
BIRDSAI: A Dataset for Detection and Tracking

in Aerial Thermal Infrared Videos

Elizabeth Bondi1, Raghav Jain2, Palash Aggrawal2, Saket Anand2, Robert Hannaford3

Ashish Kapoor4, Jim Piavis4, Shital Shah4, Lucas Joppa4, Bistra Dilkina5, Milind Tambe1
1Harvard University, 2IIIT-Delhi, 3Air Shepherd, 4Microsoft, 5University of Southern California

ebondi@g.harvard.edu, sites.google.com/view/elizabethbondi/dataset

Abstract

Monitoring of protected areas to curb illegal activities

like poaching and animal trafficking is a monumental task.

To augment existing manual patrolling efforts, unmanned

aerial surveillance using visible and thermal infrared (TIR)

cameras is increasingly being adopted. Automated data ac-

quisition has become easier with advances in unmanned

aerial vehicles (UAVs) and sensors like TIR cameras, which

allow surveillance at night when poaching typically occurs.

However, it is still a challenge to accurately and quickly

process large amounts of the resulting TIR data. In this pa-

per, we present the first large dataset collected using a TIR

camera mounted on a fixed-wing UAV in multiple African

protected areas. This dataset includes TIR videos of hu-

mans and animals with several challenging scenarios like

scale variations, background clutter due to thermal reflec-

tions, large camera rotations, and motion blur. Addition-

ally, we provide another dataset with videos synthetically

generated with the publicly available Microsoft AirSim sim-

ulation platform using a 3D model of an African savanna

and a TIR camera model. Through our benchmarking ex-

periments on state-of-the-art detectors, we demonstrate that

leveraging the synthetic data in a domain adaptive setting

can significantly improve detection performance. We also

evaluate various recent approaches for single and multi-

object tracking. With the increasing popularity of aerial

imagery for monitoring and surveillance purposes, we an-

ticipate this unique dataset to be used to develop and eval-

uate techniques for object detection, tracking, and domain

adaptation for aerial, TIR videos.

1. Introduction

Recent advances in deep learning have led to immense

progress in vision applications like object recognition, de-

tection, and tracking. One of the key factors driving this

progress is the availability of large-scale datasets captur-

Figure 1: Example images from BIRDSAI: elephants and a

human, respectively, from an aerial perspective.

ing real-world conditions along with careful annotations

for training and comprehensively evaluating machine learn-

ing models. The collection and release of many of these

datasets is often inspired by specific applications of inter-

est, e.g., perception for autonomous driving using object

detection, tracking, and semantic segmentation, person re-

identification for surveillance camera networks, and facial

recognition for biometrics and security applications. While

the majority of the publicly available datasets cater to tech-

niques developed for the visible spectrum [17, 19, 36, 27,

25, 13, 22, 56, 18], there has been an increasing interest in

applications from the near-infrared (NIR) and thermal in-

frared (TIR) spectral ranges [55, 3, 33, 23, 31], as these

sensors become more affordable.

Concurrently, with advances in aerial image acquisition

technology, datasets specifically targeting object detection

and tracking in aerial images have been made publicly avail-

able [32, 56, 18]. In [56], the images have been acquired

from various remote sensing sources (e.g., satellites), and

capture varying degrees of orientation, scales, and object

density. On the other hand, aerial images from UAVs

[32, 18] are often motivated by applications like surveil-

lance and monitoring, yet these images are restricted to

the visible spectrum, thereby limiting their usage to well-

lit conditions. Besides, most existing public datasets, aerial

and terrestrial alike, address applications relevant to rela-

tively densely populated settings.

