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Abstract

We propose a neural style transfer method for colored

point clouds which allows stylizing the geometry and/or

color property of a point cloud from another. The styliza-

tion is achieved by manipulating the content representations

and Gram-based style representations extracted from a pre-

trained PointNet-based classification network for colored

point clouds. As Gram-based style representation is invari-

ant to the number or the order of points, the style can also

be an image in the case of stylizing the color property of a

point cloud by merely treating the image as a set of pixels.

Experimental results and analysis demonstrate the capabil-

ity of the proposed method for stylizing a point cloud either

from another point cloud or an image.

1. Introduction

Point cloud is an essential 3D representation of the phys-

ical world that can be obtained by range sensors like LiDAR

or RGB-D camera. Point cloud is used in many real-world

applications, e.g. autonomous driving and virtual reality ex-

perience. With the increased need of point cloud content, it

would be pleasing to if we can edit existing point clouds to

enrich point cloud contents. For example, in VR chat, we

could change the theme of the room; in 3D animation char-

acter design, we could create a series of characters based on

a few different characters. However, this task is challeng-

ing in that a point cloud usually contains numerous points

scattered in 3D space, which is not easy to edit.

In image editing, neural style transfer [7] is a promis-

ing method that stylizes a source image by just providing

a target image along with a pre-trained ConvNet [19]. The

network implicitly encodes the style of the target image and

transfers it onto the source image. This method is advanta-

geous in that the source image is modified as a whole; thus

no region of interest needs to be designated. Inspired by the

idea, we aim to edit a whole point cloud by stylizing it from
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Figure 1: PSNet independently stylizes the geometry or/and

color property of a point cloud from a style point cloud. The

style can also be an image in the case of stylizing only color

property.

a target. To this end, a pre-trained neural network that can

extract representation for point cloud is required.

Recent years, neural networks that can directly con-

sume point cloud for different tasks, such as classifica-

tion [5, 16], semantic segmentation [18], and instance seg-

mentation [22], have been studied. PointNet and PointNet-

based networks apply a shared MLP to a set of points to ex-

pand the dimension of each point and use pooling to aggre-

gate a global feature vector for the point cloud. Therefore,

the intermediate output of these networks has a different

meaning than that from ConvNets. How we can utilize the

intermediate output of PointNet-like networks for stylizing

point clouds remains uncertain.

In this study, we propose PSNet, a PointNet-based styl-

ization neural network allowing geometry and/or color

property transfer from a point cloud to another. Compared

with PointNet, we apply two shared MLPs to extract rep-

resentation for the geometry and color property of a point
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cloud, respectively. We treat the intermediate outputs of the

input point cloud as the content representation and implic-

itly encode the style of the point cloud with Gram-matrix of

these intermediate outputs. By matching with the style rep-

resentation of the geometry and/or the color property of a

style point cloud, the geometry and/or the color of the con-

tent point cloud is stylized. This method enables editing a

point cloud by just providing a target style point cloud. In

addition, PSNet can be adopted to stylize the color property

of a point cloud from an image by treating the image as a set

of pixels (points), as the Gram-based style representation is

invariant to the number or the order of input points.

Our contributions can be summarized as follows:

1. We demonstrate that feature representations extracted

from a PointNet-based network can be utilized to styl-

ize a colored point cloud.

2. We propose PSNet, a network that can stylize the ge-

ometry and/or the color property of a point cloud from

another point cloud or even an image; the number of

points in the two point clouds need not be the same.

2. Related Work

Neural style transfer between images. Neural style

transfer aims at seeking a stylized image that preserves the

content of a content image with its style from a style image

by utilizing feature representations extracted from neural

networks. Gatys et al. [7] propose a style transfer method by

iteratively updating an image such that its content represen-

tation and style representation extracted from VGG [19] si-

multaneously match with that of a content image and a style

image. This online optimization algorithm suffers from ef-

ficiency issue. To address the issue, a bunch of follow-up

work additionally trains a neural network which can gener-

ate the stylized image with only one feed-forward pass. De-

pending on how many types of styles can one network gen-

erate, this type of method can be classified into three sub-

classes: per-style-per-model [11, 21], multiple-style-per-

model [14, 25] and arbitrary-style-per-model [8].

Gatys et al. [7] utilize the Gram matrix of feature maps to

represent the style of an image, and this almost becomes an

unsuspicious standard. Li et al. [15] point out the matching

of Gram-based style representation is equivalent to mini-

mizing Maximum Mean Discrepancy (MMD) between fea-

ture maps of style images and stylized images, and demon-

strate other distribution alignment options for style transfer.

