This WACYV 2020 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

ScalL: Classifier Weights Scaling for Class Incremental Learning

Eden Belouadah, Adrian Popescu
Université Paris-Saclay, CEA, Département Intelligence Ambiante et Systemes Interactifs,
91191 Gif-sur-Yvette, France

eden.belouadah,adrian.popesculcea.fr

Abstract

Incremental learning is useful if an Al agent needs to in-
tegrate data from a stream. The problem is non trivial if
the agent runs on a limited computational budget and has a
bounded memory of past data. In a deep learning approach,
the constant computational budget requires the use of a
fixed architecture for all incremental states. The bounded
memory generates imbalance in favor of new classes and
a prediction bias toward them appears. This bias is com-
monly countered by introducing a data balancing step in
addition to the basic network training. We depart from this
approach and propose simple but efficient scaling of past
classifiers’ weights to make them more comparable to those
of new classes. Scaling exploits incremental state statistics
and is applied to the classifiers learned in the initial state of
classes to profit from all their available data. We also ques-
tion the utility of the widely used distillation loss compo-
nent of incremental learning algorithms by comparing it to
vanilla fine tuning in presence of a bounded memory. Eval-
uation is done against competitive baselines using four pub-
lic datasets. Results show that the classifier weights scaling
and the removal of the distillation are both beneficial.

1. Introduction

Artificial agents are often deployed in dynamic environ-
ments in which information often arrives in streams [22].
For instance, this is the case of a robot which operates in
an evolving environment or of a face recognition app which
needs to deal with new identities. In such settings, an in-
cremental learning (IL) algorithm is needed to increase the
recognition capacity when integrating new data. There was
recently a strong regain of interest for IL with the adapta-
tion of deep learning methods [2, 5, 26, 28]. Incremental
learning is non-trivial if the artificial agents have limited
computational and memory budgets. If the memory of past
classes is bounded or unavailable, the system underfits past
data when new information is integrated and catastrophic
forgetting [19] occurs. Since a joint optimization of compu-
tational and memory requirements is hard, if not impossible,

existing IL algorithms focus on one of these two aspects. In
a first scenario [2, 18, 28, 30], the number of deep model
parameters is allowed to grow and no memory is used. In
a second scenario [5, 7, 10, 26, 34], the deep architecture
is fixed and a memory is introduced for past class exem-
plars to alleviate the effect of catastrophic forgetting. These
algorithms update deep models by adapting the fine tuning
procedure to include classification and distillation losses.

We focus on this second scenario and introduce ScallL,
a method which reduces the bias in favor of new classes by
exploiting the classifier weights of past classes as learned
in their initial state with all class data available. Since past
class classifiers are learned in different previous IL states,
they are reshaped to be usable in the current state. Their
scaling uses aggregate statistics from the current and initial
states. ScallL is illustrated in Figure 1 with a toy example
which includes an initial and two incremental states. In ad-
dition to the bounded exemplar memory B, Scal L requires
the use of a compact memory Z which stores the classifier
weights from the initial states of past classes. A second con-
tribution, of practical importance, is to simplify the deep
model update across incremental states. The widely used
distillation loss term [5, 7, 10, 26, 34] is ablated here and
model updates are done with vanilla fine tuning.

Evaluation is done with four public datasets and three
values for the number of incremental states Z and the ex-
emplar memory B, the two key components of class IL algo-
rithms. ScalL is compared to strong baselines from litera-
ture and to new ones proposed here and the obtained results
indicate that it has the best overall performance.

2. Related Works

Incremental learning is an open research topic which re-
cently witnessed a regain of interest with the use of deep
learning algorithms. We discuss three groups of methods
which focus on different parts of IL. Due to limited space,
only a representative subset of methods is described.

A first group increases the number of parameters of
deep architectures to accommodate new classes. Growing
a Brain [30] increases the depth and/or the width of the

1266

T={cicty IS

Tl

Figure 1: Illustration of ScalL. States are noted S¥, image data X7, deep models MP* and classifier weights Czj and CJ,
where: j is the class label, ¢ is the initial state in which the classifier was learned with all data and sc means that the classifier
was scaled using ScalL. We represent three states S, S and S? which recognize 2,4 and 6 classes respectively. The
bounded memory (light blue), is fixed at B = 4 past classes exemplars. As the training advances, the data imbalance between
past and new classes grows due to bounded B and the prediction bias in favor of new classes becomes more prominent.
Scal L reduces this bias by making classifier weights of past and new classes more comparable by using a small memory
T which stores initial classifiers C7. In each IL state, ScalL replaces the raw classifiers of past classes provided by the
model M* by Cgc, a scaled version of Cij , the initial classifier. Since ScalL combines classifiers learned in different IL

states, initial classifiers are reshaped using aggregate statistics from the current and the initial states. The classifiers for newly

learned classes are left as learned by the current model M. Best viewed in color:

layers to integrate new classes. In Progressive Neural Net-
works [28], a new network is added for each new task and
lateral connections are used between all networks to share
the representation. PackNet [18] uses weight pruning
techniques to free up redundant network parameters. When
new classes arrive, the freed up parameters are attributed to
the new task. The number of parameters grows slowly but
only a limited number of new tasks can be added. These al-
gorithms are a good choice if the complexity of deep models
can grow across incremental states. However, they increase
the model memory footprint and slow down inference, es-
pecially for a large number of incremental states.

