training

images, 53% of cis test images, and 56% of trans+ test im-

ages were captured at night, using either IR or white flash.

868



trans+
deer

cis
deer

trans+
other
(avg)

cis
other
(avg)

Test set

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

CCT
CCT oversample
Real on Empty
Sim on Empty
TrapCam-AirSim
TrapCam-Unity
TrapCam-Unity+
Real on Empty

Figure 7: Error as a function of simulated data gener-

ation method: 100K simulated deer images. Per-class

error is calculated as in Fig.4. Trans+ deer performance

is highlighted. Oversampling decreases performance, and

there is a large boost in performance from incorporating

real segmented animals on different backgrounds (Real

on Empty). TrapCam-Unity with everything allowed to

vary (model, lighting, pose, including nighttime simulation)

gives us slightly better trans+ performance, without requir-

ing additional segmentation annotations. Combining Real

on Empty with TrapCam-Unity (50K of each) gives us the

best trans+ deer performance.

Simulating only daytime images injects a prior towards deer

being seen during the day. By training on half day and half

night images we match the day/night prior for deer in the

data. Not all species occur equally during the day or night,

some are strictly nocturnal. Our results suggest that a good

strategy is to determine the appropriate ratio of day to night

images using your training set and match that ratio when

adding simulated data.

4.3. Comparing simulated data generation methods

We compare performance gain from 4 methods of data

synthesis, using 100K added deer images for each (see

Fig.7. The animal model is controlled (each simulated set

uses the same GiM deer model for these experiments) for

fair comparison of the efficacy of each generation method.

As an additional control, we consider oversampling the rare

class. This creates the same sampling prior towards deer

without introducing any new information. Oversampling

performs worse than just training on the unbalanced train-

ing set by causing the model to overfit the deer class to the

training images. By manually segmenting out the deer in the

44 training images and randomly pasting them onto empty

backgrounds we see a large improvement in performance.

Cis error goes down to 6% with this method of data aug-

mentation, which makes sense in the view of the strong sim-

ilarities between the training and cis-test data (see Fig.2).

Real on Empty and Sim on Empty are able to approxi-

mate both “day” and “night” imagery, a deer pasted onto a

nighttime empty image is actually a reasonable approxima-

tion of an animal illuminated by a flash at night (see Fig.1).

They also have the additional benefit of using backgrounds

from both cis and trans sets, giving them trans information

not provided by the simulated datasets. TrapCam-Unity

with all variability enabled is our best-performing model

without requiring additional segmentation annotations. If

segmentation information is available, Real on Empty com-

bined with TrapCam-Unity (50K of each) improves both cis

and trans deer performance: trans deer error decreases to

36% (a 54% decrease compared to CCT only), with < 2%

increase in error on trans other classes.

4.4. Visualizing the representation of data

In order to visualize how the network represents simu-

lated data vs. real data, we use PCA and tSNE [46] to clus-

ter the activations of the final pre-logit layer of the network.

These visualizations can be seen in Fig.8. Interestingly, the

model learns “deer” bimodally: simulated deer are clus-

tered almost entirely separately from real deer, with a few

datapoints of each ending up in the opposite cluster. Even

though those clusters overlap only slightly, the network is

surprisingly able to classify more deer images correctly.

5. Conclusions and Future Work
We present two fast, realistic natural world data simula-

tors based on popular 3D game development engines. Our

simulators have 3 major advantages. First, they are gen-

eralizable. Thanks to the abundant 3D assets available on-

line in the game development community, integrating a new

species in a new environment from off the shelf assets is

simple and fast. Second, not only are the graphics near-

photorealistic, the pipeline also generates animals with re-

alistic pose, animation, and interactions with the environ-

ment. Third, data generation is efficient. A single gam-

ing PC generates over 300,000 full-HD images with pixel-

level instance annotation per day and the throughput lin-

early scales to additional machines.

We explore using the simulated data to augment rare

classes during training. Towards this goal, we compare

multiple sources of natural-world data simulation, explic-

itly measure generalization via the cis-vs-trans paradigm,

examine trade-offs in performance as the number of simu-

lated images seen during training is increased, and analyze

the effect of controlling for different axes of variation and

data generation methods.

