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Abstract

CoachGAN provides an inference time method to im-

prove outputs from GAN generator models. Similar to cre-

ating adversarial examples to fool neural network classi-

fiers, CoachGAN exploits gradient information, in this case

from a pretrained discriminator model. Unlike the gener-

ating adversarial examples, which uses gradient descent to

alter outputs directly, CoachGAN alters the inputs of gen-

erator models. This allows for output enhancements at test

time without additional model training. CoachGAN adapts

easily to existing algorithms and is architecture agnostic.

In addition to qualitative samples, we quantitatively show

that CoachGAN improves IS and FID scores on a variety of

GAN architectures and tasks.

1. Introduction

Generative Adversarial Networks (GANs) consistently

produce impressive results for a variety of tasks[].The tra-

ditional GAN setup involves generator and discriminator

models in a mini-max training scenario trying to optimize

opposing loss functions. It is common to discard the dis-

criminator after training and use only the generator model

to produce novel synthetic outputs. We introduce an effi-

cient post-training algorithm, CoachGAN, that exploits in-

formation in the discriminator at inference time to generate

more realistic outputs.

At inference time, CoachGAN depends on a well-trained

discriminator model that can accurately classify images as

real or fake. This provides the generator with otherwise

unavailable feedback on output quality at inference time.

Rather than update the weights of the generator, which

might reduce future generation quality, CoachGAN alters

the input to improve realism. Metaphorically, CoachGAN

takes on the role of an advisor that provides feedback to the

generator at inference time.

Previous work [37, 26] explore input-centric methods to

Figure 1. Applying CoachGAN to images generated by a GAN

trained on the CelebA dataset. Each row shows the transition from

original image (left) to final output (right).

generate adversarial examples to improve the robustness of

an auxiliary neural network classifier. CoachGAN instead

uses information synthesized by a discriminator model to

refine generator inputs to be more realistic. Unlike previ-

ous methods, CoachGAN does not require training addi-

tional models [37] or access to real training data during in-

ference [37, 26]. Figure 1 demonstrates the gradual output

refinement of CoachGAN using a DCGAN [24] generator

and discriminator trained on the CelebA dataset.

CoachGAN provides an efficient inference time method

that requires no modification of the generator and discrimi-

nator architectures. In addition, CoachGAN easily adapts to

any GAN architecture with differentiable models and loss

functions. We demonstrate this in our experiments with

several unique GAN architectures and a variety of datasets.

This work provides the following contributions:

• The CoachGAN algorithm, which uses a pretrained

discriminator to improve generator outputs at infer-

ence time.

• A wide variety of empirical results that demonstrate

the effectiveness and adaptability of CoachGAN.
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• A quantitative comparison of CoachGAN and non-

CoachGAN outputs using Inception Score and Fréchet

Inception Distance.

In Section 2 we briefly review relevant work. In Section 3,

we introduce and discuss the CoachGAN algorithm. Sec-

tion 4 outlines experiments and discusses qualitative and

quantitative results. Section 5 summarizes this work and

examines implications and paths for future work.

2. Related work

To the best of our knowledge, no previous work exploits

information in the discriminator at test time for the sake of

improving generator output. However, previous work has

explored generator input adjustments to favor a more nat-

ural look for adversarial examples, which are then used to

increase the overall robustness of a classifier model.

Early adversarial methods ([16, 19, 23]) use backprop-

agation to add gradient-based noise and create ‘adversar-

ial’ examples that convincingly fool neural network classi-

fiers. Such approaches employ algorithms such as the Fast

Gradient Sign Method [10] to exploit the linear behavior

of neural networks when dealing with high dimensional in-

puts [20]. Similarly, [21] synthesizes the preferred inputs

of a classification model for each class by performing ac-

tivation maximization on the output neurons. While these

various methods can effectively fool neural network clas-

sifiers, generated images often contain unrealistic curves,

distortions, and color blending.

Several works map an adversarially altered training in-

stance, x̂, to a latent space vector, z∗, such that x̂ ≈ G(z∗).
For instance, [37] uses an inverter network, Iγ , to map x̂

to z∗. Alternatively, z∗ can be found by optimization to

minimize differenes between G(z∗) and x̂ [26]. By project-

ing adversarial images onto the range of G, these methods

can remove unrealistic blurs and artifacts to produce more

natural-looking images. While these approaches produce

more natural-looking adversaries, [37] requires training an

additional inversion model, and [26] samples several z and

attempts to minimize a non-convex optimization task.