Contrarily, our work is motivated by recent concerns

about depleting biodiversity and loss of forest cover which
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Dataset (Year) Platform (A/G) #Frames Tasks Spectrum (R)eal/(S)ynthetic

UTB [32] (2017) A 15K S V R

UAV123 [38] (2016) A 113K S V R,S

UAVDT [18] (2018) A 80K D,S,M V R

TIV [55] (2014) G,Aa 64K D,S,M T R

LTIR [3] (2015) G,A 12K D,S,M T R

PTB-TIR [33] (2018) G,A 30K D,S,M T R

ASL-TID [41] (2014) Aa 5K D,S,M T R

[57] (2015) G,Ab 84c RE T,V R

[37]d (2016) A 9K D,S,M T R

BIRDSAI (proposed) A 62K + 100K D,S,M T R,S

Table 1: Comparison summary of recent aerial video datasets for detection and tracking. Platform could be either (A)erial or

(G)round-based; #Frames is the total number of annotated frames in the dataset, with our dataset reporting 62K (1K=1000)

real frames and about 100K synthetic frames; Tasks for which annotations are present (D)etection, (S)ingle-object, (M)ulti-

object tracking, and (RE)gistration; Spectrum of cameras: (V)isible or (T)hermal-IR; Data acquisition (R)eal or (S)ynthesized

in a simulator. Comparisons are discussed in Sec. 2. aFixed aerial perspective; b Aerial images do not contain humans or

animals; c84 Pairs; d Not publicly available, contains primarily images of roads, and has portions of images used for tracking.

are exacerbated by illegal activities such as poaching for

wildlife trade, hunting, and logging. Efforts to mitigate

these activities through patrolling of protected areas, espe-

cially at night, is very challenging and puts forest rangers

at risk due to poor visibility, difficult terrain, and increased

predator and poacher activity [40]. These conservation ef-

forts are increasingly being augmented by UAV surveillance

[40, 26, 24, 1], with TIR cameras as the preferred sensing

modality for night-time monitoring over natural landscapes

where the ambient light is minimal and the UAV’s altitude,

capacity, and need for stealth preclude the use of active light

sensors. However, manual monitoring of aerial TIR videos

to detect and track humans in real time is an extremely chal-

lenging and tedious task, especially when the goal is to in-

terdict an illegal activity.

In this paper, we introduce Benchmarking IR Dataset

for Surveillance with Aerial Intelligence (BIRDSAI, pro-

nounced “bird’s-eye”), a large, challenging aerial TIR video

dataset for benchmarking of algorithms for automatic detec-

tion and tracking of humans and animals. To our knowl-

edge, this is the first large-scale aerial TIR dataset, with

multiple unique features. It has 48 real aerial TIR videos

of varying lengths, carefully annotated with objects like an-

imals and humans and their trajectories. These were col-

lected by a conservation organization, Air Shepherd, during

their regular surveillance efforts flying a fixed-wing UAV

over national parks in Southern Africa. Finally, we aug-

ment it with 124 synthetic aerial TIR videos generated from

AirSim-W [6], an Unreal Engine-based simulation plat-

form. Two example images from real videos are shown in

Fig. 1 depicting a herd of elephants and a human. Realistic

and challenging benchmarking datasets have had tremen-

dous impact on the progress of a research area. Synthetic

datasets like [44, 46, 21] along with real ones like [14, 22]

have accelerated the progress in unsupervised domain adap-

tation techniques [29, 49]. Similarly, the Caltech-UCSD

Bird (CUB-200) dataset [52, 51] has helped advance an im-

portant area of fine-grained visual recognition [60]. With

more wildlife monitoring datasets [48, 2, 20, 53] becoming

publicly available, we may expect rapid progress in areas

like species detection, counting, and visual animal biomet-

rics [15, 20, 9, 28]. Inspired by these instances, we antici-

pate the proposed dataset will promote advances in both (i)

algorithm development for the general problems of object

detection, single and multi-object tracking in aerial videos,

and their domain adaptive counterparts, and (ii) the impor-

tant application area of aerial surveillance for conservation.

The rest of the paper is organized as follows. First, we

introduce the gap in existing datasets that we aim to fill with

the proposed one (Sec. 2). We then discuss the attributes

of the dataset in detail (Sec. 3), such as the means of ac-

quiring the data, strategies adopted for annotation, and the

train/test splits. We next analyze the content of the result-

ing dataset (Sec. 4), and evaluate the performance of well-

known techniques for the tasks of object detection, single

and multi-object tracking, and domain adaptation (Sec. 5)

before finally concluding the paper (Sec. 6).

