
ScaIL: Classifier Weights Scaling for Class Incremental Learning

Eden Belouadah, Adrian Popescu

Université Paris-Saclay, CEA, Département Intelligence Ambiante et Systèmes Interactifs,

91191 Gif-sur-Yvette, France

eden.belouadah,adrian.popescu@cea.fr

Abstract

Incremental learning is useful if an AI agent needs to in-

tegrate data from a stream. The problem is non trivial if

the agent runs on a limited computational budget and has a

bounded memory of past data. In a deep learning approach,

the constant computational budget requires the use of a

fixed architecture for all incremental states. The bounded

memory generates imbalance in favor of new classes and

a prediction bias toward them appears. This bias is com-

monly countered by introducing a data balancing step in

addition to the basic network training. We depart from this

approach and propose simple but efficient scaling of past

classifiers’ weights to make them more comparable to those

of new classes. Scaling exploits incremental state statistics

and is applied to the classifiers learned in the initial state of

classes to profit from all their available data. We also ques-

tion the utility of the widely used distillation loss compo-

nent of incremental learning algorithms by comparing it to

vanilla fine tuning in presence of a bounded memory. Eval-

uation is done against competitive baselines using four pub-

lic datasets. Results show that the classifier weights scaling

and the removal of the distillation are both beneficial.

1. Introduction

Artificial agents are often deployed in dynamic environ-

ments in which information often arrives in streams [22].

For instance, this is the case of a robot which operates in

an evolving environment or of a face recognition app which

needs to deal with new identities. In such settings, an in-

cremental learning (IL) algorithm is needed to increase the

recognition capacity when integrating new data. There was

recently a strong regain of interest for IL with the adapta-

tion of deep learning methods [2, 5, 26, 28]. Incremental

learning is non-trivial if the artificial agents have limited

computational and memory budgets. If the memory of past

classes is bounded or unavailable, the system underfits past

data when new information is integrated and catastrophic

forgetting [19] occurs. Since a joint optimization of compu-

tational and memory requirements is hard, if not impossible,

existing IL algorithms focus on one of these two aspects. In

a first scenario [2, 18, 28, 30], the number of deep model

parameters is allowed to grow and no memory is used. In

a second scenario [5, 7, 10, 26, 34], the deep architecture

is fixed and a memory is introduced for past class exem-

plars to alleviate the effect of catastrophic forgetting. These

algorithms update deep models by adapting the fine tuning

procedure to include classification and distillation losses.

We focus on this second scenario and introduce ScaIL,

a method which reduces the bias in favor of new classes by

exploiting the classifier weights of past classes as learned

in their initial state with all class data available. Since past

class classifiers are learned in different previous IL states,

they are reshaped to be usable in the current state. Their

scaling uses aggregate statistics from the current and initial

states. ScaIL is illustrated in Figure 1 with a toy example

which includes an initial and two incremental states. In ad-

dition to the bounded exemplar memory B, ScaIL requires

the use of a compact memory I which stores the classifier

weights from the initial states of past classes. A second con-

tribution, of practical importance, is to simplify the deep

model update across incremental states. The widely used

distillation loss term [5, 7, 10, 26, 34] is ablated here and

model updates are done with vanilla fine tuning.

Evaluation is done with four public datasets and three

values for the number of incremental states Z and the ex-

emplar memory B, the two key components of class IL algo-

rithms. ScaIL is compared to strong baselines from litera-

ture and to new ones proposed here and the obtained results

indicate that it has the best overall performance.

2. Related Works

Incremental learning is an open research topic which re-

cently witnessed a regain of interest with the use of deep

learning algorithms. We discuss three groups of methods

which focus on different parts of IL. Due to limited space,

only a representative subset of methods is described.

A first group increases the number of parameters of

deep architectures to accommodate new classes. Growing

a Brain [30] increases the depth and/or the width of the

1266

time

...

Figure 1: Illustration of ScaIL. States are noted Sk, image data Xj , deep models Mk and classifier weights C
j
i and Cj

sc,

where: j is the class label, i is the initial state in which the classifier was learned with all data and sc means that the classifier

was scaled using ScaIL. We represent three states S0, S1 and S2 which recognize 2, 4 and 6 classes respectively. The

bounded memory (light blue), is fixed at B = 4 past classes exemplars. As the training advances, the data imbalance between

past and new classes grows due to bounded B and the prediction bias in favor of new classes becomes more prominent.

ScaIL reduces this bias by making classifier weights of past and new classes more comparable by using a small memory

I which stores initial classifiers C
j
i . In each IL state, ScaIL replaces the raw classifiers of past classes provided by the

model Mk by Cj
sc, a scaled version of C

j
i , the initial classifier. Since ScaIL combines classifiers learned in different IL

states, initial classifiers are reshaped using aggregate statistics from the current and the initial states. The classifiers for newly

learned classes are left as learned by the current model Mk. Best viewed in color.

layers to integrate new classes. In Progressive Neural Net-

works [28], a new network is added for each new task and

lateral connections are used between all networks to share

the representation. PackNet [18] uses weight pruning

techniques to free up redundant network parameters. When

new classes arrive, the freed up parameters are attributed to

the new task. The number of parameters grows slowly but

only a limited number of new tasks can be added. These al-

gorithms are a good choice if the complexity of deep models

can grow across incremental states. However, they increase

the model memory footprint and slow down inference, es-

pecially for a large number of incremental states.