Several works introduce image editing tools that manip-

ulate low-level latent spaces that approximate the natural

image manifold. For example, users suggest facial fea-

ture changes [6] or color and structure edits [38] in pixel

space and a model performs the gradient updates in the la-

tent space. While these methods generally result in more

coherent and visually pleasing images, they require training

models that predict the latent vector, z∗, that most closely

matches a user’s edits. A technique similar to CoachGAN is

used for image inpainting [35], but some components of the

algorithm (e.g. pixel distance-weighting to corrupted image

regions) do not generalize to other GAN tasks.

The Deep Image Prior (DIP) method [30] asserts that a

randomly initialized neural network is an effective image

prior as the result of low-level, structural information that

exists implicitly in the network architecture. However, DIP

requires an iterative, computationally-expensive optimiza-

tion of an entire randomly-initialized neural network for ev-

ery single input instance. CoachGAN, on the other hand,

can improve large batches of outputs simultaneously. Fur-

thermore, CoachGAN naturally extends to non-image do-

mains, while DIP is exclusively suited to the image domain.

Other methods, such as the GLO framework [3], simi-

larly perform optimization in the latent space. While GLO

gives a training-time approach to optimize an embedding

space using Laplacian pyramid and ℓ2 losses, CoachGAN

provides an inference time method that works with arbi-

trary differentiable losses. Also, despite encouraging results

on the CelebA dataset, GLO performs poorly compared to

GANs on larger datasets such as LSUN [3].

The introspective generative modeling approach gener-

ates textures by performing gradient accent in pixel-space

over a series of T = 20 trained CNN classifiers [17]. In

contrast, CoachGAN uses a single discriminator and per-

forms gradient descent in latent space to improve generator

outputs at inference time. An advisor analogy is also used

in [34] to describe training two distinct generative mod-

els using MCMC sampling. Despite a similar metaphor,

CoachGAN differs in purpose and approach. Our method is

architecture-agnostic and runs at inference time.

3. Method

CoachGAN provides a post-training, modular approach

to improve the outputs of a generator. Given input z and

pretrained G and D models with frozen weights, Coach-

GAN improves output realism by gradually altering z using

backpropagation and gradient descent. The input z is not

limited to latent space vectors, but can take the form of any

continuous input space. CoachGAN uses the same differ-

entiable loss, LG, used during training for G. In this case,

however, CoachGAN backpropagates LG through D and G

and performs a gradient descent update only on z. Thus at

timestep t CoachGAN computes the loss

Lt = LG(G(zt)) (1)

and z receives receives a gradient update according to the

chosen optimization method. Under basic stochastic gradi-

ent descent optimization, zt+1 would update as

zt+1 = zt − η
∂LG

∂z
(2)

where η is the learning rate. At time t + 1, CoachGAN

computes the loss as

Lt+1 = LG(G(zt+1)) (3)
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This CoachGAN optimization process repeats for a user-

specified number of iterations, κ.

As a specific example, consider the original minimax

GAN objective function:

min
G

max
D

log(D(x)) + log(1−D(G(z))) (4)

Traditionally, an optimizer for G minimizes LG = log(1−
D(G(z))), or it maximizes log(D(G(z)), which helps

avoid vanishing gradient problems [9]. CoachGAN uses the

the same LG as in training, but does not compute gradients

with respect to θG, the weights of G. Instead, CoachGAN

computes gradients with respect to the original input, z. In

this work, we use the improved Wasserstein GAN loss [11],

where CoachGAN attempts to minimize LG = −D(G(z)).
In the following subsection, we discuss the CoachGAN loss

surface and path taken by gradient descent.

3.1. Theory

The work of [28] shows that the latent space manifolds of

deep neural networks approximate zero curvature. This sug-

gests that movement in latent space z resembles geodesics,

which minimize the distance between output points [31].

This idea is commonly used in GAN spherical interpola-

tion methods [29, 33], which produce more realistic output

transitions than linear interpolations between outputs. From

this viewpoint, we can consider CoachGAN as a partial op-

timization of latent sample z in an R
|z|-dimensional mani-

fold defined by LG. Similar to geodesics, small movements

in the z latent space can quickly produce realistic transitions

in the output.