A second, less frequent group, is based on fixed repre-
sentations. Here, the feature extractor network does not
evolve across IL states. FearNet [11] is biologically in-
spired by the functioning of human brain. The incremental
learning process is implemented with three networks which
model short and long term memory and a decision network
to choose the activated network. The main drawback of
FearNet is that memory grows in a nearly linear fash-
ion across IL states because detailed statistics about past
classes are needed. DeeSTL [3] is an adaptation of trans-
fer learning to a class IL context [13, 15]. It learns a fixed
representation on the first state and deploys a set of SVMs
to increment recognition capacity afterwards. The reported
top-5 accuracy on ILSVRC [27] with a bounded memory
B = 20000 exemplars is 74.7%. A fixed representation is
tested in [25] but its past classes are unnecessarily relearned
only with exemplars in each IL states and results are subop-
timal. The main advantage of fixed representations is that
all positive examples can be used for all classes since the

deep model does not evolve across incremental states. How-
ever, performance depends heavily on the quality of the ini-
tial representation. If the representation is learned on small
dataset or if the new classes are significantly different from
the initial ones, the generalization capacity is low.

A third influential group of algorithms updates deep
models across incremental states using an adapted fine tun-
ing procedure. These algorithms are inspired by Learning-
without-Forgetting (LwF') [16], which introduces a distil-
lation loss term to handle catastrophic forgetting in absence
of a memory of past classes. This term encourages the net-
work to reproduce the same outputs for past classes in the
current state as in past ones. We discuss some representa-
tive adaptations of distillation to IL hereafter. iCaRL [26]
implements LwF' using binary cross-entropy loss, which
operates independently on class outputs. The use of this
loss is not clearly justified but it is assumed to cope with
class imbalance [17]. Also, the authors modify the distil-
lation term to use sigmoids instead of the standard soft-
ened softmax targets. iCaRL adds the following steps
for an efficient adaptation to an IL context: (1) exploit a
bounded memory for past classes, (2) select exemplars us-
ing a herding mechanism which approximates the real class
mean [31] and (3) replace the outputs of the deep mod-
els by a Nearest-Exemplars-Mean (NEM) external clas-
sifier, an adaptation of nearest-class-mean [20], to tackle
class imbalance. iCaRL top-5 accuracy reaches 62.5% on
ILSVRC [27] dataset with a memory of B = 20000 ex-
emplars. The authors also conclude that vanilla fine tuning
is not fitted for IL with bounded memory. However, their
main experiment tests ¢C'a RL with memory and vanilla fine

1267

tuning without memory and the comparison is not fair. In
an additional experiment, they compare the two methods
only on a small scale dataset and, while :CaRL remains
superior, the gap between the two methods is much smaller.
End-to-end incremental learning [5] uses a distillation com-
ponent which is closer to the original definition from [9].
The authors exploit standard cross-entropy loss and their
basic distilled network has performance similar to that of
1CaRL. A balanced fine tuning step is added to tackle
data imbalance and data augmentation is also used. As a
result, the method gains 7 points over {CaRL on ILSVRC
with B = 20000. In [10], the authors show that the use of
higher temperature to soften distillation helps to some ex-
tent. Very recently, the authors of [34] introduced a multi-
model and multi-level distillation for IL. The method incor-
porates knowledge from all previous incremental states and
not only from the latest one. A performance improvement
of 3 to 5 points over i{CaRL is reported. Generative Adver-
sarial Networks were also considered as a mean to generate
image exemplars for past classes instead of storing them di-
rectly [7]. While the approach is appealing, the quality of
generated images is still insufficient. A combination of gen-
erated and real images was necessary to slightly enhance
performance over iCaRL. BiC [32] is a very recent ap-
proach that handles catastrophic forgetting by adding a lin-
ear model after the last fully connected layer to correct the
bias towards new classes. We add BiC' to the results table
for SotA completeness. Approaches from this group tend to
cope well with the integration of new data but retraining the
network at each incremental step is costly.

3. Proposed Method
3.1. Class IL Problem Formalization

We focus on IL with constant model complexity, Z in-
cremental states and a bounded memory B of past classes.
The proposed formalization is adapted from [5, 7, 26]. We
note: S* - the incremental state, Ny, - the number of classes
in S, XNk _ the training dataset in S*, MF¥ - the deep
model and CV* - the classifier weights layer. The initial
state S” includes a dataset XV = { X1, X2, ..., X"} with
Ny = P, classes. X7 = {x{,x%,...,m%j} is the set of
n; training examples for the 4" class. An initial model
MO o xNo 5 CNo ig trained to recognize Ny classes
using all data from X0, P, new classes need to be in-
tegrated in each incremental state S*, with k > 0. Each
IL step updates the previous model M*~! into the current
model M* which recognizes Ny, = Py + P, + ... + P
classes in incremental state S*. All data of the Pj new
classes are available but only a bounded exemplar memory
B of the Nj_1 past classes is allowed. If memory alloca-

tion is balanced, each past class is represented by Nf,l ex-

emplars. We note M* : XN — CNr the model which

transforms the X' Vk (Jl\f;ltaset ilr\lfto a set of raw classifiers
CNe = {C},C2,...,oNF -t oNe L CNeY The clas-
sifier weights learned in state S k for the j th class are written
CY = {w' (CY),w*(CY), ...,wP(C})}, where D is the size
of the features extracted from the penultimate layer of MF.