2. Motivation

With poaching becoming widespread around the world

[50], aerial surveillance with UAVs is becoming a main-

stream application [40, 26, 24]. In order to apply deep

learning-based detection and tracking techniques to these

applications (especially at night) and evaluate performance,

there is a need for a realistic, large, annotated dataset that

adequately captures the challenges faced in the field. Re-

cently, several large datasets for aerial image analytics have
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(a) (b) (c) (d)

Figure 2: Sample images from the real and synthetic datasets. From top to bottom: small, medium, and large objects. (a)

& (b) Real images of animals and humans, respectively; (c) & (d) Synthetic images of animals and humans, respectively.

Mixture of summer and winter synthetic data (winter has dark trees compared to ground).

been publicly released, many of which were captured using

UAVs. However, all of these are data in the visible spec-

trum. In the rest of this section, we discuss some of the most

closely related public datasets and highlight the unique as-

pects of the presented dataset. A summary of comparisons

with existing datasets is provided in Table 1.

Existing UAV Datasets: The recently introduced UAVDT

[18] contains nearly 80,000 frames with over 0.8 million

bounding boxes. The dataset is comprised of videos col-

lected over urban areas with object categories of cars, trucks

and buses. The DTB dataset [32] was introduced for bench-

marking UAV-based single object tracking with the goal

of jointly evaluating the motion model and tracking per-

formance. Mueller et al. introduced the UAV123 dataset

[38], which contains 123 HD video sequences with about

113,000 annotated frames captured by a low-altitude UAV.

Eight of these videos were rendered using an Unreal En-

gine environment. All of these datasets use visible spectrum

cameras mounted on multirotor UAVs, which typically have

lower speeds and better image stabilization as compared to

fixed-wing UAVs [8]. In a poaching prevention application,

deploying a multirotor UAV for surveillance is more diffi-

cult due to stealth and coverage requirements.

Existing TIR Datasets: The BU-TIV dataset [55] is part

of the OTCBVS dataset collection1 and contains 16 video

sequences with over 60,000 annotated frames for tasks like

detection, counting and tracking. The LTIR [3] dataset was

1http://vcipl-okstate.org/pbvs/bench/

used for the VOT-TIR 2016 challenge and contains 20 video

sequences of length 563 frames on average. The PDT-ATV

dataset [41] was introduced for benchmarking tracking of

pedestrians in aerial TIR videos. All eight sequences are

captured using a handheld TIR camera at a height and angle

to simulate a UAV, but because it is handheld, it is a fixed

aerial perspective. Recently, the PTB-TIR dataset [33] was

also introduced for benchmarking TIR pedestrian tracking.

It is comprised of 60 sequences with over 30,000 annotated

frames. In all cases, the challenge of analyzing TIR footage

from a UAV has not been addressed yet.

Synthetic Datasets and Domain Adaptation: Training

deep models demands large datasets with accurate annota-

tions, which are expensive and tedious to obtain. Conse-

quently, recent years have seen an increasing use of syn-

thetic images rendered using state-of-the-art graphics en-

gines, where generating accurate ground-truth information

is trivial. Several such simulators and datasets have been

made public [21, 44, 46, 39], and reportedly improve real-

world performance of deep learning models when pre-

trained with synthetic data. The increased use of syn-

thetic datasets in vision applications has further propelled

research in domain adaptation with works like [10, 29, 49]

being a few among the many2 leveraging synthetic data.

Some recent work has also shown that domain transforma-

tion and adaptation techniques can aid in improved detec-

tion performance in TIR images when using deep CNNs

2More comprehensive list of advances in domain adaptation: https:

//github.com/zhaoxin94/awsome-domain-adaptation
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pretrained on visible spectrum images [11, 4]. In contrast,

BIRDSAI uses both real and synthetic aerial, TIR videos.

BIRDSAI: The 48 real TIR video sequences included in

BIRDSAI were randomly selected from a database of UAV

videos collected by Air Shepherd for conservation, and con-

tain 1300 frames on average. These videos accurately re-

flect the challenges in the field, e.g., motion blur, large cam-

era motions (both rotations and translations), compression

artifacts due to bandwidth constraints, background clutter,

and high altitude flight (60-120m) resulting in smaller ob-

jects to detect and track. The 124 synthetic videos with 800

frames on average, on the other hand, were generated us-

ing the AirSim-W [6] platform with the publicly available

models of the African savanna, animal species, and UAV-

mounted cameras. This dataset uniquely brings together the

three categories discussed above.