Like heuristic activation and weight regularization tech-

niques, CoachGAN does not provably guarantee improved

output realism. However, empirical results suggest that

CoachGAN tends to improve generated outputs.

3.2. Intuition

To demonstrate the behavior of CoachGAN, we conduct

a simple experiment using the pretrained DCGAN G and D

that generated the results shown in Figure 1. We sample a

single 100-dimensional z vector from a spherical Gaussian.

Since visualizing the effects of CoachGAN in R
100 space

is infeasible, we perform the following simplifications: We

hold all zk constant, where k ∈ [3, 100], and only allow

CoachGAN to change z1 and z2. For reference, we plot the

outputs of −D(G(z)) when varying z1 and z2 from -4 to 4

by increments of 0.4. This provides an intuitive illustration

of CoachGAN’s loss landscape and behavior throughout op-

timization.

We initialized CoachGAN with z1 = z2 = 0.0 and

allowed the algorithm to run for 200 iterations using an

Adam optimizer with a learning rate of 0.01. Figure 2 plots

the path traveled by CoachGAN as well as sample outputs.

(a) (b) (c) (d)

Figure 2. Starting at z1 = z2 = 0.0, CoachGAN uses an optimizer

(Adam used here) to follow the direction in z-space that minimizes

that value of −D(G(z)). To visualize the effects of our method,

we only allow CoachGAN to update z1 and z2. Images (a-c) and

the associated marks on the graph correspond with CoachGAN

outputs at iteration 1, 200, and 400, respectively. Image (d) shows

the output generated when CoachGAN optimizes the full z vector.

Subfigures 2(a-c) and the associated marks on the graph cor-

respond with CoachGAN outputs at iterations 1, 100, and

200, respectively. The realism of the images increase with

more iterations, though the results are limited when only

optimizes 2 out of 100 dimensions. Figure 2(d) shows the

final output at 200 iterations when CoachGAN can optimize

all zk, not just z1 and z2.

In later experiments, we use a smaller learning rate and

fewer coaching iterations to prevent significant changes in

the identity of the original output (e.g. Subfigure 2(d)). We

employed the high η and κ values solely to demonstrate the

movement through the loss surface.

3.2.1 Basins of Attraction

One consideration in evaluating the usefulness of Coach-

GAN is whether or not CoachGAN descreases the number

of possible outputs from G. In other words, does Coach-

GAN guide z to a limited number of basins in the input

space? Also, does CoachGAN simply push z toward previ-

ous z values encountered during training?

To answer these questions, we conducted a simple ex-

periment using DCGAN G and D models and the MNIST

dataset. We train the models for 10 epochs on the training

set and record all 600,000 zt used in training. After train-

ing, we sample an additional 5, 000 random zi and perform

CoachGAN for 10 iterations with a learning rate of 0.01,
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which yields the coached input, zic. To test whether similar

but unique z converge to the same basin, we also perform

CoachGAN on z′i = zi + N (0, ǫ), where ǫ = 0.001. This

finds the coached input z′ic. We tested other parameter val-

ues (i.e. learning rate, number of CoachGAN iterations, and

ǫ) and report those results in our supplementary materials.

To quantify the relationship between zi and zic, as well

as zic and z′ic, we compute a number of statistics. First, we

calculate distance of zc to the the nearest zt in z-space. To

calculate this value we average the L2-norm of the vector

difference between zi and the nearest zt from the training

set.

Nearest-Training-Z-Distance =
1

n

∑

i

min
t

||zi − zt||

(5)

Next we calculate the distance in pixel space between G(zi)
and G(z′ic) as the L2-Norm between the outputs, which we

average across all 5,000 samples.

Pixel-Distance =
1

n

∑

i

||G(zi)−G(z′ic)|| (6)

Finally, we calculate the average z-space distance between

zic and z′ic.

Z-Distance =
1

n

∑

i

||zic − z′ic|| (7)

This measures the similarity of the z vector coaching paths

given only a small amount of Gaussian noise differentiating

the inputs.

The top-left plot in Figure 3 shows both that zi and z′i
yield measurably different output images, and CoachGAN

does not simply push zi toward z encountered during train-

ing. The top-right plot shows that zi and z′i end up at distinct

z after undergoing CoachGAN refinement. The bottom plot

confirms the positive correlation between pixel-distance and

z-space distance.