A second, less frequent group, is based on fixed repre-

sentations. Here, the feature extractor network does not

evolve across IL states. FearNet [11] is biologically in-

spired by the functioning of human brain. The incremental

learning process is implemented with three networks which

model short and long term memory and a decision network

to choose the activated network. The main drawback of

FearNet is that memory grows in a nearly linear fash-

ion across IL states because detailed statistics about past

classes are needed. DeeSIL [3] is an adaptation of trans-

fer learning to a class IL context [13, 15]. It learns a fixed

representation on the first state and deploys a set of SVMs

to increment recognition capacity afterwards. The reported

top-5 accuracy on ILSVRC [27] with a bounded memory

B = 20000 exemplars is 74.7%. A fixed representation is

tested in [25] but its past classes are unnecessarily relearned

only with exemplars in each IL states and results are subop-

timal. The main advantage of fixed representations is that

all positive examples can be used for all classes since the

deep model does not evolve across incremental states. How-

ever, performance depends heavily on the quality of the ini-

tial representation. If the representation is learned on small

dataset or if the new classes are significantly different from

the initial ones, the generalization capacity is low.

A third influential group of algorithms updates deep

models across incremental states using an adapted fine tun-

ing procedure. These algorithms are inspired by Learning-

without-Forgetting (LwF) [16], which introduces a distil-

lation loss term to handle catastrophic forgetting in absence

of a memory of past classes. This term encourages the net-

work to reproduce the same outputs for past classes in the

current state as in past ones. We discuss some representa-

tive adaptations of distillation to IL hereafter. iCaRL [26]

implements LwF using binary cross-entropy loss, which

operates independently on class outputs. The use of this

loss is not clearly justified but it is assumed to cope with

class imbalance [17]. Also, the authors modify the distil-

lation term to use sigmoids instead of the standard soft-

ened softmax targets. iCaRL adds the following steps

for an efficient adaptation to an IL context: (1) exploit a

bounded memory for past classes, (2) select exemplars us-

ing a herding mechanism which approximates the real class

mean [31] and (3) replace the outputs of the deep mod-

els by a Nearest-Exemplars-Mean (NEM) external clas-

sifier, an adaptation of nearest-class-mean [20], to tackle

class imbalance. iCaRL top-5 accuracy reaches 62.5% on

ILSVRC [27] dataset with a memory of B = 20000 ex-

emplars. The authors also conclude that vanilla fine tuning

is not fitted for IL with bounded memory. However, their

main experiment tests iCaRL with memory and vanilla fine

1267

tuning without memory and the comparison is not fair. In

an additional experiment, they compare the two methods

only on a small scale dataset and, while iCaRL remains

superior, the gap between the two methods is much smaller.

End-to-end incremental learning [5] uses a distillation com-

ponent which is closer to the original definition from [9].

The authors exploit standard cross-entropy loss and their

basic distilled network has performance similar to that of

iCaRL. A balanced fine tuning step is added to tackle

data imbalance and data augmentation is also used. As a

result, the method gains 7 points over iCaRL on ILSVRC

with B = 20000. In [10], the authors show that the use of

higher temperature to soften distillation helps to some ex-

tent. Very recently, the authors of [34] introduced a multi-

model and multi-level distillation for IL. The method incor-

porates knowledge from all previous incremental states and

not only from the latest one. A performance improvement

of 3 to 5 points over iCaRL is reported. Generative Adver-

sarial Networks were also considered as a mean to generate

image exemplars for past classes instead of storing them di-

rectly [7]. While the approach is appealing, the quality of

generated images is still insufficient. A combination of gen-

erated and real images was necessary to slightly enhance

performance over iCaRL. BiC [32] is a very recent ap-

proach that handles catastrophic forgetting by adding a lin-

ear model after the last fully connected layer to correct the

bias towards new classes. We add BiC to the results table

for SotA completeness. Approaches from this group tend to

cope well with the integration of new data but retraining the

network at each incremental step is costly.

3. Proposed Method

3.1. Class IL Problem Formalization

We focus on IL with constant model complexity, Z in-

cremental states and a bounded memory B of past classes.

The proposed formalization is adapted from [5, 7, 26]. We

note: Sk - the incremental state, Nk - the number of classes

in Sk, XNk - the training dataset in Sk, Mk - the deep

model and CNk - the classifier weights layer. The initial

state S0 includes a dataset XN0 = {X1, X2, ..., XN0} with

N0 = P0 classes. Xj = {xj
1, x

j
2, ..., x

j
nj
} is the set of

nj training examples for the jth class. An initial model

M0 : XN0 → CN0 is trained to recognize N0 classes

using all data from XN0 . Pk new classes need to be in-

tegrated in each incremental state Sk, with k > 0. Each

IL step updates the previous model Mk−1 into the current

model Mk which recognizes Nk = P0 + P1 + ... + Pk

classes in incremental state Sk. All data of the Pk new

classes are available but only a bounded exemplar memory

B of the Nk−1 past classes is allowed. If memory alloca-

tion is balanced, each past class is represented by B

Nk−1

ex-

emplars. We note Mk : XNk → CNk the model which

transforms the XNk dataset into a set of raw classifiers

CNk = {C1
k , C

2
k , ..., C

Nk−1

k , C
Nk−1+1
k , ..., CNk

k }. The clas-

sifier weights learned in state Sk for the jth class are written

C
j
k = {w1(Cj

k), w
2(Cj

k), ..., w
D(Cj

k)}, where D is the size

of the features extracted from the penultimate layer of Mk.