3. Dataset Description

3.1. Real Data

3.1.1 Data Acquisition

Data were collected throughout protected areas in the coun-

tries of South Africa, Malawi, and Zimbabwe using a

battery-powered fixed-wing UAV. Specific locations are

withheld for security. All flights took place at night, with

individual flights lasting for about 1.5 - 2 hours. Various

environmental factors such as wind resistance determined

exact flying time. Throughout the night, there were typi-

cally 3 to 4 flights, the altitude ranged from approximately

60 to 120m, and flight speed ranged from 12 to 16 m/s de-

pending on conditions such as wind. Temperature ranged

from less than 0◦C to 4◦C in winter at night, though typ-

ically closer to 4◦C. There was often a shift of approxi-

mately 5◦C throughout the course of the night in the win-

ter. For reference, daytime temperatures were typically ap-

proximately 15◦C to 16◦C. During summer, the tempera-

ture ranged from 18◦C to 20◦C at night, and 38◦C to 40◦C

during the day. When flying just after sunset, the ground

temperature was warm and could make it more difficult to

spot objects of interest due to the lack of contrast. How-

ever, by about 10:30-11PM, there was typically sufficient

contrast for easier visibility. Fog was present in some rare

cases, which could cause “whiteouts” in images.

The FLIR Vue Pro 640 was the primary sensor utilized.

However, the Tamarisk 640 was also used in some videos

in the dataset. Although the typical resolution of images

is 640x480 as a result, some images may be sized differ-

ently due to the removal of text embedded in to the videos

describing specific locations and other flight parameters,

which are also withheld for security purposes. These cam-

eras produce 8-bit images and use Automatic Gain Con-

trol (AGC), as in [12]. This leads to more reliable contrast

that facilitates better detection and tracking accuracy during

flight. The cameras cost approximately $2000-$4000 de-

pending on the lenses and other attributes. They have 19mm

focal length and collect imagery at a rate of 30Hz. Images

were streamed to a base station during flight, where they

were stored as raw videos. All videos were converted to

mp4 videos for processing and JPEG images. Because the

videos were recorded from real-world missions, they lack

some metadata, such as speed, altitude, and temperature.

While this auxiliary information could be useful, automatic

vision algorithms should still be designed to work in their

absence. From a usability perspective, this added robust-

ness is crucial for building practical vision systems that are

less sensitive to specific UAV or camera settings.

3.1.2 Annotation

We used VIOLA [7] to label detection bounding boxes in

the thermal infrared imagery, and followed the process de-

scribed in VIOLA. To briefly summarize this labeling pro-

cess in VIOLA, after labels were made by one person, two

other people reviewed the labels, making corrections as

needed. General rules that were followed during the label-

ing process are as follows. If individuals were completely

indistinguishable (e.g., multiple humans or animals were

close together and could not be distinguished at all in ther-

mal imagery), they were not labeled. Instead, occlusions are

recorded when possible to determine manually from con-

text. This includes cases where animals or humans become

indistinguishable for a few frames and again become dis-

tinguishable after they or the camera move. If there were

artifacts in the image (see Sec. 4), objects were tagged as

containing noise. Some extremely small amounts of these

artifacts may have been allowed without being tagged as

noisy. We provide examples of how we included occlusion

and noise in the Appendix. Finally, if an object was mostly

out of the camera’s field of view (i.e., more than about 50%

of the object was not present in the frame), it was not la-

beled. After this process, all labels were finally confirmed

and checked for quality for use in this dataset by the au-

thors, one of whom is from Air Shepherd and collected the

videos, for a total of 4 checks on each initial label.

We additionally labeled individual species when distin-

guishable, typically in videos with larger animals present.

The real videos contain giraffes, lions, elephants, and a

dog, which account for about 100K of the 120K individ-

ual animal bounding boxes (the remaining 20K animals are

marked as unknown species). There are about 34K human

bounding boxes. These labels created using VIOLA were

then labeled separately for tracking. We built a tool using

Tkinter3 to assign object IDs to each bounding box label.