Point set representation learning. Learning good repre-

sentations directly from point clouds in an end-to-end fash-

ion is a challenging task due to its irregular data struc-

ture. PointNet [5] is a pioneering work in addressing this

problem. To address the variant order issue of an point

cloud, PointNet first applies a shared multi-layer percep-

tron (MLP) to expand each 3D point to higher dimensional

feature space, and then use a symmetric function, e.g. max-

pooling, to aggregate information along feature axis. This

aggregation results in a global feature representing the over-

all shape of the point cloud. PointNet++ [16] further im-

proved PointNet by recursively applying PointNet to points

in local regions to capture local structures at different scales.

Similarly, PointCNN [13] designs an X-conv operation to

overcome irregularity, and PointSIFT [10] designs an ori-

entation encoding unit to extract multi-scale representations

from point clouds. SpiderCNN [23] encodes the spatial dif-

ference between a point and its neighbours into filter func-

tions and extend transitional convolutional operation to ir-

regular point sets.

3. Method

In this section, we first describe the architecture of PSNet

for colored point cloud classification; then we explain how

to utilize the feature representations extracted from PSNet

for style transfer. Finally, we explain the extension of the

same method to transfer the style of images onto the color

expression of point clouds.

3.1. Classification network for colored point clouds

We adopt a PointNet [5] based neural network to ex-

tract feature representations for point clouds. To extract a

global feature for a point cloud that is invariant to the or-

der of points, PointNet applies shared MLP to all points to

extend their dimensions and utilizes a symmetric function

(max pooling) to aggregate a global feature vector.

We make two modifications to PointNet for colored point

clouds classification. First, instead of applying one shared

MLP, we apply two separate MLPs to the geometry and

color property of the point cloud, respectively. Without loss

of generality, we denote a point cloud P as a N × 6 matrix,

in which each row is its XYZ coordinates and RGB colors,

and the identity of P is invariant to the order of its rows. We

split P into Pgeo and Pcolor, two N × 3 matrices contain-

ing only XYZ coordinates and RGB colors, respectively.

Then two global feature vectors independently extracted for

Pgeo and Pcolor are concatenated into one 4096-d vector, as

shown in Fig. 2(a).

Second, as shown in the black dashed box in Fig. 2(b),

for the output of each shared MLP, we extract a global fea-

ture vector and concatenate it to each feature. This oper-

ation results in features containing both its local informa-

tion and global information. We term the modified layer

as feature encoding layer (FEL). The number after FEL

in Fig. 2(a) denotes the dimension of each feature after be-

ing passed that FEL. Suppose A
l−1 is the input of the lth

FEL, then A
l is obtained by FEL(Al−1;W l), and A

0 is

Pgeo or Pcolor. In our implementation, l is up to 4.
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Figure 2: Network architecture for feature extraction. (a)

The geometry and color property of a point cloud are sep-

arately processed by a stack of FELs; then two global fea-

tures are extracted and concatenated into one 4096-d vector,

which was further processed by a MLP. (b) Feature Encod-

ing Layer (FEL). The numbers within brackets denote the

dimensions of matrices. We first compute F l by multiply-

ing each row of the input Al−1 with the weight matrix W l.

Then, the maximum vector of F l is calculated and concate-

nated to each row of F l. This concatenation results in Al,

the output of this layer and the input to the next layer. F l

is taken as content representation while the Gram matrix of

F l is taken as style representation.

3.2. Style transfer between point clouds

To perform style transfer between point clouds, we fol-

low the idea of neural style transfer [7]. Given a pre-trained

feature extractor, a content point cloud C ∈ R
Nc×6 and

a style point cloud S ∈ R
Ns×6, we try to seek a stylized

point cloud P ∈ R
Np×6 that minimizes the following loss

function:

P
*
geo = arg min

Pgeo

Lgeo content(Pgeo,Cgeo)

+αgeoLgeo style(Pgeo,Sgeo)

(1)

P
*
color = arg min

Pcolor

Lcolor content(Pcolor,Ccolor)

+αcolorLcolor style(Pcolor,Scolor),

(2)

where L· content measure the difference between the content

representation of P and C, and L· style compares the style

representation of P and S. αgeo or αcolor balance the con-

tent component and style component in the stylized point

cloud.