3.2. Classifier Weights Scaling

Incremental learning algorithms strive to approach the

performance of full learning, in which the entire training set

is available for all classes at all times. When a bounded set

of past exemplars is stored, a prediction bias toward new

classes appears due to the data imbalance in their favor.

This bias is illustrated in Figure 2(a) with the difference be-

tween mean raw predictions for past and new classes after

incrementally fine tuning the ILSV RC dataset [27] with

B = 5000 past exemplars. The average score difference

in favor of new classes over all incremental states is 6.45

points. The prediction gap is due to the stronger activa-

tions of classifier weights for new classes compared to past

classes, as illustrated by the blue and red curves from Fig-

ure 2(b). It is thus tempting to try to reshape the classifica-

tion layers of past and new classes in order to make them

more comparable. A simple way to do this is to add a nor-

malization layer to the current deep model and we provide

results with such a baseline (FTL2) in Section 4.

ScaIL attempts to approximate full learning by exploit-

ing past classifiers as learned in their initial state, with all

images available. Since the deep models evolve during the

incremental process, a transformation of the initial classi-

fiers is needed for them to be usable in the current incre-

mental state. The method is illustrated in Figure 1.

The main differences with existing IL algorithms which

exploit a bounded memory are: (1) the introduction of a

second memory I to store initial past class classifiers and

(2) the ablation of the distillation loss. Note that the size of

I is orders of magnitude smaller than that of B since it only

stores hundreds of floating point values per class instead of

exemplar images. The immediate advantage of the method

is that initial classifiers of past data are learned with all

data. Initial classifiers learned with all images are stronger

than the past classifiers learned only with exemplars in the

current state. This is clearly visible in Figure 2(b) from

the comparison of past classifiers weights as learned in the

current state (red) and the weights of the same classifiers

learned in states S0 and S1 (black and green). We also note

the activations of new classes become weaker as the incre-

mental learning process advances. The new classes from

state S0 (black) are the strongest, followed by new classes

from S1 (green) and those from S2 (blue).

The main challenge associated to ScaIL is to combine

classifiers originating from deep models learned in differ-

ent IL states. The reuse of initial classifiers in later incre-

mental states is made possible by fine tuning process with a

1268

(a) (b)

Figure 2: (a) - Raw prediction scores (before softmax) of vanilla fine tuning for the ILSVRC dataset with B = 5000 past

exemplars and a total of Z = 10 states. Incremental states from 1 to 9 are represented. The initial state S0 is non-incremental

and is not shown. (b) - Ranked mean weight activations of new and past classes in state S2 (blue and red) and mean weight

activations of S2 past classes as initially learned in S0 (black) and S1 (green). Best viewed in color.

memory of the past. This process results in a partial preser-

vation of the feature space even if the deep model evolves.

In the supplementary material, we show that classifier reuse

across states is impossible in absence of memory during IL

model updates. ScaIL reshapes initial classifiers from I in

order to make them comparable to those of newly learned

classes in the feature space defined by the current state’s

deep model. The scaling is based on weights statistics com-

puted for initial models in each incremental state (Equa-

tion 1). Before computing the means in the equation, the

weights of each initial classifier are ranked by their abso-

lute value. The use of absolute values is necessary since

classifier weights activations can be positive or negative.

µrank
i =

1

Pi

×

Pi∑

j=1

|wrank(Cj
i)| (1)

µrank
i is the mean of the weights ranked rank, with 1 ≤

rank ≤ D, for the Pi classes initially learned in each past

state Si, with 0 ≤ i < k. Figure 2(b) shows that classifiers

of each past state have different statistical distributions. To

make class predictions from different states comparable, it

is necessary to compute µrank
i separately for each state. If

k = i, we compute µrank
k , the mean of classifier weights

for new classes from the current state Sk, which is also their

initial state. Note that each mean is computed using weights

situated at the same rank for each classifier. For instance,

µ1
k and µD

k will aggregate respectively the maximum and

minimum weights of newly learned classes in Sk.

ScaIL transforms the past classifier weights as learned

in their initial state using Equation 2. wh
sc(C

j
sc) is the scaled

version of wh(Cj
i), the hth dimension of the initial clas-

sifier C
j
i of the jth past class. These weights are scaled

using the ratio between the mean activation of new classes

and that of past classes in their initial state. In Equation 2,

each weight wh is scaled using the mean activations of

its corresponding rank, returned by function r(·), in the

current and initial states Sk and Si. For instance, if the

first weight (h = 1) of the classifier C
j
i is ranked 9th, it

will be scaled using the mean activations to the ninth di-

mension of the mean ranked activations µ9
k and µ9

i respec-

tively. This is done in order to preserve the relative im-

portance of each classifier weight. Figure 2(b) shows that

µrank
i > µrank

k for a given rank rank. Consequently,

ScaIL scaling reduces the weights of the jth class learned

in its initial state to make it more comparable to classifiers

of new classes from the current state. The scaled classi-

fier for each past class of the current state Sk is written

as Cj
sc = {w1

sc(C
j
sc), w

2
sc(C

j
sc), ..., w

D
sc(C

j
sc)}. The ScaIL

classification layer for Sk combines scaled classifiers for

past classes and original classifiers for new classes. It can

be written as CNk
sc = {C1

sc, ..., C
Nk−1

sc , C
Nk−1+1
k , ..., CNk

k }.