To reduce annotation effort before any human annotation

was done, the tool checked for overlap between frames us-

3https://docs.python.org/3/library/tkinter.html
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ing an Intersection over Union (IoU) threshold. If the IoU

exceeded the threshold, the object in the following frame

was given the same object ID. Once this automatic process-

ing was complete, we used the tool to manually navigate

through the video frames and identify and correct any errors

in the assigned object IDs, e.g., objects merging or splitting.

In the case of objects merging together, object IDs are main-

tained whenever it is possible to distinguish them again after

the merge. However, if they enter a large group, it may be-

come impossible to distinguish which animal is which due

to the nature of thermal imagery. In these cases only, they

are assigned a new object ID. If objects leave the frame,

they will similarly retain the same object ID if possible.

3.2. Synthetic Data

To generate synthetic data with AirSim-W, we utilized

the African savanna environment introduced in [6]. In brief,

the environment is not based on a particular area of interest,

but rather represents the variety of environments found in

Southern Africa, such as wide-open plains to dense forest,

flatland to mountainous terrain, roads, and water. Grass in

the plains is not a mesh in the environment, so in the seg-

mentation provided by AirSim-W, grass and soil are indis-

tinguishable. This does, however, increase efficiency while

running the simulation. The AirSim-W platform has a TIR

model that was introduced in [6]. We used this TIR model

to generate images of the objects in the scene as the UAV

flew through the environment and captured images of size

640x480. Specifically, AirSim-W’s Computer Vision Mode

was used, and the UAV was placed by following certain ob-

jects in the environment. For example, to generate human

images, the UAV tracked the human. Because the objects

move in groups, and multiple altitudes, offsets, and cam-

era angles were used, multiple objects or few objects may

have been captured. Ground truth object IDs and species

(lions, elephants, crocodiles, hippos, zebras, and rhinos) la-

bels were also recorded for a total of about 220K individual

animal bounding box labels and 50K human labels.

3.3. Train and Test Sets

In order to create the train and test sets for the real data,

our goal was to create similar distributions in both while

ensuring complete videos stayed entirely in either the train

or test set. Entire videos remained in one or the other be-

cause consecutive frames could be extremely similar. We

manually assigned videos to the train or test set based on

the number of objects in the video, and based on character-

istics of the videos, like contrast, to try to ensure an approx-

imately even distribution in the train and test sets. Because

entire videos needed to stay together, it was not possible to

maintain exact ratios. In fact, there was only one video that

contained large humans, so it was placed in the test set only.

These train and test sets are shown in Fig. 3.

Regarding the synthetic dataset, the entirety of the

dataset was used for training. Although we attempted to

ensure the approximate ratio of humans and animals was

somewhat similar to the real training dataset, we prioritized

adding large human examples and more small human and

animal examples (see Section 4.1 for more description of

scale) while generating the synthetic dataset, as these were

less frequently seen in the real data. Different statistics over

the entire dataset, including distribution of object scales and

densities across the train/test splits, are shown in Fig. 3 (a)

and (b), respectively. In Fig. 3 (c), a scatter plot of track-

ing video sequences is shown with respect to the sequence

length and average object density.

4. Dataset Properties

The real and synthetic data contain significant variations

in content and artifacts, including scale and contrast. The

real data also contain more background clutter and noise.

4.1. Content

Environments. There are several types of environments

that are captured in the dataset, including land areas with

varying levels of vegetation and water bodies, such as wa-

tering holes and rivers. An example of water with a boat

floating upon it is shown in Fig. 4 (b) (where the bright, top

right portion of the image is water). We denote the presence

of water for individual videos in the dataset.

Scale and Density of Objects. There are multiple scales

of objects in the dataset. We coarsely categorize them into

small, medium, and large based on each object’s annotated

bounding box area and dataset statistics. These distinctions

are assigned to full videos based on the average bounding

box size throughout the video4. There is also a wide range

of densities in objects throughout the videos. The average

number of objects per frame (density) for small, medium,

and large videos is described in Fig. 3. There is an example

of a video with high animal density in Fig. 4 (a).