Let F l(·) denote the feature response directly after the

activation function in the lth FEL. The number of row in

F l(·) is decided by that of the input point cloud, and the

dimension of each row is ml. This feature response is con-

sidered as the content representation of the point cloud, as

shown in the red dashed box in Fig. 2(b). We define the con-

tent loss for geometry and color independently as follows:

Lgeo content(Pgeo,Cgeo) =
∑

l∈{lc}

‖F l(Pgeo)− F l(Cgeo)‖
2
2

(3)

Lcolor content(Pcolor,Ccolor) =
∑

l∈{lc}

‖F l(Pcolor)− F l(Ccolor)‖
2
2,

(4)

where {lc} denotes the set of FEL layers from which we

extract feature representations for computing content loss.

The style representation in lth FEL is the Gram matrix of

F l(·), as shown in the red dashed box in Fig. 2(b). Next, we

explain how this works for feature representation extracted

by FELs. Let F l
:j(·) denote the jth column in F l(·). Each

element in this column is the inner product between the j-th

column in the weight matrix W l and its corresponding row

in F l(·). Thus, the jth column in W l can be viewed as a

filter, and F l
:j is the response to that filter. In other words,

the jth column in W l and F l
:j is analogous to a convolution

kernel and the feature map to that kernel in convolutional

neural networks.

Taking the analogy into consideration, we compute

Gij(F
l(·)), the ijth element of the Gram matrix for F l(·)

as the inner product between the ith column and jth column

of F l(·):
Gij(F (·)) = f

⊤
i fj .

We denote G(F l(·)) ∈ R
ml×mlas the whole Gram matrix,

of which the dimension is solely decided by the number of

columns in the weight matrix W l.

The style loss for geometry and color is defined indepen-

dently as follows:

Lgeo style(Pgeo,Sgeo) =
∑

l∈{ls}

‖G(F l(Pgeo))−G(F l(Sgeo))‖
2
2

(5)

Lcolor style(Pcolor,Scolor) =
∑

l∈{ls}

‖G(F l(Pcolor))−G(F l(Scolor))‖
2
2,

(6)
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where {ls} denotes the set of FEL layers from which we

extract feature representations to compute the style loss.

To seek P
*
geo or P*

color, we adopt a gradient-based opti-

mization method, e.g. Adam optimizer [12], to iteratively

update Pgeo or Pcolor until its convergence.

3.3. Style transfer from images onto point clouds

To transfer the style of an image to the color property

of a content point cloud Ccolor, we merely treat an image

as a set of pixel values Scolor and follow Eq. (2) to seek

the stylized point cloud Pcolor. This method works due to

two advantageous properties of Gram matrix. First, the di-

mension of Gram matrix is solely decided by the number of

columns in the weight matrix and irrelevant to the number

of points. That is, the difference in the number of points in

S and P doesn’t disable the computation of Eq. (6). Sec-

ond, Gram matrix G(F l(Scolor)) is invariant to the order of

rows in Scolor. According to the two properties, by simply

reshaping an image of dimension H ×W × 3 into dimen-

sion (H ∗ W ) × 3, the same method discussed in Sec.3.2

can be used to transfer the style of an image onto the color

property of a point cloud.

Although this reshaping operation discards the spatial

structure information of the image, experimental results

show that the color distribution is captured and well trans-

ferred onto Ccolor.

We summarize the transferable properties between con-

tent and style point in Table ?? to clarify the flexibility of

our method.

4. Experiments

In Sec.4.1, we give training details of our proposed

model for extracting representations of colored point

clouds. In Sec.4.2, we demonstrate qualitative results of the

style transfer method. In Sec.4.3, we analyze different fac-

tors affecting style transfer results. In Sec.4.4, we perform

ablation study on our model design.

4.1. Model setup for feature extraction

Dataset. To train a model that can encode both ge-

ometry and color of a point cloud, we use DensePoint

dataset [3]. DensePoint is point cloud dataset built on top

of ShapeNet [4] and ShapeNetPart Dataset [24]. There

are 10454 colored point clouds of single objects across 16

categories; the dataset is split into 7612/1112/1730 train-

ing/validation/test subsets according to ShapeNet’s setting.

Training settings. DensePoint suffers from class imbal-

ance problem. For example, there are over 3000 instances

for table class while there are only less than 100 instances

for several other classes. To remedy the problem, we use

Style  

point cloud

Content 

point cloud

Color

Geometry

Combined

(a)

(b)

Figure 3: Style transfer results between single object point

clouds. (a) Either the geometry, the color property or both

is stylized, and the points number of style point clouds is

arbitrary. (b) More results where both the geometry and

color property are stylized.

a combination of undersampling and oversampling tech-

niques [2]: we undersample or oversample 320 instances

for classes in which instances are over or under 320, respec-

tively. For the value of XYZ coordinate and RGB colors in

point clouds, we normalize them into the range between -1

and 1.