3.2. Classifier Weights Scaling

Incremental learning algorithms strive to approach the
performance of full learning, in which the entire training set
is available for all classes at all times. When a bounded set
of past exemplars is stored, a prediction bias toward new
classes appears due to the data imbalance in their favor.
This bias is illustrated in Figure 2(a) with the difference be-
tween mean raw predictions for past and new classes after
incrementally fine tuning the ILSV RC dataset [27] with
B = 5000 past exemplars. The average score difference
in favor of new classes over all incremental states is 6.45
points. The prediction gap is due to the stronger activa-
tions of classifier weights for new classes compared to past
classes, as illustrated by the blue and red curves from Fig-
ure 2(b). It is thus tempting to try to reshape the classifica-
tion layers of past and new classes in order to make them
more comparable. A simple way to do this is to add a nor-
malization layer to the current deep model and we provide
results with such a baseline (F'T%2) in Section 4.

Scal L attempts to approximate full learning by exploit-
ing past classifiers as learned in their initial state, with all
images available. Since the deep models evolve during the
incremental process, a transformation of the initial classi-
fiers is needed for them to be usable in the current incre-
mental state. The method is illustrated in Figure 1.

The main differences with existing IL algorithms which
exploit a bounded memory are: (1) the introduction of a
second memory Z to store initial past class classifiers and
(2) the ablation of the distillation loss. Note that the size of
7 is orders of magnitude smaller than that of 5 since it only
stores hundreds of floating point values per class instead of
exemplar images. The immediate advantage of the method
is that initial classifiers of past data are learned with all
data. Initial classifiers learned with all images are stronger
than the past classifiers learned only with exemplars in the
current state. This is clearly visible in Figure 2(b) from
the comparison of past classifiers weights as learned in the
current state (red) and the weights of the same classifiers
learned in states S and S (black and green). We also note
the activations of new classes become weaker as the incre-
mental learning process advances. The new classes from
state SO (black) are the strongest, followed by new classes
from S! (green) and those from S? (blue).

The main challenge associated to ScalL is to combine
classifiers originating from deep models learned in differ-
ent IL states. The reuse of initial classifiers in later incre-
mental states is made possible by fine tuning process with a

1268

25
B=5000
20
o - - n . u - -
3) .
< 151 ¢ .
.
s ¢ R ¢ !
10
[¢ Past classes] [= New classes
5

1 2 3 4 5 6 7 8 9
Incremental state
@)

N
0

SO — jnit
Sl —init

— S2—new

—— S2—past

N
o

=
u

L
o

o
0

Mean weights activation

o
o

0 100 200 300 400 500
Ranked dimension

(b)

Figure 2: (a) - Raw prediction scores (before softmax) of vanilla fine tuning for the ILSVRC dataset with B = 5000 past
exemplars and a total of Z = 10 states. Incremental states from 1 to 9 are represented. The initial state S° is non-incremental
and is not shown. (b) - Ranked mean weight activations of new and past classes in state S? (blue and red) and mean weight
activations of S2 past classes as initially learned in S° (black) and S* (green). Best viewed in color.

memory of the past. This process results in a partial preser-
vation of the feature space even if the deep model evolves.
In the supplementary material, we show that classifier reuse
across states is impossible in absence of memory during IL
model updates. ScalL reshapes initial classifiers from Z in
order to make them comparable to those of newly learned
classes in the feature space defined by the current state’s
deep model. The scaling is based on weights statistics com-
puted for initial models in each incremental state (Equa-
tion 1). Before computing the means in the equation, the
weights of each initial classifier are ranked by their abso-
lute value. The use of absolute values is necessary since
classifier weights activations can be positive or negative.

P.
1 . J
rank __ rank J
ey =5 X g |w (&3] (1)

K3 le

ug'“"k is the mean of the weights ranked rank, with 1 <
rank < D, for the P; classes initially learned in each past
state S, with 0 < i < k. Figure 2(b) shows that classifiers
of each past state have different statistical distributions. To
make class predictions from different states comparable, it
is necessary to compute 7" separately for each state. If
k = i, we compute uza"k, the mean of classifier weights
for new classes from the current state S*, which is also their
initial state. Note that each mean is computed using weights
situated at the same rank for each classifier. For instance,
pi and pf will aggregate respectively the maximum and
minimum weights of newly learned classes in S¥.

Scal L transforms the past classifier weights as learned
in their initial state using Equation 2. w’ (C?,) is the scaled
version of w"(CY), the h*" dimension of the initial clas-
sifier Cf of the j** past class. These weights are scaled
using the ratio between the mean activation of new classes
and that of past classes in their initial state. In Equation 2,
each weight w” is scaled using the mean activations of
its corresponding rank, returned by function (), in the

current and initial states S* and S°. For instance, if the
first weight (h = 1) of the classifier C/ is ranked 9", it
will be scaled using the mean activations to the ninth di-
mension of the mean ranked activations yj and) respec-
tively. This is done in order to preserve the relative im-
portance of each classifier weight. Figure 2(b) shows that
prank > prenk for a given rank rank. Consequently,
ScalL scaling reduces the weights of the j*" class learned
in its initial state to make it more comparable to classifiers
of new classes from the current state. The scaled classi-
fier for each past class of the current state S* is written
as . = {w;.(CL), wi.(CL,), .., wl(CY,)}. The ScalL
classification layer for S¥ combines scaled classifiers for
past classes and original classifiers for new classes. It can
be written as CNk = {C1,, ..., CoF-t O oy,

The features learned in S* are fed into this scaled classifi-
cation layer instead of the original one provided by M?*.

h (i Mz(h)
wsc(cgc))
1

i

x wh(CY))

Note that only scores of the top-10 past classes are scaled
as they code more information, the scores of the remaining
past classes are set to zero. The choice of this value is ex-
perimental.