Figure 4 shows sample outputs from this experiment.

Our results demonstrate that CoachGAN does not push z

vectors into large basins of attraction, or significantly re-

duce the number of possible outputs. Even when zi and zic
differ by just N (0, 0.001), the resultant outputs often show

visual distinctions. This suggests that CoachGAN makes

dimension specific updates based on the overall state of an

embedding vector. A tiny amount of noise added to an in-

put vector can alter which dimensions CoachGAN updates

at inference time.

3.2.2 Discussion

Dense, high-dimensional target domain spaces makes the

generation of realistic outputs for all z highly improba-

ble. Training algorithms like Wasserstein GAN [1] and Im-

Figure 3. 2D histograms comparing the relationships of pixel dis-

tance, z-space distance, and nearest training z distance metrics.

Even with a difference of just N (0, 0.001), zi and z′i often pro-

duce visually distinct outputs. Furthermore, CoachGAN does not

push z vectors toward basins of attraction around zt.

Figure 4. Output comparison of the original and coached sam-

ples, G(zi) and G(zic), to G(z′i) and G(z′ic), where z′ic =
zi + N (0, 0.001). Even with a small amount of random noise

(which does not noticeably alter the original output), visual differ-

ences appear in the resultant coached outputs.

proved Wasserstein GAN [11] encourage smoother interpo-

lations in the output space and generally improve conver-

gence. However, these methods still struggle to achieve full

mode-coverage due to factors like insufficient model capac-

ity or a poorly enforced Lipschitz gradient contraint [27].

CoachGAN provides a method to push portions of the

input into domain areas that lead to more confidently real-

istic outputs. As an example, consider the output shown

in Figure 5. The leftmost image shows the faint outline

of a pair of glasses around the man’s eyes. CoachGAN

performs element-wise adjustments on z using gradient de-

scent, which results in a more pronounced pair of glasses in

the final right image. Effectively, CoachGAN encourages

small coordinated steps in the continuous domain space to

generate a more believable final output.
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Figure 5. Left to right: transition from original image to final

CoachGAN output. The leftmost image shows a faint, partially

generated set of glasses. By pushing the source input vector to-

ward the closest element-wise modes, CoachGAN allows G to

generate a clear set of glasses.

Figure 6. Introducing adversarial noise to the the original outputs

(left) creates blurred and artifact-laden images (right) which fool

D. By instead altering the input directly, CoachGAN allows for

enhancements in output realism.

3.3. Optimizing output directly

For sake of comparison, we experimented with optimiz-

ing the output of G directly, rather than altering the origi-

nal input. This removes the need to backpropagate through

G and slightly speeds up the CoachGAN process. Unfortu-

nately, this approach does not produce the same high quality

results as the input-altering CoachGAN algorithm. Figure

6 shows an example output of CoachGAN when optimizing

the outputs for the CelebA dataset. Instead of increasing the

realism of outputs, this method simply adds adversarial-like

noise [10].

4. Experiments

CoachGAN does not assume a particular optimization al-

gorithm, but we use Adam for our experiments. We found

a basic tradeoff between the chosen number of iterations, κ,

and the optimizer learning rate, η. For example, in Figure

7, we show the output refinement for a single image with

η ∈ {0.002, 0.004, 0.01} (rows) and κ ∈ {5, 10, 20, 40}
(columns). The diagonal from top right to bottom left re-

veals that the various settings produced similar output im-

ages. For faster convergence, CoachGAN can use a larger

η and smaller κ. In general, however, we found the best

results with smaller η such as 0.001 and κ between 50 and

100. This appears to hold true for a variety of algorithms

and datasets, which we discuss in subsequent sections.

CoachGAN adapts easily to various training algorithms

and provides noticeable improvements to generated out-

puts. We evaluate CoachGAN on the original unconditional

Figure 7. Effects of different learning rates, η, and iterations, κ, for

CoachGAN using G and D trained for 40 epochs on the CelebA

dataset. Left to right: transition from original image to final

CoachGAN output.

GAN architecture [9] using the CelebA and LSUN bedroom

datasets. Adding CoachGAN required minimal code alter-

ation and often led to substantial qualitative improvements,

as we demonstrate in the following subsections.