The features learned in Sk are fed into this scaled classifi-

cation layer instead of the original one provided by Mk.

wh
sc(C

j
sc) =

µ
r(h)
k

µ
r(h)
i

× wh(Cj
i) (2)

Note that only scores of the top-10 past classes are scaled

as they code more information, the scores of the remaining

past classes are set to zero. The choice of this value is ex-

perimental.

We illustrate the effect of ScaIL on the prediction scores

in Figure 3. Past classes have a slightly larger mean classifi-

cation score in the first states and a lower one in subsequent

states. While not completely aligned, the predictions of past

and new classes in ScaIL are much more balanced com-

pared to those of raw fine tuning results from Figure 2(a).

4. Experiments

4.1. Datasets

Experiments are done with four public datasets. This

evaluation is more comprehensive than the usual one pro-

1269

1 2 3 4 5 6 7 8 9
Incremental state

5

10

15

20

25
M

ea
n

sc
or

e
= 5000

Past classes New classes

Figure 3: Prediction scores after scaling for the ILSVRC

dataset [27] with B = 5000 exemplars and Z = 10 states.

posed in [5, 26], which includes two datasets only. We use:

• ILSVRC [27]: a subset of ImageNet [6] designed for

object recognition and used in the popular ImageNet

LSVRC challenges. For comparability, we retain the

same configuration (order of classes and train/test splits)

as [26]. This version of ILSVRC contains 1000 classes,

with 1,23 million training and 50,000 test images.

• VGGFace2 [4]: face recognition dataset including over

9000 identities in its full version. Due to the heavy com-

putation associated to IL, we select the 1000 identities

with the largest number of training images. The result-

ing dataset has 491,746 training and 50,000 test images.

Face detection was done using MTCNN [33] which was

applied to each image prior to training and test phases.

• Google Landmarks [21] (Landmarks below): landmark

recognition dataset whose full version includes over

30000 classes. We select the top 1000 classes and ex-

periment with 374,367 training and 20,000 test images.

• CIFAR-100 [14]: object recognition dataset including

100 classes, with 500 training and 100 test images each.

4.2. Methodology and Baselines

The experimental setup used here is inspired from [5,

26]. The size of bounded memory B and the number of

incremental states Z are the two most important parameters

in IL with memory. We use three different values for each

of them while fixing the value of the other parameter.

Memory Management. B size is varied to eval-

uate the robustness of the tested methods with mem-

ory availability. We fix the number of states Z =
10 and run experiments with a memory which amounts

to approximately 2%, 1%, 0.5% of the full training sets.

Memory sizes are thus B = {20000, 10000, 5000} for

ILSVRC, B = {10000, 5000, 2500} for VGGFace2,

B = {8000, 4000, 2000} for Landmarks and B =

{1000, 500, 250} for CIFAR-100. Whenever a new in-

cremental state is added, memory is updated by inserting

exemplars of new classes and reducing exemplars of past

classes in order to fit the maximum size.

Incremental States. The number of incremental states

is the second key component of IL with memory and we

evaluate its variation. We fix the memory to B = 0.5% and

test with Z = {20, 50} in addition to Z = 10. The lowest

memory size was selected since it is the most interesting

configuration when memory budget is smallest.

Exemplar selection. A herding mechanism [31],

called Nearest-Exemplars-Mean (NEM) was introduced in

iCaRL for exemplar selection [26]. BiC uses the same

herding mechanism. For this, we provide results for ScaIL

with and without herding. ScaILherd is directly compara-

ble with iCaRL and BiC.

Evaluation measures. To facilitate comparability, each

configuration is evaluated with the widely used top-5 accu-

racy [27]. Each algorithm is tested in a large number of

configurations and it is important to propose a summarized

performance score. Inspired by works such as [25, 29], we

introduce a global score computed with Equation 3. GIL

measures the performance gap between each algorithm and

an upper bound method. This upper-bound is represented

by Full a non-incremental learning with all data available.

GIL =
1

T
×

T∑

t=1

acct − accFull

accMax − accFull

(3)

where: T - number of tested configurations; acct - top-

5 score for each configuration (individual values of each

row of Table 1); accFull - the upper-bound accuracy of the

dataset (Full in Table 1); accMax - the maximum theoreti-

cal value obtainable for the measure (accMax = 100 here).

GIL estimates the average behavior of each algorithm

with respect to the upper bound. The denominator is in-

troduced to avoid a disproportionate influence of individual

datasets in the aggregate score. GIL is necessarily a nega-

tive number and the closer its value to zero, the better the

method is. An ideal method, which reaches the upper bound

value in all configurations, gives GIL = 0. More details

about GIL are discussed in the supplementary material.

Baselines. Experiments have been conducted with

strong baselines which are either inspired from existing IL

literature or introduced here because relevant to ScaIL:

• iCaRL [26] - method using fine tuning with classifica-

tion and distillation losses to prevent catastrophic forget-

ting and NEM classification to counter data imbalance.

• BiC [32] - introduces a bias correction layer to address

the imbalance responsible for catastrophic forgetting.

• DeeSIL [3] - fixed representation IL method which

freezes the network after the initial non-incremental state

1270

and trains an SVM per class. While similar to the fixed

representation from [26], an important difference con-

cerns the fact that in [26] past classifiers are retrained

only with exemplars in each IL state. Instead, as allowed

by the frozen network, SVMs are trained in the initial

state of each class and then reused.

• FT - vanilla fine tuning. Unlike existing IL algorithms

which use distillation [5, 7, 10, 12, 22, 34], only classi-

fication loss is used. States are initialized with weights

from previous model and all the network layers are al-

lowed to evolve. Exemplars are selected randomly. FT is

the backbone for all subsequent baselines and for ScaIL.