We illustrate the effect of Scal L on the prediction scores
in Figure 3. Past classes have a slightly larger mean classifi-
cation score in the first states and a lower one in subsequent
states. While not completely aligned, the predictions of past
and new classes in ScalL are much more balanced com-
pared to those of raw fine tuning results from Figure 2(a).

4. Experiments
4.1. Datasets

Experiments are done with four public datasets. This
evaluation is more comprehensive than the usual one pro-

1269

25

B=5000
20 =
o) . ’) . " "
§ . ¢ ¢) -
15
g .
()
=
10
¢ Past classes} [= New classes
5

1 2 3 4 5 6 7 8 9
Incremental state

Figure 3: Prediction scores after scaling for the ILSVRC
dataset [27] with B = 5000 exemplars and Z = 10 states.

posed in [5, 26], which includes two datasets only. We use:

e ILSVRC [27]: a subset of ImageNet [6] designed for
object recognition and used in the popular ImageNet
LSVRC challenges. For comparability, we retain the
same configuration (order of classes and train/test splits)
as [26]. This version of ILSVRC contains 1000 classes,
with 1,23 million training and 50,000 test images.

o VGGFace2 [4]: face recognition dataset including over
9000 identities in its full version. Due to the heavy com-
putation associated to IL, we select the 1000 identities
with the largest number of training images. The result-
ing dataset has 491,746 training and 50,000 test images.
Face detection was done using MTCNN [33] which was
applied to each image prior to training and test phases.

e Google Landmarks [21] (Landmarks below): landmark
recognition dataset whose full version includes over
30000 classes. We select the top 1000 classes and ex-
periment with 374,367 training and 20,000 test images.

e CIFAR-100 [14]: object recognition dataset including
100 classes, with 500 training and 100 test images each.

4.2. Methodology and Baselines

The experimental setup used here is inspired from [5,
26]. The size of bounded memory B and the number of
incremental states Z are the two most important parameters
in IL with memory. We use three different values for each
of them while fixing the value of the other parameter.

Memory Management. 5 size is varied to eval-
vate the robustness of the tested methods with mem-
ory availability. We fix the number of states Z =
10 and run experiments with a memory which amounts
to approximately 2%, 1%, 0.5% of the full training sets.
Memory sizes are thus B = {20000, 10000,5000} for
ILSVRC, B = {10000,5000,2500} for VGGFace2,
B = {8000,4000,2000} for Landmarks and B =

{1000, 500, 250} for CIFAR-100. Whenever a new in-
cremental state is added, memory is updated by inserting
exemplars of new classes and reducing exemplars of past
classes in order to fit the maximum size.

Incremental States. The number of incremental states
is the second key component of IL with memory and we
evaluate its variation. We fix the memory to B = 0.5% and
test with Z = {20, 50} in addition to Z = 10. The lowest
memory size was selected since it is the most interesting
configuration when memory budget is smallest.

Exemplar selection. A herding mechanism [31],
called Nearest-Exemplars-Mean (NEM) was introduced in
iCaRL for exemplar selection [26]. BiC' uses the same
herding mechanism. For this, we provide results for ScalL
with and without herding. ScalL"*"? is directly compara-
ble with iCaRL and BiC.

Evaluation measures. To facilitate comparability, each
configuration is evaluated with the widely used top-5 accu-
racy [27]. Each algorithm is tested in a large number of
configurations and it is important to propose a summarized
performance score. Inspired by works such as [25, 29], we
introduce a global score computed with Equation 3. G,
measures the performance gap between each algorithm and
an upper bound method. This upper-bound is represented
by F'ull a non-incremental learning with all data available.

1 L acc acc
t Full
GiL = = X E 3)
T — aCCMax — ACCFull

where: T' - number of tested configurations; acc; - top-
5 score for each configuration (individual values of each
row of Table 1); accgy; - the upper-bound accuracy of the
dataset (F'ull in Table 1); accpsqz - the maximum theoreti-
cal value obtainable for the measure (accpsq = 100 here).

G estimates the average behavior of each algorithm
with respect to the upper bound. The denominator is in-
troduced to avoid a disproportionate influence of individual
datasets in the aggregate score. (G, is necessarily a nega-
tive number and the closer its value to zero, the better the
method is. An ideal method, which reaches the upper bound
value in all configurations, gives Gy = 0. More details
about Gy, are discussed in the supplementary material.

Baselines. Experiments have been conducted with
strong baselines which are either inspired from existing IL
literature or introduced here because relevant to Scal L:

e iCaRL [26] - method using fine tuning with classifica-
tion and distillation losses to prevent catastrophic forget-
ting and NEM classification to counter data imbalance.

e BiC' [32] - introduces a bias correction layer to address
the imbalance responsible for catastrophic forgetting.

e DeeSIL [3] - fixed representation IL method which
freezes the network after the initial non-incremental state

1270

and trains an SVM per class. While similar to the fixed
representation from [26], an important difference con-
cerns the fact that in [26] past classifiers are retrained
only with exemplars in each IL state. Instead, as allowed
by the frozen network, SVMs are trained in the initial
state of each class and then reused.

e F'T - vanilla fine tuning. Unlike existing IL algorithms
which use distillation [5, 7, 10, 12, 22, 34], only classi-
fication loss is used. States are initialized with weights
from previous model and all the network layers are al-
lowed to evolve. Exemplars are selected randomly. F'T'is
the backbone for all subsequent baselines and for Scal L.