From our experiments we draw three main lessons. First:

using synthetic data can considerably reduce error rates for

classes that are rare, and with segmentation annotations we

can reduce error rates even further by additionally randomly

pasting segmented images of rare classes on empty back-

869



(a) No simulated deer (b) 1.4M simulated deer

bird (trans)
bobcat (trans)
cat (trans)
coyote (trans)
dog (trans)
opossum (trans)
rabbit (trans)
raccoon (trans)
rodent (trans)
skunk (trans)
squirrel (trans)

sim deer day
sim deer night
deer_inat
deer (cis)
deer (trans)

bird (cis)
bobcat (cis)
cat (cis)
coyote (cis)
dog (cis)
opossum (cis)
rabbit (cis)
raccoon (cis)
rodent (cis)
skunk (cis)
squirrel (cis)

Figure 8: Visualization of network activations: more deer are classified correctly as we add synthetic data, despite the

synthetic data being clustered separately. The pink points are real deer, the brown are simulated day images and the grey

are simulated night images. Large markers are points that are classified correctly, while small markers are points classified

incorrectly. The plots were generated by running 200-dimensional PCA over the activations at the last pre-logit layer of the

network when running inference on the test sets, and then running 2-dimensional tSNE over the resulting PCA embedding.

ground images. Second: as the amount of simulated data is

increased, accuracy on the target class improves. However,

with 1000x more simulated data than the common classes,

we see negative effects on the performance of other classes

due to the high class imbalance. Third: the variation of

simulated data generated is very important, and maximum

variation provides maximum performance gain.

While an increase in simulated data corresponds to an

increase in target class performance, the representation of

simulated data overlaps only rarely with real data (see

Fig.8). It remains to be studied whether embedding tech-

niques [59], domain adaptation techniques [23, 75], or style

transfer [24, 61] could be used to encourage a higher over-

lap in representation between the synthetic and real data,

and if that overlap would lead to an increase in categoriza-

tion accuracy. Additionally, the bias induced by adding

large amounts of simulated data could be addressed with

algorithmic solutions such as those in [14, 19, 30, 29]. We

have not discussed the drawbacks related to model training

with large quantities of synthetic data (epoch time, data stor-

age, etc.). In future, we will explore merging the simulator

and classifier so that highly variable synthetic data could be

requested “online” without storing raw frames.

Simulation is a fast, interpretable, and controllable

method of data generation that is easy to use and easy to

adapt to new classes. This allows for an integrated and

evolving training pipeline with new classes of interest: sim-

ulated data can be generated iteratively based on needs

or gaps in performance. Our analysis suggests a general

methodology when using simulated data to improve rare-

class performance: 1) generate small, variable sets of simu-

lated data (even small sets can drive improvement), 2) add

these sets to training and analyze performance to determine

ideal ratios and dimensions of variation, 3) take advantage

of ease and speed of generation to create an abundance

of data based on this ideal distribution, and determine an

operating point of number of added simulated images to

optimize performance between rare target class and other

classes based on the project goal.

Further, the performance gains we have demonstrated,

along with the data generation tools we contribute to the

community, will allow biodiversity researchers focused en-

dangered species to improve classification performance on

their target species. Adding each new species to the sim-

ulation tools currently requires the assistance of a graphics

artist. However, automated 3D modeling techniques, such

as those proposed in [37, 54, 13, 48], might eventually be-

come an inexpensive and practical source of data to improve

few-shot learning.

The improvement we have found in rare-class catego-

rization is encouraging, and the release of our data gen-

eration tools and the data we have generated will provide

a good starting point for other researchers studying imbal-

anced data, simulated data augmentation, or natural-world

domains.

6. Acknowledgements

We would like to thank the USGS and NPS for provid-

ing data. This work was supported by NSFGRFP Grant No.

1745301, the views are those of the authors and do not nec-

essarily reflect the views of the NSF. Compute provided by

Microsoft AI for Earth and AWS.

