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Abstract

Road fatality rates are very high, especially in develop-

ing and middle-income countries. One of the main causes of

road fatalities is not using motorcycle helmets. Active law

enforcement may help increase compliance, but ubiquitous

enforcement requires many police officers and may cause

traffic jams and safety issues. In this paper, we demonstrate

the effectiveness of computer vision and machine learning

methods to increase helmet compliance through automated

helmet violation detection. The system detects riders and

passengers not wearing helmets and consists of motorcy-

clist detection, helmet violation classification, and track-

ing. The architecture of the system comprises a single GPU

server and multiple computational clients that cooperate

to complete the task, with communication over HTTP. In

a real-world test, the system is able to detect 97% of helmet

violations with a 15% false alarm rate. The client-server

architecture reduces cost by 20-30% compared to a base-

line architecture.

1. Introduction

According to the World Health Organization, every year,

1.35 million people die because of road traffic crashes [27].

There are many causes of road traffic fatalities, especially

human error or bad behavior by drivers. Many of these

crashes involve motorcycles. A motorcycle rider, by wear-

ing a helmet, can reduce his or her risk of a fatal injury

by 42% and head injury by 69% [27]. As an example,

in Thailand, motorcycle accidents kill around 5,500 people

per year, and only 20% of people riding as a passenger on

the back of a motorcycle wear helmets, according to the

ThaiRoads Foundation [22]; this is one of the major causes

of road fatalities in the country. Under such extreme con-

ditions, helmet law enforcement would be one of the most

effective ways to reduce fatalities. Indeed, police forces al-

ready have traffic officers in place to penalize offenders. But

strict and ubiquitous enforcement would require many po-

lice officers everywhere and would incur additional difficul-

ties such as dangerous pursuit of offenders and traffic bot-

tlenecks. As an alternative, sensor technology, especially

computer vision, can enable advanced solutions enabling us

to improve the situation through automated helmet viola-

tion detection. In this paper, we consider the problem of

monitoring for motorcyclists riding without a helmet using

computer vision and machine learning based video analysis

combined with an automated law enforcement information

system to help to solve the problem of helmet law violations

and thereby reduce traffic fatalities.

Methods for object detection have advanced rapidly in

recent years. Classic methods such as Haar feature-based

cascades [23] and histograms of oriented gradients (HOG)

[2] have been supplanted by CNNs. Region-based CNNs

(R-CNNs) [6] combine region proposals with convolutional

neural networks (CNNs). The fast region-based convolu-

tional neural network method (Fast R-CNN) [5] builds on

R-CNNs to increase the speed of training and testing. Faster

R-CNN [18] builds further on this work. Rather than run-

ning a separate selective search algorithm, it uses the same

CNN for region proposals and region classification. In our

work, we use YOLO [17] to detect motorcycles, as it is

more effective than classic methods and is much faster than

Faster R-CNN.

For tracking, classic methods likewise are not very ac-

curate under natural conditions, leading to high false pos-

itive and miss rates. Yilmaz et al. [28] categorise track-

ing methods into three categories: point tracking, kernel

tracking, and silhouette tracking. Tang et al. [21] identify

characteristic patterns of occlusions. The method detects

“double-persons” image patches in which two people oc-

clude each other by 50% or more. The detector builds on

the deformable part models approach of Felzenszwalb et al.

[4]. Kong et al. [10] propose a system to count pedestrians

in crowded scenes. The system uses a perspective transfor-
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mation (homography) computed between the ground plane

and the image plane for the region of interest (ROI). A den-

sity map is used for feature normalization. Linear models

and neural networks are used during training to find the re-

lationship between the features and the number of pedestri-

ans in the image. Kristan et al. [11] propose an approach

to track the position and scale of an object in a tracking-by-

detection framework. The approach learns discriminative

correlation filters from a scale pyramid representation to lo-

calize the target in each frame.

In this paper, we use the Kristan et al. [11] method as

implemented in Dlib along with the YOLO detection result

to match candidate detections with tracks. A new track is

created whenever the detector finds an instance of the ob-

ject in the first frame or for objects that do not match ex-

isting tracks. We classify each object in the track and take

an average of the classifier’s confidence score. If a track’s

average score is more than 0.5, we consider it a helmet vio-

lation. When a track does not get updated for some number

of frames (five in our implementation), we delete that track.