4.2. Artifacts

Contrast. Contrast refers to the variation in digital counts

in an image. TIR images rely on AGC, so contrast can vary

significantly across the dataset. As an example, some im-

ages have nearly black backgrounds with white objects of

interest (more contrast, e.g., Fig. 4 (b)), while others have

gray backgrounds (less contrast).

Background Clutter. There can be many objects in the

background in some images, particularly in images with

vegetation. Vegetation can often have a similar temperature

to objects of interest, leading to images like Fig. 4 (c). We

also see thermal reflections off the ground, typically near

4Small videos were those whose average bounding box area was < 200

pixels, the median real area, and large videos were > 2000 pixels.
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Figure 3: Statistics of real and synthetic data. (a) 100% stacked bar charts of distribution of small, medium, and large

animals/humans across real and synthetic data and train/test sets. Real train contains 32 videos, real test contains 16 videos,

and simulated train contains 124 videos. (b) Bar plot (with standard deviation error bars) of the number of animals and

humans for train/test sets over large, medium, and small objects, again across real and synthetic data and train/test sets. (c)

Scatter plot showing different video sequences plotted using their constituent average object density (#objects/frame) and

sequence length (duration for which the objects were visible in the video). The color indicates the constituent object type

(human/animal) and the size of the circles indicate small, medium, or large. For better visual clarity, both the axes are plotted

using the log scale.

Scale FR-CE FR-WCE YOLOv2 SSD

SA 0.216 0.228 0.144 0.182

MA 0.459 0.468 0.383 0.392

LA 0.879 0.896 0.679 0.850

Animals 0.659 0.671 0.489 0.587

SH 0.214 0.206 0.108 0.219

MH 0.174 0.179 0.146 0.229

LH 0.154 0.094 0.083 0.147

Humans 0.181 0.155 0.104 0.183

Overall 0.430 0.438 0.304 0.388

Table 2: Detection performance baseline using the mAP

metric for different scales ((S)mall, (M)edium, (L)arge) of

objects ((A)nimals, (H)umans) in the dataset.

trees, e.g., in Fig. 4 (d). Both make it challenging to distin-

guish between objects of interest and background clutter.

Noise and Camera Motion. While there are many sources

of noise in TIR cameras that use uncooled microbolometer

arrays as the sensor [6, 47], the most common type in BIRD-

SAI is what we call ghosting, as shown in Fig. 4 (e). There

are also slightly more mild versions of it, which look like

horizontal “bands” in some cases. Additionally, the UAV’s

motion, or even the camera motion when there is pan or tilt,

can sometimes lead to frames with motion blur. An exam-

ple of this is shown in Fig. 4 (f). These were labeled as

containing noise when possible (see Sec. 3).

5. Evaluation

The goal of BIRDSAI is to advance image-based object

detection, domain adaptive detection, and single and multi-

object tracking (SOT and MOT, respectively). To evaluate

state-of-the-art object detection methods and domain adap-

tation on BIRDSAI, we perform framewise detection of ani-

mals and humans. We evaluate tracking by using the videos,

both full sequences and subsequences. We provide bench-

marking results for these tasks with existing algorithms,

leaving the method details to the papers while listing the

hyperparameters used for the experiments here. We include

further experiments and analyses in the Appendix including

cross-dataset evaluation.

5.1. Framewise Detection

We specifically test with the following popular object de-

tection methods: Faster-RCNN [43], YOLOv2 [42], SSD

[35], and Domain Adaptive Faster-RCNN [10], all of which

have shown strong results in the visible as well as TIR. Re-

sults for detection and unsupervised domain adaptative de-

tection are provided in Tables 2 and 3, respectively.

Faster-RCNN [58] [43]. The experiment was performed

using VGG16 as the backbone network initialized with Im-

ageNet pretrained weights. Evaluation results of two loss

functions were compared and tabulated in Table 2, namely,

Cross Entropy (CE) and Weighted Cross Entropy (WCE), to

account for the imbalance in the two classes (i.e., humans

are more rare). The weights for each of the classes are com-

puted as follows for the WCE loss.