We emphasize that CoachGAN improves the majority of

GAN outputs. Under certain circumstances, such as poorly

trained models or blurry training images, we observed that

CoachGAN magnifies existing noise in outputs. Addition-

ally, if the initial output, G(z), already appears realistic,

CoachGAN does not directly improve realism, but adjusts

image characteristics to match those most favored by D.

We provide specific examples of this D favoritism in our re-

sults. We also provide randomly sampled CoachGAN out-

puts and quantitative evaluation to demonstrate the general

behavior of CoachGAN.

4.1. Unconditional GAN

We first present results for the basic unconditional GAN

algorithm. We employ the DCGAN [24] G and D models

and the WGAN-GP [11] training algorithm for these exper-

iments.

4.1.1 CelebA

For the CelebA experiments, we trained G and D for 40

epochs using the same parameters as [24]: A learning rate

of 0.0002, batch size of 64, and the Adam optimizer with

β1 = 0.5 and β2 = 0.999. We center cropped the training

data and resized images to 64x64 for faster processing.

As demonstrated in Figures 1, 2, and 5, CoachGAN can

provide remarkable improvements to low quality outputs

from G. We include additional CelebA output transfor-

mations from randomly sampled z vectors in the supple-

mentary materials. These results illustrate the effectiveness
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Figure 8. Left to right: transition from original image to final

CoachGAN output. CoachGAN reveals learned rotation biases of

D. Both the man and woman are centered with eyes facing for-

ward.

Figure 9. 5-Nearest Neighbors in the training set for the origi-

nal generated output (top-left) and the CoachGAN refined output

(bottom-left).

of CoachGAN in performing a wide variety of realism en-

hancements at inference time.

When the output images of G already appear realistic,

CoachGAN pushes outputs to resemble the modes of the

dataset, as captured by D during training. For instance,

Figure 8 reveals that D favors centered, face-forward im-

ages. This is not unexpected, as most images in the CelebA

dataset possess these characteristics. Other modes of D

that we empirically observed include brightening images,

removing bangs, and reducing baldness.

4.1.2 Nearest neighbor

Similar to Section 3.2.1, we verify that CoachGAN does

not push generated outputs toward existing training sam-

ples. In order to test this, we perform a 5-Nearest Neighbor

search on the training set. Rather than use a distance met-

ric in the output space, we adopt the method of [7], which

computes the distance in feature space using the activations

of several layers of a pretrained VGG-19 network. Figure

9 displays the nearest neighbor results for both an original

output sample and the CoachGAN refined output. The re-

sults show that CoachGAN does not push outputs toward

existing training set samples. Rather, CoachGAN greedily

adjusts inputs in Z space to generate outputs that better fool

D.

4.1.3 LSUN

Using the same DCGAN and WGAN-GP setup as the

CelebA experiments, we further explored the effects of

Figure 10. Randomly sampled CoachGAN outputs using a G and

D trained on the LSUN bedroom dataset. Left to right: transition

from original output to final CoachGAN output.

CoachGAN on downsampled 64x64 LSUN bedroom im-

ages. Figure 10 shows the CoachGAN transformations for

7 randomly sampled z vectors. These outputs demonstrate

that CoachGAN is not limited to highly regular datasets,

such as the centered and aligned CelebA face images. For

the generated LSUN outputs, CoachGAN clarifies the edges

of bedding and walls, removes blurring, and even adds de-

tails to windows and reflective surfaces.

4.1.4 Progressive Growing of GANs

An increasing number of research groups provide access

to their pretrained GAN weights online. This means that

CoachGAN can readily be used with a variety of publi-

cally available state-of-the-art methods. To demonstrate the

ease with which CoachGAN adapts to other models, we

applied CoachGAN to the Progressive Growing of GANs

(PGGAN) [14] inference method. Expanding upon earlier

pyramid-based [8] or multi-step GAN training algorithms

[36], PGGAN generates outputs of increasingly higher res-

olution - ultimately producing a 1024×1024 output images.

With only a few lines of additional code, we success-

fully augmented PGGAN inference with CoachGAN. Fig-
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ure 11 shows samples comparing original (left) and Coach-

GAN outputs (right). In the top image, CoachGAN largely

removes the color blob covering the man’s head. As for the

middle image, CoachGAN improves the hair texture and re-

moves artifacts from the forehead. In the bottom image,

CoachGAN seals a gap in the woman’s neck and completes

a partially created earing. We include additional PGGAN

samples with corresponding CoachGAN outputs in our sup-

plementary materials.