o FTNEM _ version of F'T in which the classification is
done using exemplars instead of the outputs of the deep
model. FTVEM jg equivalent to a version of iCaRL in
which the distillation loss component is ablated.

e FTBAL _ FT followed by a balanced fine tuning pro-
posed by [5] to reduce the effect of imbalance. FTBAL
is equivalent to a version of end-to-end IL [5] in which
the distillation loss component is ablated.

e FT*2 - adds an L2-normalization layer to the raw clas-
sifier weights CV* given by model M* to reduce bias in
favor of new classes in current state S*.

e F'T;,;+ - the initial classifiers Cf of each past class re-
place the classifiers learned only with the past classes ex-
emplars in S*. No transformation is applied to C7. This
is an ablation of the mean-related statistics from Scal L.

o I Til;ﬁt - version of F'Tj,,;; in which all classifiers are L2-

normalized to make them more comparable.

Implementation. ResNet-18 is used as backbone ar-
chitecture for all methods. For :«CaRL and BiC, we use
the public TensorFlow [1] implementations provided by au-
thors with their hyperparameters. F'T" and its variants are
implemented in PyTorch [23]. The choice of hyperparam-
eters is largely inspired by the original paper of ResNet-
18 [8] and by end-to-end incremental learning [5]. To dis-
card a potential influence of the deep learning framework,
we trained F'T for one ILSVRC configuration with Z = 10
and B = 0.5% using Tensorflow. The obtained performance
is similar to that reported with Pytorch. DeeSIL SVMs
are implemented using scikit-learn [24] and their parame-
ters are optimized on the training data since it is hard to
hold out validation data in IL. More implementation details
are provided in the supplementary material.

4.3. Discussion of results

Confirming the conclusions of [26], iCaRL has the
best overall performance for CIFAR-100 in Table 1. For
the three larger datasets, the F'T consistently outperforms
1CaRL. Overall, F'T more than halves the gap with F'ull

compared to iCaRL (G = —6.40 vs. Gy = —16.75).
The comparison to end-to-end IL [5], which achieves 69.4%
top-5 accuracy for ILSVRC with B = 2% is equally favor-
able to F'T!. Since one important difference between F'T
and existing IL methods is the use of distillation, we analyze
its role separately in Subsection 4.4.

The F'T-based methods all have a positive contribution.
FTNEM and FTBAL which are inspired by iCaRL [26]
and end-to-end IL [S] improve over F'T by less than 0.5
G, points. FT?, the L2-normalized version of the clas-
sifiers from the current IL state, provides a gain of 1.23
G points compared to F'T. Somewhat surprisingly, the
direct concatenation of initial classifier weights from differ-
ent states in F'T;,;; also improves performance over F'T'
by over 1 point. However, its performance for individ-
ual configurations is much more contrasted than that of
FTL2 T, .. haslow results for the two object recognition
datasets, which are on average more difficult than face and
landmark recognition tasks. FT%2, adds L2-normalization
to F'T;,;: classifiers and ranks fourth among all methods
tested, with 1.73 Gy improvement over F'I'. The best
overall result is obtained with Scal L% which improves
FT performance by 2.69 points. The difference between
ScalL and FTE2, in terms of Gy, is not large but still in-
teresting. ScalL has the most stable behavior among all
those tested. In fact, its performance on the three large
datasets is most interesting for the smallest B values. This
is the most challenging case and also the most interesting
in practice since it requires a reduced memory for past data.
The increase of the number of incremental state results in a
drop of performance for all methods. With equal memory
B, the worst results are obtained for Z = 50 states, followed
by Z = 20 and Z = 10. This finding confirms the results
reported in [5] and [26]. It is probably an effect of a larger
number of incremental rehearsal steps which are applied for
larger Z. Again, ScalL is the method which is the least af-
fected by the change of the number of incremental states.

Contrarily to the conclusion of [5], the herding mecha-
nism in Scal L"*"¢ has positive effect compared to random
selection of exemplars in ScalL. Results show that, while
BiC [32] is better for a lower number of incremental states
(Z = 10), ScalL has better behavior for a larger number
of states. Equally important, ScalL performance is less
affected by the reduction of the memory size and its perfor-
mance is globally better for B = 0.5%, this leads to a better
Gy score for ScalL. Finally, the need of BiC for a vali-
dation set to parametrize the bias correction layer makes it
nonfunctional if no memory of the past is available.

The performance gap between Full learning and IL is

INote that a complete set of results is not presented for end-to-end
IL [5]. This method was not fully tested because we were not able to repro-
duce the results presented by the authors since the original implementation
is based on Matlab, a non-free environment to which we don’t have access.