We train our model for 50 epochs with batch size 32.

We use Adam optimizer [12] with initial learning rate 0.01,

β1 0.9 and β2 0.999. Batch normalization [9] is applied

before activation functions in all layers except the last layer.

Leaky ReLU with a fixed leakiness parameter 0.2 is used as

activation functions. Dropout [20] with keep ratio 0.7 is

applied on last three fully-connected layers.

4.2. Qualitative results of neural style transfer

With the pre-trained network, we utilize it to extract con-

tent or style representations for point cloud style transfer. In

this section, we demonstrate qualitative results of the pro-

posed style transfer method.

4.2.1 Style transfer between single object point clouds

Given a content point C and a style point cloud S, three

factors affect the resulted point cloud P: the initialization
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strategy of P, the value of α and the layers used for ex-

tracting representations. In this experiment, we initialize P

as C, set αgeo = 1, αcolor = 100, and extract content and

style representations both from {FEL-64}. We adopt Adam

optimizer with learning rate 0.01 to update P and empiri-

cally set the update steps as 4000. The results are shown

in Fig. 3. In Fig. 3(a), we demonstrate two advantageous

point of our method. First, the geometry or color property

of a point cloud is independently stylized. Second, there is

no constraint on the number of points in C and S. In this

experiment, S contains 4096 points while C contains 40k

points. We give more qualitative results in Fig. 3(b). We

find that in the case of geometry transfer, the overall shape

style of S is transferred; in the case of color transfer, the

content color pattern is preserved while the overall color

distribution is shifted towards that of style point clouds.

4.2.2 Stylizing color property from images

In this experiment, we stylize the color expression of con-

tent point clouds Ccolor either of single objects or in-

door scenes from images. The style image is reshaped to

(H ∗ W ) × 3 and being treated as Scolor. In both cases,

content representation is extracted from {FEL-64} and style

representations are extracted from {FEL-1024, FEL-2048}.

αcolor is 100, and Pcolor is initialized as Ccolor. Qualita-

tive results on point clouds of single objects are given in

Fig.4(a). The point cloud of indoor scenes is from S3DIS

dataset [1]. Adam optimizer with learning rate 0.001 is uti-

lized to update Pcolor for 30000 steps. Quantitative results

are given in Fig. 4(b).

4.2.3 Style transfer loss

To confirm whether the iterative update process eventually

converge, we visualize the style transfer loss in Fig. 5. Fig-

ure 5(a) illustrates an example of the change in the loss

during the stylization between single object point clouds

in Fig. 3(a). We can find that the style transfer loss con-

verge fast to stability within just 200 iterations. Since P is

initialized as C, the content loss is 0 at the beginning and

increases to stability.

The loss of transferring from images onto color expres-

sion of point clouds is given in Fig. 5(b). In this case, the

fact that indoor scene point clouds comprise much more

points detains the update process. This difficulty is the rea-

son why we decrease the initial learning rate to 0.001 and

increase the iteration steps to 30000 in Sec.4.2.2.

4.3. Analysis of style transfer

According to Eq. (1) or Eq. (2), given a pre-trained net-

work for feature extraction, four factors are likely to affect

the stylized point cloud: the weight of content loss and style

Content

Style

(a)

Content

(b)

Figure 4: Style transfer results from images onto point

clouds. (a) Single object point clouds with 4096 points. (b)

Indoor scene point clouds over 800k points. Both results

demonstrate that the color pattern of point clouds (e.g.

darker seat of the chair) are preserved while the color distri-

bution is more like that in the style image.
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Figure 5: Change of style transfer loss. (a) Style transfer on

the geometry and color property between single objects. (b)

Style transfer on the color property of indoor scene point

clouds. In both cases, the total losses converge fast to sta-

bility.

loss, the layer used to extract feature representation, the ini-

tialization strategy of P and the choice of the optimizer to
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Figure 6: Style transfer results with different α. (a) Trans-

fer on color property with different αcolor. (b) Transfer on

geometry property with different αgeo.

seek P
*
geo or P

*
color. In this section, we investigate their

effects on the stylized point clouds.