Wℓ =

(

∑ka

i=1
wihi +

∑kh

i=1
wihi

∑kℓ

i=1
wihi

)0.5

(1)

where ka and kh are the number of animals and humans in

the frame, respectively, wihi is the area of the correspond-

ing bounding box, and ℓ ∈ {a, h} (animal or human).

These experiments were performed with a batch size of
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(a) (b) (c)

(d) (e) (f)

Figure 4: Data challenges. (a) density (b) high contrast (c) clutter (vegetation) (d) clutter (reflections) (e) ghosting (f) motion

blur. Ground truth labels not shown in (e) and (f) for better visualization of effects of noise. Animals in (a), (e), (f), humans

in (b), (c), (d).

Configuration DA-FR-CE DA-FR-WCE FR-CE FR-WCE YOLOv2 SSD

Real → Real – – 0.430 0.438 0.304 0.388

Syn → Real 0.443 0.459 0.309 0.313 0.152 0.294

Table 3: Detection performance baselines using the mAP metric after domain adaptation.

1, an SGD optimizer, and a starting learning rate of 1e-

2. The learning rate was depreciated after a learning step

which was set to two epochs for the loss to converge. The

overall fine-tuning was performed for a total of 7 epochs.

YOLOv2 [42]. This model used pretrained Darknet19

weights. A batch size of 1 was taken with a starting learning

rate set to 1e-3, depreciating it by a factor of 10 after every

second epoch. The model converges after 12 epochs.

SSD [35]. This model used pretrained VGG16 weights. The

hyperparameters of the training include a batch size of 8,

initial learning rate of 1e-5, without depreciating the learn-

ing rate throughout. The training converges after a total of

12 epochs. An SGD optimizer was used with a weight de-

cay of 1e-4 and an update gamma of 0.1.

Domain Adaptive Faster RCNN [10]. This framework

was trained with the base architecture as VGG16, pretrained

with ImageNet. The corresponding overall mAPs are tabu-

lated in Table 3. Real → Real indicates that the train set

is comprised only of labeled real data and the model was

tested on real data, which is equivalent to results in Table

2. Synthetic → Real implies that the train set is comprised

of labeled synthetic data and unlabeled real data, and the

testing was performed on the test set (real data).

Results: It is not surprising to note that the best over-

all performance is achieved using Faster-RCNN with WCE,

where the weights explicitly account for the data imbal-

ance. For human objects alone, however, SSD and Faster-

RCNN (without weighting) perform comparably, while out-

performing the other methods. YOLOv2 performs worst

overall, possibly due to the small size of objects. In all

cases, there is room for improvement, especially for small

animals and humans.

The overall results of Table 2 are equivalent to the Real

→ Real row of Table 3. In the Synthetic → Real row, sim-

ply training on synthetic data and testing on real data ac-

tually decreased performance for those algorithms lacking

domain adaptation. This is not surprising either, given that

there is a visible domain shift between the synthetic and real

data subsets of BIRDSAI. It is, however, encouraging to see

that in the unsupervised domain adaptation setting of [10],

there is a noticeable increase in the mAP values. This ob-

servation suggests that further research in unsupervised do-

main adaptation could immensely benefit object detection

in aerial TIR videos, given the extremely challenging task

of annotating aerial TIR videos.

5.2. Tracking

We test both single and multi-object tracking on BIRD-

SAI, and we report results for all objects regardless of class.

In both the tracking settings, we use the same train/test

splits as used in object detection. For single-object track-

ing, video sequences were further split into perfect subse-

quences such that each subsequence had a single target ob-

ject throughout, with a minimum length of 50 frames. Once
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Method
Perfect Subsequences Full Sequence

Precision AUC Precision AUC

ECO 0.8103 0.5430 0.4842 0.2972

AD-Net 0.8029 0.5331 0.4545 0.2546

MCFTS 0.7194 0.4946 0.3401 0.1886

Siamese RPN 0.0073 0.0093 0.0041 0.0048

Table 4: Single Object Tracking Evaluation. Precision is at

20 pixels. “Perfect subsequences” excludes noisy/occluded

frames, while “Full sequence” includes them.

there was any interruption in the subsequence, whether due

to noise, occlusion, or the object exiting the frame, the

subsequence ended. This resulted in a total of 552 subse-

quences. The train/test splits of SOT subsequences were

consistent with that of the videos, i.e., all subsequences

from test videos were included in the test set, and similarly

for the training set. This means that all subsequences from a

given video appeared either in the training set or in the test

set, which yielded a train set with 386 and a test set with

166 subsequences. For testing of full sequences, we used

the test videos to generate 99 sequences of length at least 50

frames, with each sequence starting at the first appearance

of an object in the video and ending at its last appearance.