4.1.5 StyleGAN

The recent StyleGAN model [15] builds upon style trans-

fer methods [13] to yield an unprecedented level of high-

definition sample quality as well as a better disentangled

feature space. Besides introducing and using the larger

70,000-image FFHQ dataset (compared to 30,000 images in

CelebA-HQ), StyleGAN relies on the truncation trick (TT)

[5], which reduces the latent sampling space in order to im-

prove image quality. While the resampling approach of TT

performs a similar function as CoachGAN, TT reduces im-

age variation – especially when using low truncation val-

ues. In contrast, CoachGAN can yield noticeable improve-

ments with just tiny changes to the original latent vector, as

demonstrated in Section 3.2.1.

TT also does not scale well to arbitrary generator ar-

chitectures. For instance, [5] notes that orthogonal regu-

larization of the weights of each layer of the generator is

needed for TT to work effectively in their BigGAN method.

CoachGAN, on the other hand, works with any differen-

tiable GAN architecture and does not require layer modi-

fication or access to the generator weights. We note that

TT relies on random resampling of the input latent vector,

whereas CoachGAN uses gradient descent to more intelli-

gently search for a ‘improved’ latent vector. We expect that

CoachGAN can yield improvements even after applying TT.

To test this claim, we compare FID scores of StyleGAN us-

ing TT with a threshold of 0.7 (as used in [15]) and TT +

CoachGAN in Section 4.4.

4.2. Conditional GAN

4.2.1 BigGAN

Google’s class conditional BigGAN [5] significantly im-

proved state-of-the-art FID and IS scores for condition

GAN generation. Although the official online repository

provides only pretrained generator weights for several im-

age resolutions, the primary BigGAN author released a Py-

Torch version of BigGAN, which includes pretrained G and

D models. Because this unofficial model trained on just Im-

ageNet (rather than expanded dataset used in the paper), the

model does not attain the state-of-the-art results reported in

[5]. However, we still observe improvements in IS and FID

score, as we demonstrate in the next section. We include

a video of before and after CoachGAN image comparisons

for BigGAN in our supplementary work. z

4.3. Quantitative evaluation

Inception Score (IS) [11] remains one of the most pop-

ular and widely adopted GAN evaluation metrics. Using

a representative image sample from generator, G, IS pro-

duces class label distributions using a pretrained Inception

v3 classification neural network. IS then calculates the

Kullback-Leibler divergence between the class distribution

of each generated output, p(y|G(zi)), and the average label

distribution of all samples, p(y). The exponentiated expec-

tation of these KL-divergences yields the final IS score. We

write this as

IS(G) = exp( EG(zi) KL( p(y|G(zi)) || p(y)) ) (8)

The work introducing IS, [25], states that IS tends to corre-

late well with human opinion of image realism.

Since IS calculates an entropy distribution over 1,000

ImageNet classes, we do not measure IS on the single-class

datasets such as CelebA and LSUN-bedroom. We do, how-

ever, measure IS on a DCGAN trained on CIFAR-10 for 200

epochs and a BigGAN model trained for 100 epochs. Due

to limited model capacity (DCGAN) and reduced training

time and data (BigGAN), we do not observe state-of-the-art

IS values in these experiments. Rather, we hypothesize that

CoachGAN will lead to a relative increase in IS for each of

the GAN experiments.

Following the recommendation of [2], we generate

50,000 samples for calculating IS. We report the initial IS

and IS after applying CoachGAN with κ = 10 and η = 0.01
for CIFAR and κ = 1 and η = 0.01 for BigGAN. The re-

sults in Table 1 show that CoachGAN improves the baseline

IS score.

Dataset IS-PRE IS-POST

CIFAR-10 4.79 5.00

BigGAN 60.30 60.48
Table 1. Inception Score calculated before (PRE) and after Coach-

GAN (POST), where higher scores are better.