4.3.1 Content-style trade-off

Intuitively, different ratios between the content loss and

style loss may decide how much the stylized point cloud

look like the content or the style point cloud. We extract the

content representation and style representation both from

{FEL-64}; P is initialized as C. In the first experiment, we

fix Pgeo as Cgeo, and Pcolor is to be stylized. We vary

αcolor among 0.1, 1, 10, 100 and 1000. The results are

shown in Fig. 6(a).

In the second experiment, we fix Pcolor as Ccolor, and

Pgeo is to be stylized. αgeo is varied among 0.1, 1, 10, 100

and 1000. The results are given in Fig. 6(b). From the re-

sults in both experiments, we can see that as αgeo increases,

the style of S is more evidently transferred onto P while

its content is preserved. In the case of color property, the

color pattern of the content chair point cloud (darker seat)

is preserved in all cases while its overall color distributions

become more similar to that of Scolor.

4.3.2 Content/style representation from different lay-

ers

In this experiment, we aim at inspecting the effect of target

feature extracted from different layers on the style transfer

results. Explicitly, we compute style loss and content loss

based on features extracted from only one FEL but enumer-

ate all their combinations. There are 4 FELs from which

we can extract content or style representation, resulting in

Content

Style
FEL-64 FEL-256 FEL-1024 FEL-2048

FEL-64

FEL-256

FEL-1024

FEL-2048

Style  

point cloud

Content  

point cloud

Initialization

(a)

Content

Style
FEL-64 FEL-256 FEL-1024 FEL-2048

FEL-64

FEL-256

FEL-1024

FEL-2048

Style  

point cloud

Content  

point cloud

Initialization

(b)

Figure 7: Style transfer results with content/style represen-

tation extracted from different layers and different initial-

ization strategy. (a) Initialize P as content point cloud. (b)

Randomly initialize P. Initializing P as C helps maintain-

ing the shape.

16 combinations. We set αcolor and αgeo as 100 and 10,

respectively. The results are shown in Fig. 7(a). The re-

sults in a row are computed from the same content rep-

resentation while those in the same column are computed

from the same style representation; the column or the row

name denotes the layer name. As we can see, when content

representations are extracted from low layers, the generated

point cloud preserve a distinct shape; when content repre-

sentations extracted from high layers, the overall shape of

generated point clouds become vague.

In the case of style representation, when they are ex-

tracted from low layers, the point cloud is more stylized;

when they are extracted from high layers, the stylized point
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clouds again become more similar to the content point

cloud, and noise-like points appear.

4.3.3 Initialization strategy

As the stylization is an iterative update process on P, differ-

ent initialization strategy is likely to lead to different P⋆. So

far we have initialized P as C, we compare the initialization

strategy with an alternative initialization method: every ele-

ment of P is sampled from N (0, 0.5). We conduct the same

experiment as in 4.3.2 except for the different initialization

strategy, as shown in Fig. 7(b).

Compare to Fig. 7(a), we find that when feature repre-

sentations are extracted from low layers, different initializa-

tion strategies result in almost the same stylized point cloud,

however, initializing P as C helps P maintain a distinct

shape. When P is randomly initialized, and feature repre-

sentations are extracted from high layers, the result becomes

blurred and unrecognizable, but its counterpart in Fig. 7(a)

still have a relatively clear shape.

4.3.4 Choice of optimizer

Different optimizers with different learning rate affect the

time for P to converge and may result in different stylized

point clouds. In this experiment, we utilized different opti-

mizers from the combination of the optimizer in {SGD, Mo-

mentum [17], Adagrad [6], RMSprop, Adam [12]} and the

learning rate in {0.01, 0.1, 1}. We filter out those does not

converge after 30k iterations either because of slow learn-

ing rate or fluctuation, and illustrate the style transfer loss

curve of the remaining in Fig. 8(a) and (b). It is evident

that whatever the speed to converge, the final content loss

of geometry is almost the same.

We give a qualitative comparison of the stylized point

cloud by different optimizers in Fig. 8(c). We find that fast

convergence does not mean a better quality of the stylized

point clouds. As shown in the red circle of Fig. 8(c), cracks

appear in the point clouds updated by fast-converged opti-

mizers, e.g. Adam. In contrast, the problem is alleviated or

disappears in the point clouds updated by slow-converged

optimizers, e.g. SGD. We consider the reason of the ap-

pearance of these cracks is likely to be that fast update en-

courages the optimizer to merely translate different parts of

a point cloud along different directions to minimize the style

loss.