• FTNEM - version of FT in which the classification is

done using exemplars instead of the outputs of the deep

model. FTNEM is equivalent to a version of iCaRL in

which the distillation loss component is ablated.

• FTBAL - FT followed by a balanced fine tuning pro-

posed by [5] to reduce the effect of imbalance. FTBAL

is equivalent to a version of end-to-end IL [5] in which

the distillation loss component is ablated.

• FTL2 - adds an L2-normalization layer to the raw clas-

sifier weights CNk given by model Mk to reduce bias in

favor of new classes in current state Sk.

• FTinit - the initial classifiers C
j
i of each past class re-

place the classifiers learned only with the past classes ex-

emplars in Sk. No transformation is applied to C
j
i . This

is an ablation of the mean-related statistics from ScaIL.

• FTL2
init - version of FTinit in which all classifiers are L2-

normalized to make them more comparable.

Implementation. ResNet-18 is used as backbone ar-

chitecture for all methods. For iCaRL and BiC, we use

the public TensorFlow [1] implementations provided by au-

thors with their hyperparameters. FT and its variants are

implemented in PyTorch [23]. The choice of hyperparam-

eters is largely inspired by the original paper of ResNet-

18 [8] and by end-to-end incremental learning [5]. To dis-

card a potential influence of the deep learning framework,

we trained FT for one ILSVRC configuration with Z = 10
and B = 0.5% using Tensorflow. The obtained performance

is similar to that reported with Pytorch. DeeSIL SVMs

are implemented using scikit-learn [24] and their parame-

ters are optimized on the training data since it is hard to

hold out validation data in IL. More implementation details

are provided in the supplementary material.

4.3. Discussion of results

Confirming the conclusions of [26], iCaRL has the

best overall performance for CIFAR-100 in Table 1. For

the three larger datasets, the FT consistently outperforms

iCaRL. Overall, FT more than halves the gap with Full

compared to iCaRL (GIL = −6.40 vs. GIL = −16.75).

The comparison to end-to-end IL [5], which achieves 69.4%

top-5 accuracy for ILSVRC with B = 2% is equally favor-

able to FT 1. Since one important difference between FT

and existing IL methods is the use of distillation, we analyze

its role separately in Subsection 4.4.

The FT -based methods all have a positive contribution.

FTNEM and FTBAL which are inspired by iCaRL [26]

and end-to-end IL [5] improve over FT by less than 0.5
GIL points. FTL2, the L2-normalized version of the clas-

sifiers from the current IL state, provides a gain of 1.23
GIL points compared to FT . Somewhat surprisingly, the

direct concatenation of initial classifier weights from differ-

ent states in FTinit also improves performance over FT

by over 1 point. However, its performance for individ-

ual configurations is much more contrasted than that of

FTL2. FTinit has low results for the two object recognition

datasets, which are on average more difficult than face and

landmark recognition tasks. FTL2
init adds L2-normalization

to FTinit classifiers and ranks fourth among all methods

tested, with 1.73 GIL improvement over FT . The best

overall result is obtained with ScaILherd, which improves

FT performance by 2.69 points. The difference between

ScaIL and FTL2
init in terms of GIL is not large but still in-

teresting. ScaIL has the most stable behavior among all

those tested. In fact, its performance on the three large

datasets is most interesting for the smallest B values. This

is the most challenging case and also the most interesting

in practice since it requires a reduced memory for past data.

The increase of the number of incremental state results in a

drop of performance for all methods. With equal memory

B, the worst results are obtained for Z = 50 states, followed

by Z = 20 and Z = 10. This finding confirms the results

reported in [5] and [26]. It is probably an effect of a larger

number of incremental rehearsal steps which are applied for

larger Z . Again, ScaIL is the method which is the least af-

fected by the change of the number of incremental states.

Contrarily to the conclusion of [5], the herding mecha-

nism in ScaILherd has positive effect compared to random

selection of exemplars in ScaIL. Results show that, while

BiC [32] is better for a lower number of incremental states

(Z = 10), ScaIL has better behavior for a larger number

of states. Equally important, ScaIL performance is less

affected by the reduction of the memory size and its perfor-

mance is globally better for B = 0.5%, this leads to a better

GIL score for ScaIL. Finally, the need of BiC for a vali-

dation set to parametrize the bias correction layer makes it

nonfunctional if no memory of the past is available.

The performance gap between Full learning and IL is

1Note that a complete set of results is not presented for end-to-end

IL [5]. This method was not fully tested because we were not able to repro-

duce the results presented by the authors since the original implementation

is based on Matlab, a non-free environment to which we don’t have access.