1271

States Z=10 B =0.5%
Dataset ILSVRC VGGFace2 Landmarks CIFAR-100 ILSVRC | VGGFace2 | Landmarks | CIFAR-100 || G,
B 2% | 1% |0.5% | 2% | 1% [0.5% | 2% | 1% [0.5% | 2% | 1% |0.5% || Z=20 Z=50|Z=20 Z=50|7Z=20 Z=50|Z=20 Z=50
iCaRL™%[62.5|61.4| 60.9 |83.9[81.4] 78.2 [82.5(80.5| 76.2 |85.1|83.7]83.2 || 56.2 429 |72.7 523|724 542732 55.7|-16.75
Bic"erd | 85.5(82.8| 79.7 |97.3/96.6| 95.7 |97.9/97.3| 96.6 |88.887.6| 83.5 || 74.6 63.9| 923 853|947 90.5|505 19.6 || -4.03
DeeSIL |74.5|74.3|74.2 192.6(92.5|92.2 {93.9]|93.6| 92.9 |66.5|65.2| 63.7 || 69.0 58.0 | 87.2 78.9 | 90.6 84.8 | 63.4 425 || -7.10
FT 77.0(70.1| 60.0 |96.094.1| 90.7 |95.893.2| 89.1 |80.0|73.7| 63.3 || 64.5 59.2|90.8 86.5|87.8 855|599 494 | -6.40
FTNEM 1794174.5| 69.6 [95.7]94.1| 91.0 |95.2]92.7| 88.8 |82.4|77.4| 68.4 || 72.7 634 |91.8 87.8|88.1 86.0| 645 51.0 | -6.01
FTBAL 181.3]78.0| 72.3 [96.4|95.0| 92.2 |96.3|94.3| 90.0 |73.0(65.0| 56.1 || 70.5 61.1 | 91.7 86.5 | 87.8 85.3 | 57.1 50.0 || -5.98
FT®? 81.4(77.6| 72.1 |96.5|95.1| 92.4 |196.2|94.4| 91.4 |81.8|77.2| 69.1 || 73.4 66.7 | 92.8 88.8 | 89.8 87.1 | 63.2 499 || -5.17
FTinie |68.9]66.5] 61.2 195.9(95.3|94.5(96.5(95.0|92.7 |79.3|77.3|73.7 || 53.4 39.0|951 90.3|90.6 87.5]|60.7 40.1 || -5.23
FTE2, |78.4|75.7| 73.3 195.9]95.3| 94.5(96.5[95.0| 92.7 |83.0(79.2| 72.7 || 72.0 66.0 | 95.1 902 | 90.7 87.6 | 64.3 425 || -4.67
ScalL |81.0(78.2| 75.1 {96.4|95.6| 94.5 |196.9|95.3|92.7 |84.6|81.1| 749 || 73.9 683 | 94.5 90.5|90.7 88.2| 679 477 || -441
ScalL"™ |82.0]79.8| 76.6 |96.5|95.8| 95.2 |97.3/96.0| 94.0 |85.6|83.2| 79.1 || 76.6 70.9 | 950 92.4 | 92.6 904 | 69.8 51.0 || -3.71
Full 92.3 99.2 99.1 91.2 92.3 99.2 99.1 91.2 -

Table 1: Top-5 average accuracy (%). Following [5], accuracy is averaged only for incremental states (i.e. excluding the
initial, non-incremental state). The sizes of past memory B and number of IL states are varied to evaluate the robustness
of algorithms. F'ull is the non-incremental upper-bound performance obtained with all data available. The methods whose
names include herd exploit herding while the others are based on random exemplar selection. Best results are in bold.

naturally higher for more complex tasks, such as object
recognition, compared to face and landmark recognition.
For the last two tasks, classes have a more coherent visual
representation and fewer examples are needed for a com-
prehensive representation of them. In the simplest configu-
rations reported here (Z = 10, B = 2%), the best IL algo-
rithms are less than three points behind F'ull for faces and
landmarks. For such specialized tasks, incremental learn-
ing seems thus applicable in practice without a very signif-
icant performance loss. The situation is different for more
complex tasks, such as object recognition, where significant
progress is needed before IL algorithms approach the per-
formance of classical learning.

An additional result concerns DeeSIL, the fixed repre-
sentation method. Here, it is globally better than :CaRL, a
finding which is at odds with the results originally reported
in [26]. The difference is explained by the use of all data for
each class, while past class training was unnecessarily re-
stricted to B exemplars in [26]. F'T outperforms DeeSIL
by less than 1 Gy, point. For Z = 10, DeeSIL has very
low dependence on the bounded memory size and could be
also used in absence of past exemplars memory. Naturally,
its performance drops for larger Z values because the initial
model is learned with fewer classes but remains interesting.

4.4. Effect of distillation in IL

The use of knowledge distillation in incremental learning
with bounded memory was pioneered in iCaRL [26], which
extends the work on IL without memory from [8]. Distilla-
tion was largely adopted afterwards [5, 7, 10, 12, 22, 34] as
a way to reduce the effect of catastrophic forgetting. This
adoption was based on one experiment presented in [26]
which compared the performance of iCaRL and fine tuning
only on the CIFAR-100 dataset and with a single memory
size. In Table 1, we report a similar finding for this dataset.

For CIFAR-100, F'T' is probably less effective because it
uses hard targets for loss minimization. These targets en-
code very sparse information for the small dataset available.
In contrast, distillation exploits soft targets which encode
more information [9] and is thus more fitted to work with
small datasets. The results for Z = 10 states with different
values of B support the above observation since the differ-
ence in favor of iC'a RL grows as B is reduced.