For an object classification, classic methods feed an im-

age patch directly to a neural network, SVM, or other clas-

sifier. HOG vectors and other feature vectors can be clas-

sified by backpropagation neural networks, SVMs, or other

methods. Convolutional neural networks (CNNs) offer the

benefit of automatically generating high-level features, of-

fering better performance than feature-based methods, so

long as a sufficient amount of training data is available.

LeNet-5, CNN introduced by LeCun et al. [13], is trained

by back-propagation. The network was designed for recog-

nizing hand-written digits. In 2012, AlexNet [12] was in-

troduced. It is a large high-performance network similar to

LeNet but with more layers and more filters in each layer.

In 2014, GoogLeNet [20] won the ImageNet Large-Scale

Visual Recognition Challenge 2014 (ILSVRC14). The ar-

chitecture consists of a 22-layer deep CNN with a reduced

number of parameters. More recently, in ILSVRC 2015, He

et al. [8] introduced the residual neural network (ResNet).

This network introduces skip connections. We find that

GoogleNet provides the best tradeoff between accuracy,

time, and resources.

To utilize detection, tracking, and classification in a prac-

tical system, we need high performance processing of mul-

tiple camera streams. Wang et al. [25] propose a method

to perform large-scale video surveillance. Video from

many cameras is processed by intelligent surveillance com-

ponents (ISCs) and visualization surveillance components

(VSCs). A wide area is monitored by a single system.

Pouyanfar et al. [14] focus on intelligent video process-

ing in terms of software, hardware, and applications. They

connect cameras to a DVR/NVR and process video on the

cloud. Qiu et al. [15] also use fixed camera views and pro-

cessing on the cloud. Kim et al. [9] propose multi-camera

based local position estimation for moving object detection.

Each camera is connected to a separate DARKNET model.

Our approach is most similar to that of Wang et al. [25]. We

focus on a specific surveillance domain (motorcycle helmet

law enforcement) and consider how to scale the ISCs that

require GPU processing.

Finally, we consider the problem of helmet violation de-

tection. Gualdi et al. [7] detect helmets on pedestrians at

construction sites. The pedestrian detection method uses

a LogitBoost classifier. Silva et al. [19] propose a sys-

tem for automatic detection of motorcyclists without hel-

mets. Local binary patterns, histograms of oriented gradi-

ents (HOG), and Hough transform descriptors are used for

feature extraction. Desai et al. [3] demonstrate a system

performing automatic helmet violation detection on public

roads. They use background subtraction and optical char-

acter recognition for classification of license plate recogni-

tion, and they use background subtraction and the Hough

transform for detection. Dahiya et al. [1] propose auto-

matic detection of motorcyclists without helmets in surveil-

lance video in real time. The proposed approach detects

motorcycle riders by first performing background subtrac-

tion and object segmentation. For each motorcycle, they

determine whether the rider is wearing a helmet or not using

visual features and a binary classifier. Vishnu et al. [24] de-

tect motorcyclists without helmets in video using convolu-

tional neural networks. Like Dahiya et al., they use adaptive

background subtraction on video frames to restrict attention

to moving objects. Then a convolutional neural network

(CNN) is used to select motorcyclists from among the mov-

ing objects. Another CNN is applied to the upper one-fourth

of the image patch for further recognition of motorcyclists

driving without helmets. Wonghabut et al. [26] describe an

application using two different CCTV cameras mounted at

different angles. One camera is used for detecting motor-

cyclists involved in violations. The other captures images

of the violating motorcyclist. Haar cascades are used as a

descriptor for extracting object features. Raj KC et al. [16]

propose a helmet violation processing system using deep

learning. The system comprises motorcycle detection, hel-

met versus no-helmet classification, and motorcycle license

plate recognition.

Our work is the continuation and extension of Raj KC et

al. [16]’s system. In this paper, we call the Raj KC et al. [16]

system the baseline system. We use YOLO for motorcy-

cle detection, Kristan’s method for tracking, GoogleNet for

classification, and a specific system architecture for multi-

ple camera processing for helmet violation detection. The

contributions of this paper are

1) Comparison of methods for classifying motorcycle

riders as to whether they are wearing helmets or not. We

find that a GoogleNet CNN trained from scratch performs

well.
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2) Analysis of speed, resource, and accuracy tradeoffs

for classical and deep learning based detection of motorcy-

cles in real world images across multiple scenes and condi-

tions.