1271

States Z = 10
Dataset ILSVRC VGGFace2 Landmarks CIFAR-100

B 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5%
iCaRL

herd 62.5 61.4 60.9 83.9 81.4 78.2 82.5 80.5 76.2 85.1 83.7 83.2

BiC
herd 85.5 82.8 79.7 97.3 96.6 95.7 97.9 97.3 96.6 88.8 87.6 83.5

DeeSIL 74.5 74.3 74.2 92.6 92.5 92.2 93.9 93.6 92.9 66.5 65.2 63.7

FT 77.0 70.1 60.0 96.0 94.1 90.7 95.8 93.2 89.1 80.0 73.7 63.3

FT
NEM 79.4 74.5 69.6 95.7 94.1 91.0 95.2 92.7 88.8 82.4 77.4 68.4

FT
BAL 81.3 78.0 72.3 96.4 95.0 92.2 96.3 94.3 90.0 73.0 65.0 56.1

FT
L2 81.4 77.6 72.1 96.5 95.1 92.4 96.2 94.4 91.4 81.8 77.2 69.1

FTinit 68.9 66.5 61.2 95.9 95.3 94.5 96.5 95.0 92.7 79.3 77.3 73.7

FT
L2

init 78.4 75.7 73.3 95.9 95.3 94.5 96.5 95.0 92.7 83.0 79.2 72.7

ScaIL 81.0 78.2 75.1 96.4 95.6 94.5 96.9 95.3 92.7 84.6 81.1 74.9

ScaIL
herd 82.0 79.8 76.6 96.5 95.8 95.2 97.3 96.0 94.0 85.6 83.2 79.1

Full 92.3 99.2 99.1 91.2

B = 0.5%
ILSVRC VGGFace2 Landmarks CIFAR-100

Z=20 Z=50 Z=20 Z=50 Z=20 Z=50 Z=20 Z=50

56.2 42.9 72.7 52.3 72.4 54.2 73.2 55.7

74.6 63.9 92.3 85.3 94.7 90.5 50.5 19.6

69.0 58.0 87.2 78.9 90.6 84.8 63.4 42.5

64.5 59.2 90.8 86.5 87.8 85.5 59.9 49.4

72.7 63.4 91.8 87.8 88.1 86.0 64.5 51.0

70.5 61.1 91.7 86.5 87.8 85.3 57.1 50.0

73.4 66.7 92.8 88.8 89.8 87.1 63.2 49.9

53.4 39.0 95.1 90.3 90.6 87.5 60.7 40.1

72.0 66.0 95.1 90.2 90.7 87.6 64.3 42.5

73.9 68.3 94.5 90.5 90.7 88.2 67.9 47.7

76.6 70.9 95.0 92.4 92.6 90.4 69.8 51.0

92.3 99.2 99.1 91.2

GIL

-16.75

-4.03

-7.10

-6.40

-6.01

-5.98

-5.17

-5.23

-4.67

-4.41

-3.71

-

Table 1: Top-5 average accuracy (%). Following [5], accuracy is averaged only for incremental states (i.e. excluding the

initial, non-incremental state). The sizes of past memory B and number of IL states are varied to evaluate the robustness

of algorithms. Full is the non-incremental upper-bound performance obtained with all data available. The methods whose

names include herd exploit herding while the others are based on random exemplar selection. Best results are in bold.

naturally higher for more complex tasks, such as object

recognition, compared to face and landmark recognition.

For the last two tasks, classes have a more coherent visual

representation and fewer examples are needed for a com-

prehensive representation of them. In the simplest configu-

rations reported here (Z = 10, B = 2%), the best IL algo-

rithms are less than three points behind Full for faces and

landmarks. For such specialized tasks, incremental learn-

ing seems thus applicable in practice without a very signif-

icant performance loss. The situation is different for more

complex tasks, such as object recognition, where significant

progress is needed before IL algorithms approach the per-

formance of classical learning.

An additional result concerns DeeSIL, the fixed repre-

sentation method. Here, it is globally better than iCaRL, a

finding which is at odds with the results originally reported

in [26]. The difference is explained by the use of all data for

each class, while past class training was unnecessarily re-

stricted to B exemplars in [26]. FT outperforms DeeSIL

by less than 1 GIL point. For Z = 10, DeeSIL has very

low dependence on the bounded memory size and could be

also used in absence of past exemplars memory. Naturally,

its performance drops for larger Z values because the initial

model is learned with fewer classes but remains interesting.

4.4. Effect of distillation in IL

The use of knowledge distillation in incremental learning

with bounded memory was pioneered in iCaRL [26], which

extends the work on IL without memory from [8]. Distilla-

tion was largely adopted afterwards [5, 7, 10, 12, 22, 34] as

a way to reduce the effect of catastrophic forgetting. This

adoption was based on one experiment presented in [26]

which compared the performance of iCaRL and fine tuning

only on the CIFAR-100 dataset and with a single memory

size. In Table 1, we report a similar finding for this dataset.

For CIFAR-100, FT is probably less effective because it

uses hard targets for loss minimization. These targets en-

code very sparse information for the small dataset available.

In contrast, distillation exploits soft targets which encode

more information [9] and is thus more fitted to work with

small datasets. The results for Z = 10 states with different

values of B support the above observation since the differ-

ence in favor of iCaRL grows as B is reduced.

However, distillation hurts performance for all configu-

rations tested for the three larger datasets, where FT has

consequently better performance than iCaRL. The use of

network outputs as soft targets for distillation was noted to

produce a classification bias for past classes both in the orig-

inal knowledge distillation paper [9] and in an incremental

context [10]. A common assumption of distillation-based

IL algorithms, first made in [8], is that the process starts

with a powerful pretrained model which is trained on a large

and balanced dataset. Under this condition, the soft targets

used by the distillation loss are efficient to transfer knowl-

edge to the next incremental state. Our hypothesis is that

distillation tends to reinforce the errors due to data imbal-

ance in the previous incremental state. In practice, if the

distillation component is fed with soft targets whose pre-

dictions are wrong, it will push the classifier toward wrong

classes. To verify this hypothesis, we present an analysis of

correct and erroneous predictions for past and new classes

in Table 2 for vanilla fine tuning (FT) and fine tuning with

distillation used as backbone in iCaRL (FT distill). Re-

sults are shown only for ILSVRC with Z = 10 states and

B = 5000 exemplars but trends are similar for other config-

urations. The bias toward new classes, expressed by e(p, n)
errors is similar with and without distillation. The correct