For single-object tracking, we use the Siamese RPN

[30], ECO [16] and AD-Net [59] algorithms as benchmarks,

and we also use the MCFTS [34] algorithm, which was de-

veloped specifically for the related VOT-TIR dataset. These

algorithms were then evaluated on the test set using the

usual metrics of success rate and precision [54, 32]. We

evaluated pretrained models of ECO and MCFTS, and re-

trained Siamese RPN and AD-Net on BIRDSAI. We fol-

lowed the commonly used one-pass evaluation (OPE) pro-

cess for single-object tracking [54], which required training

of models like Siamese RPN and AD-Net to be done on

the perfect subsequences, where every frame had ground

truth annotations. During testing, we performed the bench-

marking on the perfect subsequences and full sequences. As

is typical in OPE, all of the trackers were initialized using

ground truth bounding boxes in the respective first frames.

For multi-object tracking we only report the IoU Tracker

[5] with default thresholds, and object detections provided

using (i) ground truth bounding boxes and (ii) Faster-RCNN

detection. We use Faster-RCNN for MOT benchmarking

due to its superior detection results. We also include other

MOT results in the Appendix. The algorithms are evaluated

using the MOTA and MOTP evaluation metrics [45], where

higher is better. MOTA and MOTP are in the range of [-

∞, 100 (%)], and [0, 100(%)] respectively. Although they

are percentages above 0, negative values for MOTA imply

that the errors (false positives, misses, and mismatches) are

more than the ground truth objects to be tracked.

Results: See Table 4 for SOT and Table 5 for MOT

benchmarking. For SOT, Siamese RPN, which relies on

Method
Obj Size Ground Truth Det F-RCNN Det

MOTA MOTP MOTA MOTP

IoU

Tracker

S 61.6 100.0 -102.4 62.7

M 91.3 98.9 -34.4 66.9

L 80.6 100.0 13.6 68.9

Table 5: Multiple Object Tracking Evaluation. S, M, L is

for small, medium, large.

one-shot detection, fails to perform reasonably. Perfor-

mance is promising with the other methods. This seems to

be related to the length and cleanliness of the track, as evi-

denced by the improved performance in subsequences com-

pared to full sequences. However, the real world will re-

quire handling videos with imperfect tracks and noise, small

objects, and detection initialization, which leaves room for

innovation. For MOT, IoU Tracker performs very well for

ground truth bounding boxes, while it performs worse when

using Faster-RCNN detections in both of the MOTA and

MOTP metrics.

6. Conclusion

We presented BIRDSAI, a challenging dataset contain-

ing aerial, TIR images of protected areas for object detec-

tion, domain adaptation, and tracking of humans and an-

imals. In our benchmarking experiments, we noted that

state-of-the-art object detectors work well for large ani-

mals, however, for humans and small and medium ani-

mals, the performance drops substantially. Similarly, while

IoU Tracker-based multi-object tracking works well when

ground truth detections are provided, the performance drops

drastically when a detector’s output is used. These exper-

imental results indicate the challenging nature of the real

sequences in the BIRDSAI dataset. Fortunately, we saw

that baseline domain adaptive detection shows promising

improvements by leveraging the synthetic dataset. This

observation is crucial, as the annotation effort for noisy

TIR videos is enormous, and improved unsupervised do-

main adaptation techniques can prove to be very useful for

achieving competitive detection performance. We hope this

dataset will help propel research in this important area. Fi-

nally, in addition to facilitating interesting research, this

dataset will also contribute to wildlife conservation. Suc-

cessful algorithms could be used to help prevent wildlife

poaching in protected areas and count or track wildlife.
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