4.4. Ablation study on model architecture

As described in Sec.3.1, we add two modifications to

PointNet: the separation of different kind of properties of

point clouds (late-fusion) and the replacement of shared

fully connected layer with FEL. In this section, we eval-

uate the effectiveness of our modifications for point cloud

style transfer.
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Figure 8: Stylize point clouds with different optimizers. (a)

Style loss curve of geometry. (b) Style loss curve of color.

(c) Qualitative comparison of stylized point clouds updated

by different optimizers. There is no apparent difference in

overall shape or color distribution. However, cracks appear

in point clouds updated by fast-converged optimizers.

model type accuracy multiclass AUC

early-fusion + FEL 90.54 98.49

late-fusion 87.50 96.56

late-fusion + FEL 90.80 98.85

Table 1: Classification performance of different model

choices on DensePoint test set [3].

Comparison on classification performance. Although

the primary goal of modifying PointNet is to extract bet-

ter representations for style transfer, we are still interested

in whether the two modifications improve the model per-

formance on colored point clouds classification task. We

compare our final model with two alternative models: the

model directly consuming colored point cloud without split-

ting it (early-fusion) and the model without using FEL (the

same as PointNet except for late-fusion). We report the per-

formance of these models in Table 1 based on two eval-

uation metrics: accuracy and multiclass Area Under the

ROC Curve (AUC). According to Table 1, our final model

achieves the best performance, which validates our design.

Late fusion vs. early fusion. We design a two-route net-

work to independently process the geometry and color prop-

erty of point clouds and concatenate extracted two global
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Figure 9: Style transfer results comparison on different

model architecture designs.

feature vectors later (late fusion). An alternative network

design is a one-route network directly consuming colored

point clouds which are not split into two parts (early fu-

sion). In the latter case, we cannot extract feature represen-

tations separately for geometry or color property; Eq. (3)

and Eq. (4) now read

Lcontent(P,C) =
∑

l∈{lc}

‖F l(P)− F l(C)‖22.

Equation (5) and Eq. (6) now becomes

Lstyle(P,S) =
∑

l∈{ls}

‖G(F l(P))−G(F l(S))‖22

We can still opt to update only the geometry or color prop-

erty and fix another part during the update process:

P
*
geo = arg min

Pgeo

Lcontent(P,C) + αLstyle(P,S),

where Pgeo can be replaced by Pcolor or P depending on

whether we want to modify the geometry property, the color

property or both of the point cloud P.

We conduct a comparison experiment between the two

models to inspect their effects on the stylization results, as

shown in Fig. 9. In both cases, content/style representations

are extracted from the first layer, and P is initialized as C.

In the case of early fusion network, α = 100;in the case of

late fusion network, αgeo = 100, αcolor = 1000.

As we can see in Fig.9, in the case of early fusion net-

work, updating the geometry or the color property leads to

absurd results. This is not surprising since the extracted rep-

resentation depends on both the geometry and color prop-

erty of P. When the geometry and the color property are

jointly updated, the result is close to that from late fusion

network, but still not appealing. In contrast, by utilizing a

late fusion network, either the geometry or the color prop-

erty can be stylized, resulting in appealing stylized point

clouds. The comparison demonstrates the effectiveness and

flexibility of our proposed late fusion design.

Content

Style
FC-64 FC-256 FC-1024 FC-2048

FC-64

FC-256

FC-1024

FC-2048

Style  

point cloud

Content  

point cloud

Initialization

Figure 10: Style transfer results without FEL.

FEL vs. shared FC. When the point-wise concatenation

operation in Fig. 2(b) is not performed, a feature encoding

layer degrades to a naive shared fully connected (shared FC)

layer as in PointNet. We can still extract feature represen-

tations in this design and perform style transfer in the same

way as described in Sec.3.2. The same experiment as in

Sec.4.3.2 is conducted, as shown in Fig. 10. We can find

that when content representations are extracted from the

first layer, the quality of stylized point clouds is comparable

to that in Fig. 7(a). However, when the content represen-

tation is extracted from higher layers, the quality dropped

drastically wherever the style representation is from. This

comparison validates the robustness of our design of replac-

ing shared FCs in a naive PointNet with FELs.

5. Conclusion

We proposed PSNet, a style transfer network for colored

point clouds. PSNet stylize the geometry and/or color prop-

erty of a point cloud from another. The style can be an im-

age when stylizing the color property of a point cloud. We

investigated the effect of different hyperparameters in our

method on the stylized point cloud. As the method can be

applied to point clouds containing any number of points, it

opens a door for stylizing large-scale indoor scene or terrain

point clouds for virtual reality applications in the future.
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