However, distillation hurts performance for all configu-
rations tested for the three larger datasets, where F'T" has
consequently better performance than :CaRL. The use of
network outputs as soft targets for distillation was noted to
produce a classification bias for past classes both in the orig-
inal knowledge distillation paper [9] and in an incremental
context [10]. A common assumption of distillation-based
IL algorithms, first made in [8], is that the process starts
with a powerful pretrained model which is trained on a large
and balanced dataset. Under this condition, the soft targets
used by the distillation loss are efficient to transfer knowl-
edge to the next incremental state. Our hypothesis is that
distillation tends to reinforce the errors due to data imbal-
ance in the previous incremental state. In practice, if the
distillation component is fed with soft targets whose pre-
dictions are wrong, it will push the classifier toward wrong
classes. To verify this hypothesis, we present an analysis of
correct and erroneous predictions for past and new classes
in Table 2 for vanilla fine tuning (¥'7") and fine tuning with
distillation used as backbone in iCaRL (FT%st!) Re-
sults are shown only for ILSVRC with Z = 10 states and
B = 5000 exemplars but trends are similar for other config-
urations. The bias toward new classes, expressed by e(p,n)
errors is similar with and without distillation. The correct
predictions for new classes are also in a comparable range,
although lower for FT%s%!!_ This indicates that the data
imbalance toward new classes has rather comparable effect

1272

| | Incremental states

| e s s s & 5 s S
c(p) |2117 2995 3415 3875 3653 4451 4558 5003 3119

e(p,p) | 156 450 807 1363 1842 2710 2626 3932 2388

e(p,n) | 2727 6555 10778 14762 19505 22839 27816 31065 39493
c(n) |4151 4322 4103 4141 4267 4304 4247 4378 4248

e(n,n)| 809 638 875 828 716 674 743 595 741
e(n,p)| 40 40 22 31 17 22 10 27 11

c(p) | 850 1008 1355 1355 1195 1344 1419 1543 1562
e(p,p) | 472 1746 3700 4999 6904 8246 10771 13400 14556
e(p,n) | 3678 7246 9945 13646 16901 20410 22810 25057 28882

FT

i c(n) |3645 3834 3597 3607 3744 3754 3605 3766 3662
R e(n,n)|1043 793 928 905 785 776 828 692 751
e(n,p)| 312 373 475 488 471 470 567 542 587

Table 2: Top-1 ILSVRC correct and wrong classifications
for vanilla fine tuning (F'T’), fine tuning with distillation
(7%t with Z = 10 and B = 5000. p and n stand
for past and new classes. ¢ and e indicate correct and er-
roneous classifications. e(p,p) is to be read as past class
examples wrongly predicted as other past classes. e(p,n) is
to be read as past class examples wrongly predicted as new
classes. Note that top-1 performance is used because the
proposed analysis is impossible for top-5 accuracy.

regardless of the use of distillation. The performance dif-
ference between the two methods is due mainly to confu-
sions between past classes expressed by e(p, p). They are
roughly three times more frequent for FT%s!! compared
to F'T' in Table 2. Equally important, while distillation is
supposed to preserve accuracy for past classes, it clearly
does not since the amount of correctly recognized past ex-
amples grows very steadily in F'T4st

51. Color codes for past states

s HERR .
£ 5> I
©

8

% s -
es° il

o

2571

s8]

s} S —

0 2000 4000 6000 8000 10000 12000 14000
Number of e(p, p) errors for past states

Figure 4: Detail of past-past errors e(p,p) for individual
states of T4t on ILSVRC with Z = 10 and B = 5000.
We note that, in each state, a majority of errors are due to
the latest past state as a result of learning its associated state
with an imbalanced training set. Best viewed in color.

In Figure 4, we present the distribution of e(p, p) errors
among individual past states for F T4t Since test data is
balanced among states, the distribution of errors should also
be approximately so. Instead, Figure 4 shows that a major-
ity of past test data for state S are predicted as belonging
to classes which were new when first learned in S¥~1. This

result confirms that class imbalance has an important role
for the distillation component of the loss, similarly to its
influence on the classification component. It is also notice-
able that, except for S°, the number of error grows for more
recent past states. Along with imbalance, the number of re-
hearsals after the initial learning of the class also plays an
important role in terms of distillation-related errors.

Our findings indicate that vanilla fine tuning is preferable
to distillation-based fine tuning as backbone for large scale
IL with memory. Further distillation related experiments
are presented in the supplementary material.

5. Conclusion

We introduced ScalL, a simple but effective IL algo-
rithm which combines classifiers learned in different IL
states to reduce catastrophic forgetting. It keeps the number
of parameters of the network constant across IL states and
requires a second memory whose size is negligible com-
pared to that of the exemplars memory. The method is com-
pared to strong state-of-the-art methods, with their improve-
ments based on distillation ablation and with new baselines
which exploit initial classifiers. ScalL provides perfor-
mance improvement over published results and is also better
than the new baselines. Our method is also the most stable
over the different memory and IL states values tested.

A consequent part of the performance improvement is
due to the ablation of the distillation in IL algorithms. While
widely used, we find that distillation is only useful for small
scale datasets. Our analysis indicates that a performance
drop appears for large scale datasets with memory when dis-
tillation is used. The drop is notably due to the inherently
imbalanced character of datasets available in IL.

Comprehensive experiments were run on four public
visual datasets with three memory sizes and three num-
bers of incremental states. We introduced an aggregated
score to get an overview of performance in the differ-
ent configurations tested. This experimental protocol can
be reused to validate future works. To facilitate repro-
ducibility, the code and dataset details are publicly avail-
able at: https://github.com/EdenBelouadah/
class—-incremental-learning.

The presented results reduce the performance gap be-
tween IL algorithms and non-incremental learning but the
difference is still important, particularly for harder tasks.
Class IL with bounded memory remains an open problem
and new research is needed to make it usable in practice
without significant performance loss. Future work will aim
to: (1) improve vanilla F'T" while keeping model complexity
and memory budget bounded, (2) explore new ways to han-
dle data imbalance and (3) tackle real life situations where
streamed data are partially or completely unlabeled.