870



References

[1] Epic studios. http://epicstudios.com/. Accessed:

2019-03-21. 4

[2] Forest animals by GiM. https://www.

unrealengine.com/marketplace/en-US/

animals-vol-01-forest-animals. Accessed:

2019-03-21. 4

[3] Quixel megascans library. https://quixel.com/

megascans. Accessed: 2019-03-21. 4

[4] Speedtree. https://store.speedtree.com/. Ac-

cessed: 2019-03-21. 4

[5] Unity book of the dead. https://unity3d.com/

book-of-the-dead. Accessed: 2019-03-21. 4

[6] Unity game engine. https://unity3d.com/. Ac-

cessed: 2019-02-05. 2

[7] Unreal game engine. https://www.unrealengine.

com/en-US/what-is-unreal-engine-4. Ac-

cessed: 2019-02-05. 2, 4

[8] S. Beery, G. Van Horn, and P. Perona. Recognition in terra

incognita. In The European Conference on Computer Vision

(ECCV), September 2018. 1, 2, 3, 5

[9] Y. Bengio. Practical recommendations for gradient-based

training of deep architectures. In Neural networks: Tricks

of the trade, pages 437–478. Springer, 2012. 5

[10] E. Bondi, D. Dey, A. Kapoor, J. Piavis, S. Shah, F. Fang,

B. Dilkina, R. Hannaford, A. Iyer, L. Joppa, et al. Airsim-

w: A simulation environment for wildlife conservation with

uavs. In Proceedings of the 1st ACM SIGCAS Conference on

Computing and Sustainable Societies, page 40. ACM, 2018.

3

[11] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and

D. Krishnan. Unsupervised pixel-level domain adaptation

with generative adversarial networks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3722–3731, 2017. 2

[12] M. Buda, A. Maki, and M. A. Mazurowski. A systematic

study of the class imbalance problem in convolutional neural

networks. Neural Networks, 106:249–259, 2018. 2

[13] T. J. Cashman and A. W. Fitzgibbon. What shape are dol-

phins? building 3d morphable models from 2d images. IEEE

transactions on pattern analysis and machine intelligence,

35(1):232–244, 2013. 8

[14] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. Class-

balanced loss based on effective number of samples. arXiv

preprint arXiv:1901.05555, 2019. 8

[15] Y. Cui, F. Zhou, Y. Lin, and S. Belongie. Fine-grained cate-

gorization and dataset bootstrapping using deep metric learn-

ing with humans in the loop. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1153–1162, 2016. 2

[16] C. R. de Souza12, A. Gaidon, Y. Cabon, and A. M. López.

Procedural generation of videos to train deep action recogni-

tion networks. 2017. 3

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009. 2

[18] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and

V. Koltun. CARLA: An open urban driving simulator. In

Proceedings of the 1st Annual Conference on Robot Learn-

ing, pages 1–16, 2017. 3

[19] C. Elkan. The foundations of cost-sensitive learning. In

International joint conference on artificial intelligence, vol-

ume 17, pages 973–978. Lawrence Erlbaum Associates Ltd,

2001. 2, 8

[20] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter,

H. M. Blau, and S. Thrun. Dermatologist-level classifi-

cation of skin cancer with deep neural networks. Nature,

542(7639):115, 2017. 1

[21] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International journal of computer vision, 88(2):303–

338, 2010. 2

[22] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds as

proxy for multi-object tracking analysis. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 4340–4349, 2016. 3

[23] Y. Ganin and V. Lempitsky. Unsupervised domain adap-

tation by backpropagation. In International Conference on

Machine Learning, pages 1180–1189, 2015. 8

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014. 1, 3, 8

[25] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and

D. Wierstra. Draw: A recurrent neural network for image

generation. arXiv preprint arXiv:1502.04623, 2015. 2

[26] S. Han, A. Fafard, J. Kerekes, M. Gartley, E. Ientilucci,

A. Savakis, C. Law, J. Parhan, M. Turek, K. Fieldhouse, et al.

Efficient generation of image chips for training deep learning

algorithms. In Automatic Target Recognition XXVII, volume

10202, page 1020203. International Society for Optics and

Photonics, 2017. 1, 3

[27] B. Hariharan and R. Girshick. Low-shot visual recognition

by shrinking and hallucinating features. In Proc. of IEEE Int.