predictions for new classes are also in a comparable range,

although lower for FT distill. This indicates that the data

imbalance toward new classes has rather comparable effect

1272

Incremental states

S1 S2 S3 S4 S5 S6 S7 S8 S9

F
T

c(p) 2117 2995 3415 3875 3653 4451 4558 5003 3119

e(p, p) 156 450 807 1363 1842 2710 2626 3932 2388

e(p, n) 2727 6555 10778 14762 19505 22839 27816 31065 39493

c(n) 4151 4322 4103 4141 4267 4304 4247 4378 4248

e(n, n) 809 638 875 828 716 674 743 595 741

e(n, p) 40 40 22 31 17 22 10 27 11

F
T

d
is
ti
ll

c(p) 850 1008 1355 1355 1195 1344 1419 1543 1562

e(p, p) 472 1746 3700 4999 6904 8246 10771 13400 14556

e(p, n) 3678 7246 9945 13646 16901 20410 22810 25057 28882

c(n) 3645 3834 3597 3607 3744 3754 3605 3766 3662

e(n, n) 1043 793 928 905 785 776 828 692 751

e(n, p) 312 373 475 488 471 470 567 542 587

Table 2: Top-1 ILSVRC correct and wrong classifications

for vanilla fine tuning (FT), fine tuning with distillation

(FT distill) with Z = 10 and B = 5000. p and n stand

for past and new classes. c and e indicate correct and er-

roneous classifications. e(p, p) is to be read as past class

examples wrongly predicted as other past classes. e(p, n) is

to be read as past class examples wrongly predicted as new

classes. Note that top-1 performance is used because the

proposed analysis is impossible for top-5 accuracy.

regardless of the use of distillation. The performance dif-

ference between the two methods is due mainly to confu-

sions between past classes expressed by e(p, p). They are

roughly three times more frequent for FT distill compared

to FT in Table 2. Equally important, while distillation is

supposed to preserve accuracy for past classes, it clearly

does not since the amount of correctly recognized past ex-

amples grows very steadily in FT distill.

Figure 4: Detail of past-past errors e(p, p) for individual

states of FT distill on ILSVRC with Z = 10 and B = 5000.

We note that, in each state, a majority of errors are due to

the latest past state as a result of learning its associated state

with an imbalanced training set. Best viewed in color.

In Figure 4, we present the distribution of e(p, p) errors

among individual past states for FT distill. Since test data is

balanced among states, the distribution of errors should also

be approximately so. Instead, Figure 4 shows that a major-

ity of past test data for state Sk are predicted as belonging

to classes which were new when first learned in Sk−1. This

result confirms that class imbalance has an important role

for the distillation component of the loss, similarly to its

influence on the classification component. It is also notice-

able that, except for S5, the number of error grows for more

recent past states. Along with imbalance, the number of re-

hearsals after the initial learning of the class also plays an

important role in terms of distillation-related errors.

Our findings indicate that vanilla fine tuning is preferable

to distillation-based fine tuning as backbone for large scale

IL with memory. Further distillation related experiments

are presented in the supplementary material.

5. Conclusion

We introduced ScaIL, a simple but effective IL algo-

rithm which combines classifiers learned in different IL

states to reduce catastrophic forgetting. It keeps the number

of parameters of the network constant across IL states and

requires a second memory whose size is negligible com-

pared to that of the exemplars memory. The method is com-

pared to strong state-of-the-art methods, with their improve-

ments based on distillation ablation and with new baselines

which exploit initial classifiers. ScaIL provides perfor-

mance improvement over published results and is also better

than the new baselines. Our method is also the most stable

over the different memory and IL states values tested.

A consequent part of the performance improvement is

due to the ablation of the distillation in IL algorithms. While

widely used, we find that distillation is only useful for small

scale datasets. Our analysis indicates that a performance

drop appears for large scale datasets with memory when dis-

tillation is used. The drop is notably due to the inherently

imbalanced character of datasets available in IL.

Comprehensive experiments were run on four public

visual datasets with three memory sizes and three num-

bers of incremental states. We introduced an aggregated

score to get an overview of performance in the differ-

ent configurations tested. This experimental protocol can

be reused to validate future works. To facilitate repro-

ducibility, the code and dataset details are publicly avail-

able at: https://github.com/EdenBelouadah/

class-incremental-learning.

The presented results reduce the performance gap be-

tween IL algorithms and non-incremental learning but the

difference is still important, particularly for harder tasks.

Class IL with bounded memory remains an open problem

and new research is needed to make it usable in practice

without significant performance loss. Future work will aim

to: (1) improve vanilla FT while keeping model complexity

and memory budget bounded, (2) explore new ways to han-

dle data imbalance and (3) tackle real life situations where

streamed data are partially or completely unlabeled.

1273

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,

J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,

P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and

X. Zhang. Tensorflow: A system for large-scale machine

learning. CoRR, abs/1605.08695, 2016.

[2] R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate:

Lifelong learning with a network of experts. In Conference

on Computer Vision and Pattern Recognition, CVPR, 2017.

[3] E. Belouadah and A. Popescu. Deesil: Deep-shallow incre-

mental learning. In Computer Vision - ECCV 2018 Work-

shops - Munich, Germany, September 8-14, 2018, Proceed-

ings, Part II, pages 151–157, 2018.