1273

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
(10]

[11]

[12]

[13]
[14]

[15]

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zhang. Tensorflow: A system for large-scale machine
learning. CoRR, abs/1605.08695, 2016.

R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate:
Lifelong learning with a network of experts. In Conference
on Computer Vision and Pattern Recognition, CVPR, 2017.
E. Belouadah and A. Popescu. Deesil: Deep-shallow incre-
mental learning. In Computer Vision - ECCV 2018 Work-
shops - Munich, Germany, September 8-14, 2018, Proceed-
ings, Part I, pages 151-157, 2018.

Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman.
Vggtace2: A dataset for recognising faces across pose and
age. In I3th IEEE International Conference on Automatic
Face & Gesture Recognition, FG 2018, Xi’an, China, May
15-19, 2018, pages 67-74, 2018.

F. M. Castro, M. J. Marin-Jiménez, N. Guil, C. Schmid,
and K. Alahari. End-to-end incremental learning. In Com-
puter Vision - ECCV 2018 - 15th European Conference, Mu-
nich, Germany, September 8-14, 2018, Proceedings, Part
XII, pages 241-257, 2018.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li. Im-
agenet: A large-scale hierarchical image database. In 2009
IEEE Computer Society Conference on Computer Vision and
Fattern Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, pages 248-255, 2009.

C. He, R. Wang, S. Shan, and X. Chen. Exemplar-supported
generative reproduction for class incremental learning. In
British Machine Vision Conference 2018, BMVC 2018,
Northumbria University, Newcastle, UK, September 3-6,
2018, page 98, 2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Conference on Computer Vision
and Pattern Recognition, CVPR, 2016.

G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowl-
edge in a neural network. CoRR, abs/1503.02531, 2015.

K. Javed and F. Shafait. Revisiting distillation and incremen-
tal classifier learning. CoRR, abs/1807.02802, 2018.

R. Kemker and C. Kanan. Fearnet: Brain-inspired model
for incremental learning. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceed-
ings, 2018.

D. Kim, J. Bae, Y. Jo, and J. Choi. Incremental learning with
maximum entropy regularization: Rethinking forgetting and
intransigence. CoRR, abs/1902.00829, 2019.

S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet
models transfer better? CoRR, abs/1805.08974, 2018.

A. Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.
I. Kuzborskij, F. Orabona, and B. Caputo. From N to N+1:
multiclass transfer incremental learning. In 2013 IEEE Con-
ference on Computer Vision and Pattern Recognition, Port-
land, OR, USA, June 23-28, 2013, pages 3358-3365, 2013.

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

1274

Z. Li and D. Hoiem. Learning without forgetting. IEEE
Trans. Pattern Anal. Mach. Intell., 40(12):2935-2947, 2018.
T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Doll4r. Fo-
cal loss for dense object detection. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017, pages 2999-3007, 2017.

A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks
to a single network by iterative pruning. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages
7765-7773, 2018.

M. Mccloskey and N. J. Cohen. Catastrophic interference
in connectionist networks: The sequential learning problem.
The Psychology of Learning and Motivation, 24:104-169,
1989.

T. Mensink, J. J. Verbeek, F. Perronnin, and G. Csurka.
Distance-based image classification: Generalizing to new
classes at near-zero cost. IEEE Trans. Pattern Anal. Mach.
Intell., 35(11):2624-2637, 2013.

H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han. Large-
scale image retrieval with attentive deep local features. In
ICCV, pages 3476-3485. IEEE Computer Society, 2017.

G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter.
Continual lifelong learning with neural networks: A review.
CoRR, abs/1802.07569, 2018.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Au-
tomatic differentiation in pytorch. In Advances in Neural
Information Processing Systems Workshops, NIPS-W, 2017.
E. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. VanderPlas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in python. CoRR, abs/1201.0490, 2012.

S. Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple vi-
sual domains with residual adapters. In Advances in Neural
Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pages 506-516, 2017.

S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl:
Incremental classifier and representation learning. In Confer-
ence on Computer Vision and Pattern Recognition, CVPR,
2017.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,
A. C. Berg, and F. Li. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision,
115(3):211-252, 2015.

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer,
J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell.
Progressive neural networks. CoRR, abs/1606.04671, 2016.
Y. Tamaazousti, H. Le Borgne, C. Hudelot, M. E. A. Seddik,
and M. Tamaazousti. Learning more universal representa-
tions for transfer-learning. arXiv:1712.09708, 2017.

Y. Wang, D. Ramanan, and M. Hebert. Growing a brain:
Fine-tuning by increasing model capacity. In Conference on
Computer Vision and Pattern Recognition, CVPR, 2017.

(31]

(32]

(33]

[34]

M. Welling. Herding dynamical weights to learn. In Pro-
ceedings of the 26th Annual International Conference on
Machine Learning, ICML 2009, Montreal, Quebec, Canada,
June 14-18, 2009, pages 1121-1128, 2009.

Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and
Y. Fu. Large scale incremental learning. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pages 374—
382, 2019.

K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detec-
tion and alignment using multitask cascaded convolutional
networks. [EEE Signal Process. Lett., 23(10):1499-1503,
2016.

P. Zhou, L. Mai, J. Zhang, N. Xu, Z. Wu, and L. S. Davis.
M2KD: multi-model and multi-level knowledge distillation
for incremental learning. CoRR, abs/1904.01769, 2019.

1275