3) Design of a low cost, high performance CPU-GPU

system architecture for motorcycle helmet violation detec-

tion. We analyze the application, and we find that the most

time-consuming activity is YOLO-based motorcycle detec-

tion. We improve throughput using a hybrid structure for

the surveillance components. We use one GPU machine as

a server and another machine as a compute client. The client

machine sends requests and images to the server. The server

performs object detection in those images and replies with

bounding boxes of the object instances.

Our application requires a graphics processing unit

(GPU). One computer with an Intel Core m5-6Y57 Dual-

Core processor, 4 GB of 1866 MHz LPDDR3 memory,

and Integrated Intel HD graphics currently costs 617.44

USD. The Nvidia Jetson TX2 costs 479 USD. The Nvidia

GTX 1080Ti with 11 GB GDDR5X 352 bit memory costs

about 825.40 USD. On the cloud, Amazon provides Ama-

zon Elastic Graphics, which requires 0.4 USD/hour with 8

GB graphics memory. Deploying a complete system for one

junction requires many concurrent processes. Based on the

prices mentioned above, we aim to minimize the cost of the

system when we need to deploy many applications.

4) Analysis of accuracy and efficiency of the entire sys-

tem for real-world processing of traffic violations.

The result is a performance model that could be applied

to other intelligent video processing applications.

2. Motorcycle Helmet Violation Detection

Methods

2.1. System Overview

The system detects helmet violations in real-world road

traffic scenes. The system consists of three parts: analytic

system (video processing system), vehicle information ex-

traction system, and a cloud-based web application for tick-

eting, as shown in Figure 1.

2.2. Motorcyclist Detection

As already discussed, existing work on motorcycle de-

tection uses a variety of approaches. The motorcycle detec-

tion module of Raj KC et al. [16] uses Haar cascades. In

this paper, we compare HOG, Haar cascades, and YOLO.

In Experiment MD-1, we compare these three methods

using training data from one location and test data from

another location. The training data consist of 1,742 posi-

tive images and 1,508 negative images to create the HOG

model and the Haar cascade model. Positive images con-

sist of cropped motorcycles. Negative images are images

without motorcycles. The CNN (YOLO) uses 1,255 images

Figure 1. Overview of the system.

(full frame) from the same location as those for the HOG

and Haar cascade models. Training uses full frame images

and text files for each image. The text file has data on mo-

torcycle locations. Example training images for Experiment

MD-1 are shown in Figure 2. In the test phase of Experi-

ment MD-1, we use 630 motorcycle images to check accu-

racy. Examples of testing images for Experiment MD-1 are

shown in Figure 3.

Based on the best method from MD-1, we performed Ex-

periment MD-2, in which we built a new CNN model using

a larger dataset. We compare the three methods using train-

ing data from one location and test data from another lo-

cation. We improve the motorcyclist detection dataset by

collecting more data from many locations. We used 5,323

images to train the final model. To check the accuracy of

the model, we used 11,276 motorcycle images that are com-

pletely unseen data. An example test image used in Experi-

ment MD-2 is shown in Figure 4.

2.3. Helmet Violation Classification

To build a baseline model for helmet violations, we ob-

tained 960 images in the “violation” class and 931 images

in the “non-violation” class. We use the top half of the mo-
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Figure 2. Example training image for Experiment MD-1. Rectan-

gles are locations of motorcycles, identified by humans.

Figure 3. Example test image for Experiment MD-1. Rectangles

are locations of motorcycles detected by the YOLO model built in

Experiment MD-1.

Figure 4. Example test image for Experiment MD-2. Rectangles

are locations of motorcycles detected by the YOLO model built in

Experiment MD-2.

torcycle bounding box for training and testing. We con-

sider a motorcycle with two riders, one wearing a helmet

and another not wearing a helmet as a violation. Examples

of training images in the “violation” and “non-violation”

classes are shown in Figures 5 and 6.