4.4. Fréchet inception distance

Although IS remains a popular metric for GAN evalua-

tion, its use is limited for datasets that do not share classes

with ImageNet. In fact, an increasing number of theoretical

and empirical analyses [2, 4, 22] demonstrate that IS does

not measure intra-class diversity and fails to detect train-

ing set memorization. Additionally, IS relies on an Incep-

tion model pretrained on the 1000-label ImageNet dataset,

which may not be appropriate for non-ImageNet GAN eval-

uation tasks (e.g. GANs trained on data with image statis-

tics and label distributions that differ noticeably from Ima-

geNet).
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Because of this, we evaluate CoachGAN using the

Fréchet Inception Distance (FID) [12], which is calculated

based on the activations of a 2048-dimension pooling layer

in the Inception v3 network. Using real data samples, X ,

and generated samples, G(Z), FID is calculated as

FID = ||µX−µG(Z)||
2+Tr(ΣX+ΣG(Z)−2(ΣXΣG(Z))

1

2 )
(9)

We also calculate FID using coached Z ′ values.

Using pretrained CIFAR-10, LSUN-bedroom, and

CelebA DCGAN models, we use κ = 10 and η = 0.01
to compare FID before and after CoachGAN. We calculate

these scores using FID statistics computed over the entire

training datasets and 50,000 generated or coached images.

CoachGAN produces better (lower) FID scores for two out

of three of the DCGAN models (see Table 2).

Dataset PRE POST

CelebA 17.95 16.43

CIFAR-10 35.29 34.38

LSUN 24.22 24.34

PGGAN 54.36 54.13

StyleGAN 16.74 16.55

BigGAN 40.35 40.20
Table 2. Frechet Inception Distance calculated with z samples be-

fore (PRE) and after applying CoachGAN (POST). CoachGAN

improves FID (lower is better) for both CelebA and CIFAR-10

pretrained DCGAN models.

We also calculate pre- and post-CoachGAN FID scores

for PGGAN, StyleGAN, and BigGAN using κ = 1 and

η = 0.01 (we observed similar results for various trade-

offs of η and κ). Because Celeb-HQ only contains 30,000

training images, it is not ideal for calculating FID scores

with 50,000 samples PGGAN images. The FFHQ dataset,

which is an expanded version of the Celeb-HQ dataset from

[15], contains 70,000 images. We use FFHQ as the ground

truth dataset for scoring both PGGAN and StyleGAN. Ta-

ble 2 reports the FID results for these experiments. All three

models yield improved FID scores when using CoachGAN.

4.4.1 Runtime

While CoachGAN works best with small learning rates and

more iterations, we also observe improvements for single-

step coaching with larger learning rates (as demonstrated

in the PGGAN, StyleGAN, and BigGAN experiments).

Single-step coaching can improve results with a moderate

increase in running time. To quantify this statement, we

compare generation times with and without CoachGAN for

DCGAN, PGGAN and BigGAN in Table 3. We use an

NVIDIA Tesla P100 GPU for these experiments.

Although using CoachGAN with BigGAN (the model

with the greatest complexity) roughly triples inference time,

Figure 11. Left: Original images generated with the Progressive

Growing of GANs model [14]. Right: The resultant images after

applying CoachGAN.

Normal CoachGAN

DCGAN 0.0009073 0.00535

PGGAN 0.02202 0.0229

BigGAN 0.06157 0.18806
Table 3. Generation runtime (in seconds) with and without Coach-

GAN.

the total time is still under 0.2 seconds. In our experiments,

coaching 50,000 samples with a batch-size of 16 took less

than an hour on a single GPU. Larger batch sizes and a

more powerful GPU could further reduce the time needed

for CoachGAN.

5. Conclusion

CoachGAN provides a modular, effective approach to

improve generator outputs at inference time. We have em-

pirically demonstrated qualitative and quantitative improve-

ments using CoachGAN with a variety of datasets. We

also demonstrated the ease of applying CoachGAN to dif-

ferent GAN architectures with distinct loss functions (e.g.

DCGAN, PGGAN, StyleGAN, and BigGAN). Regarding

current applications, there is an increasing interest in using

GANs for image editing and synthesis [6, 38, 32, 18]. Such

applications require high quality results and the potential

for user control. CoachGAN can both refine poor quality

results and allow users to select a precise output from se-

quences of images generated by CoachGAN’s SGD steps.

Future work will consider task-specific constraints to

preserve desired features. For instance, CoachGAN could

restrict changes that alter characteristics such as gender,

hair color, or pose when improving outputs of the CelebA

dataset. This could prove useful when applying CoachGAN

to video sequence generation, where certain visual features

must stay constant from frame to frame.
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