Conf. on Computer Vision (ICCV), Venice, Italy, 2017. 2

[28] H. Hattori, V. N. Boddeti, K. Kitani, and T. Kanade. Learn-

ing scene-specific pedestrian detectors without real data. In

Computer Vision and Pattern Recognition (CVPR), 2015

IEEE Conference on, pages 3819–3827. IEEE, 2015. 1, 3

[29] H. He, Y. Bai, E. A. Garcia, and S. Li. Adasyn: Adap-

tive synthetic sampling approach for imbalanced learning.

In 2008 IEEE International Joint Conference on Neural

Networks (IEEE World Congress on Computational Intelli-

gence), pages 1322–1328. IEEE, 2008. 2, 8

[30] H. He and E. A. Garcia. Learning from imbalanced data.

IEEE Transactions on Knowledge & Data Engineering,

(9):1263–1284, 2008. 2, 8

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 2

[32] S. Hinterstoisser, O. Pauly, H. Heibel, M. Marek, and

M. Bokeloh. An annotation saved is an annotation earned:

871



Using fully synthetic training for object instance detection,

2019. 1, 3

[33] A. G. Howard. Some improvements on deep convolutional

neural network based image classification. arXiv preprint

arXiv:1312.5402, 2013. 2

[34] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al.

Speed/accuracy trade-offs for modern convolutional object

detectors. In IEEE CVPR, 2017. 2

[35] D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. Generating

images with recurrent adversarial networks. arXiv preprint

arXiv:1602.05110, 2016. 2

[36] S. Ji, Y. Shen, M. Lu, and Y. Zhang. Building instance

change detection from large-scale aerial images using con-

volutional neural networks and simulated samples. Remote

Sensing, 11(11):1343, 2019. 1, 3

[37] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learn-

ing category-specific mesh reconstruction from image col-

lections. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 371–386, 2018. 8

[38] E. Kolve, R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta, and

A. Farhadi. AI2-THOR: an interactive 3d environment for

visual AI. CoRR, abs/1712.05474, 2017. 3

[39] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija,

A. Kuznetsova, H. Rom, J. Uijlings, S. Popov, A. Veit,

S. Belongie, V. Gomes, A. Gupta, C. Sun, G. Chechik,

D. Cai, Z. Feng, D. Narayanan, and K. Murphy. Open-

images: A public dataset for large-scale multi-label and

multi-class image classification. Dataset available from

https://github.com/openimages, 2017. 2

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 2

[41] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J.

Kress, I. Lopez, and J. V. B. Soares. Leafsnap: A computer

vision system for automatic plant species identification. In

The 12th European Conference on Computer Vision (ECCV),

October 2012. 2

[42] F.-F. Li, R. Fergus, and P. Perona. One-shot learning of ob-

ject categories. IEEE transactions on pattern analysis and

machine intelligence, 28(4):594–611, 2006. 2

[43] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal

loss for dense object detection. IEEE transactions on pattern

analysis and machine intelligence, 2018. 2

[44] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014. 2

[45] F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep photo

style transfer. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4990–

4998, 2017. 2

[46] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.