[4] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman.

Vggface2: A dataset for recognising faces across pose and

age. In 13th IEEE International Conference on Automatic

Face & Gesture Recognition, FG 2018, Xi’an, China, May

15-19, 2018, pages 67–74, 2018.

[5] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid,

and K. Alahari. End-to-end incremental learning. In Com-

puter Vision - ECCV 2018 - 15th European Conference, Mu-

nich, Germany, September 8-14, 2018, Proceedings, Part

XII, pages 241–257, 2018.

[6] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li. Im-

agenet: A large-scale hierarchical image database. In 2009

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami,

Florida, USA, pages 248–255, 2009.

[7] C. He, R. Wang, S. Shan, and X. Chen. Exemplar-supported

generative reproduction for class incremental learning. In

British Machine Vision Conference 2018, BMVC 2018,

Northumbria University, Newcastle, UK, September 3-6,

2018, page 98, 2018.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Conference on Computer Vision

and Pattern Recognition, CVPR, 2016.

[9] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowl-

edge in a neural network. CoRR, abs/1503.02531, 2015.

[10] K. Javed and F. Shafait. Revisiting distillation and incremen-

tal classifier learning. CoRR, abs/1807.02802, 2018.

[11] R. Kemker and C. Kanan. Fearnet: Brain-inspired model

for incremental learning. In 6th International Conference

on Learning Representations, ICLR 2018, Vancouver, BC,

Canada, April 30 - May 3, 2018, Conference Track Proceed-

ings, 2018.

[12] D. Kim, J. Bae, Y. Jo, and J. Choi. Incremental learning with

maximum entropy regularization: Rethinking forgetting and

intransigence. CoRR, abs/1902.00829, 2019.

[13] S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet

models transfer better? CoRR, abs/1805.08974, 2018.

[14] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, University of Toronto, 2009.

[15] I. Kuzborskij, F. Orabona, and B. Caputo. From N to N+1:

multiclass transfer incremental learning. In 2013 IEEE Con-

ference on Computer Vision and Pattern Recognition, Port-

land, OR, USA, June 23-28, 2013, pages 3358–3365, 2013.

[16] Z. Li and D. Hoiem. Learning without forgetting. IEEE

Trans. Pattern Anal. Mach. Intell., 40(12):2935–2947, 2018.

[17] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Fo-

cal loss for dense object detection. In IEEE International

Conference on Computer Vision, ICCV 2017, Venice, Italy,

October 22-29, 2017, pages 2999–3007, 2017.

[18] A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks

to a single network by iterative pruning. In 2018 IEEE Con-

ference on Computer Vision and Pattern Recognition, CVPR

2018, Salt Lake City, UT, USA, June 18-22, 2018, pages

7765–7773, 2018.

[19] M. Mccloskey and N. J. Cohen. Catastrophic interference

in connectionist networks: The sequential learning problem.

The Psychology of Learning and Motivation, 24:104–169,

1989.

[20] T. Mensink, J. J. Verbeek, F. Perronnin, and G. Csurka.

Distance-based image classification: Generalizing to new

classes at near-zero cost. IEEE Trans. Pattern Anal. Mach.

Intell., 35(11):2624–2637, 2013.

[21] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han. Large-

scale image retrieval with attentive deep local features. In

ICCV, pages 3476–3485. IEEE Computer Society, 2017.

[22] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter.

Continual lifelong learning with neural networks: A review.

CoRR, abs/1802.07569, 2018.

[23] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Au-

tomatic differentiation in pytorch. In Advances in Neural

Information Processing Systems Workshops, NIPS-W, 2017.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. VanderPlas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in python. CoRR, abs/1201.0490, 2012.

[25] S. Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple vi-

sual domains with residual adapters. In Advances in Neural

Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, 4-9 December

2017, Long Beach, CA, USA, pages 506–516, 2017.

[26] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl:

Incremental classifier and representation learning. In Confer-

ence on Computer Vision and Pattern Recognition, CVPR,

2017.

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,

A. C. Berg, and F. Li. Imagenet large scale visual recog-

nition challenge. International Journal of Computer Vision,

115(3):211–252, 2015.

[28] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer,

J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell.

Progressive neural networks. CoRR, abs/1606.04671, 2016.

[29] Y. Tamaazousti, H. Le Borgne, C. Hudelot, M. E. A. Seddik,

and M. Tamaazousti. Learning more universal representa-

tions for transfer-learning. arXiv:1712.09708, 2017.

[30] Y. Wang, D. Ramanan, and M. Hebert. Growing a brain:

Fine-tuning by increasing model capacity. In Conference on

Computer Vision and Pattern Recognition, CVPR, 2017.

1274

[31] M. Welling. Herding dynamical weights to learn. In Pro-

ceedings of the 26th Annual International Conference on

Machine Learning, ICML 2009, Montreal, Quebec, Canada,

June 14-18, 2009, pages 1121–1128, 2009.

[32] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and

Y. Fu. Large scale incremental learning. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, CVPR

2019, Long Beach, CA, USA, June 16-20, 2019, pages 374–

382, 2019.

[33] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detec-

tion and alignment using multitask cascaded convolutional

networks. IEEE Signal Process. Lett., 23(10):1499–1503,

2016.

[34] P. Zhou, L. Mai, J. Zhang, N. Xu, Z. Wu, and L. S. Davis.

M2KD: multi-model and multi-level knowledge distillation

for incremental learning. CoRR, abs/1904.01769, 2019.

1275