Journal of machine learning research, 9(Nov):2579–2605,

2008. 7

[47] M. S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swanson,

C. Packer, and J. Clune. Automatically identifying wild

animals in camera trap images with deep learning. arXiv

preprint arXiv:1703.05830, 2017. 1, 5

[48] F. Pahde, M. Puscas, J. Wolff, T. Klein, N. Sebe, and

M. Nabi. Low-shot learning from imaginary 3d model. arXiv

preprint arXiv:1901.01868, 2019. 8

[49] X. Peng, B. Usman, K. Saito, N. Kaushik, J. Hoffman, and

K. Saenko. Syn2real: A new benchmark forsynthetic-to-real

visual domain adaptation. arXiv preprint arXiv:1806.09755,

2018. 1, 3

[50] B. Pepik, R. Benenson, T. Ritschel, and B. Schiele. What is

holding back convnets for detection? In German Conference

on Pattern Recognition, pages 517–528. Springer, 2015. 1, 3

[51] R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. V. Mc-

Connell, G. S. Corrado, L. Peng, and D. R. Webster. Predic-

tion of cardiovascular risk factors from retinal fundus pho-

tographs via deep learning. Nature Biomedical Engineering,

page 1, 2018. 1

[52] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015. 2

[53] P. S. Rajpura, H. Bojinov, and R. S. Hegde. Object detection

using deep cnns trained on synthetic images, 2017. 1, 3

[54] B. Reinert, T. Ritschel, and H.-P. Seidel. Animated 3d

creatures from single-view video by skeletal sketching. In

Graphics Interface, pages 133–141, 2016. 8

[55] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for

data: Ground truth from computer games. Lecture Notes in

Computer Science, page 102118, 2016. 1, 3

[56] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M.

Lopez. The synthia dataset: A large collection of synthetic

images for semantic segmentation of urban scenes. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3234–3243, 2016. 3

[57] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015. 1

[58] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and

V. Koltun. MINOS: Multimodal indoor simulator for navi-

gation in complex environments. arXiv:1712.03931, 2017.

3

[59] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A

unified embedding for face recognition and clustering. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 815–823, 2015. 8

[60] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-

fidelity visual and physical simulation for autonomous vehi-

cles. In Field and service robotics, pages 621–635. Springer,

2018. 4

[61] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,

and R. Webb. Learning from simulated and unsupervised

images through adversarial training. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), July

2017. 1, 3, 8

872



[62] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and

T. Funkhouser. Semantic scene completion from a single

depth image. IEEE Conference on Computer Vision and Pat-

tern Recognition, 2017. 3

[63] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In Thirty-First AAAI Conference

on Artificial Intelligence, 2017. 5

[64] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2818–2826, 2016. 2

[65] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Di-

vide the gradient by a running average of its recent magni-

tude. COURSERA: Neural networks for machine learning,

4(2):26–31, 2012. 5

[66] T. Tran, T. Pham, G. Carneiro, L. Palmer, and I. Reid. A

bayesian data augmentation approach for learning deep mod-

els. In Advances in Neural Information Processing Systems,

pages 2797–2806, 2017. 2

[67] G. van Horn, J. Barry, S. Belongie, and P. Per-

ona. The Merlin Bird ID smartphone app

(http://merlin.allaboutbirds.org/download/).

1

[68] G. Van Horn, O. Mac Aodha, Y. Song, A. Shepard, H. Adam,

P. Perona, and S. Belongie. The inaturalist challenge 2017

dataset. arXiv preprint arXiv:1707.06642, 2017. 1, 2, 3, 6

[69] G. Van Horn and P. Perona. The devil is in the tails:

Fine-grained classification in the wild. arXiv preprint

arXiv:1709.01450, 2017. 1

[70] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black,

I. Laptev, and C. Schmid. Learning from synthetic humans.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017. 1, 3, 5

[71] Y.-X. Wang and M. Hebert. Learning to learn: Model regres-

sion networks for easy small sample learning. In European

Conference on Computer Vision, pages 616–634. Springer,

2016. 2

[72] Y. Z. S. Q. Z. X. T. S. K. Y. W. A. Y. Weichao Qiu, Fang-

wei Zhong. Unrealcv: Virtual worlds for computer vision.

ACM Multimedia Open Source Software Competition, 2017.

2

[73] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian. Building general-

izable agents with a realistic and rich 3d environment. arXiv

preprint arXiv:1801.02209, 2018. 3

[74] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In Proceedings of the IEEE International Conference

on Computer Vision, pages 2223–2232, 2017. 2

[75] Y. Zou, Z. Yu, B. Vijaya Kumar, and J. Wang. Unsu-

pervised domain adaptation for semantic segmentation via

class-balanced self-training. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 289–305,

2018. 8

873