We trained a GoogleNet CNN from scratch using a batch

size of 64 and a learning rate of 0.001. We use GoogleNet

Figure 5. Example training images in violation class.

Figure 6. Example training images in non-violation class.

because this model consumes the least amount of GPU

memory among the best image classifiers introduced in re-

cent years and is also quite accurate. In Experiment HC-1,

we tested the hypothesis that a similar number of training

items for each class would give good results. We used 4,900

images in the violation class and 4,852 images in the non-

violation class. In Experiment HC-2, we increased the data

set size to 7,899 training images, while the training data for

the non-violation class was unchanged, at 4,852 images.

2.4. Tracking

The typical approach to tracking for helmet violation de-

tection applications, including Raj KC et al. [16], consid-

ers the simple overlap between a candidate in the previous

frame and a candidate in the current frame to determine

whether it is the same object. We implemented this basic

approach as a baseline. When the overlap area is more than

a threshold, it is considered the same object. If the over-

lap area is less than the threshold area, the two detections

are considered to represent different objects, and we wait

to check overlap with candidates in the next frame. If the

candidate does overlap with a candidate in the next frame,

we continue tracking. If it fails to overlap again, we end the

track.

In Experiment T-1, we validate an improvement to this

basic tracking method in which we consider the similarity

of two regions as well as their overlap. We increased the

number of allowable misses before a track is deleted to 2.

That is, if the track is not updated for more than two frames,
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Figure 7. Overview of multi-cameras processing sharing one GPU

model.

that track will be deleted. This helps when a motorcycle is

lost for one or two frames then is re-detected, with a small

penalty in terms of memory utilization. We found that even

with appearance modeling, we still observe a large number

of ID switches.

To address this, we further implemented an improved

tracking method using Kristan’s method, which uses a clas-

sification confidence measure instead of appearance simi-

larity in order to decide whether or not to continue a track.

2.5. Performance

Here we explain the method and experiments used to test

the performance of the overall system.

At one location, there can be many lanes and many cam-

eras. In a first version of the application, we paired one de-

tection model with each camera and one camera with each

lane. We found that this required a large amount of GPU

memory. We then implemented the motorcycle detection

model on a server using one GPU. The server was an In-

tel Core i5 CPU 650 @ 3.20GHz × 4 with 7.7 GiB RAM

and a GeForce GTX 1060 6GB/PCIe/SSE2 GPU. The client

machine was an Intel Core i5-7200U CPU @ 2.50GHz ×

4 with 7.7 GiB RAM and a GeForce 920MX/PCIe/SSE2

GPU. We use Boost.Asio version 1.58 to handle threads.

Communication between the client and server utilizes JSON

over HTTP. The server and client are assumed to be on the

same subnetwork. An overview of the system is shown in

Figure 7,and a sequence diagram describing the dynamic

execution of the system is shown in Figure 8. We ran one

application with one model to check how many frames per

second the application would run. Then we increased the

number of applications and experimented with different-

sized image frame buffers: 1, 5, 10, 50, 100, 200 and 500

images.

3. Results

Here we describe the experimental validation of the im-

provements to the three modules, motorcyclist detection, vi-

olation classification, and tracking, described above.

Table 1. Test set comparison of detection methods in Experiment

MD-1. Training and testing data were from different locations.

Method Precision Recall F1 Score

HOG 0.98 0.65 0.81

HAAR 0.98 0.66 0.82

CNN (YOLO) 0.99 0.73 0.86

Table 2. Test set comparison of detection methods in Experiment

MD-2. Training and testing data were from different locations.

Note that this dataset is more challenging than that used in Exper-

iment MD-1.

Method Precision Recall F1 Score

HOG 0.94 0.45 0.69

HAAR 0.96 0.45 0.70

CNN (YOLO) 0.96 0.61 0.78

3.1. Motorcyclist Detection

We performed Experiment MD-1 to find the best method

for detection, and then in Experiment MD-2, we further im-

proved the best model with an increased amount of training

data. The resulting system still makes mistakes, but the er-

ror rate is dramatically decreased.

We built several versions of the motorcycle detection

system, based on HOG, Haar, and CNN (YOLO). We found

that detection using HOG is not flexible when the environ-

ment changes. This occurs, for example, when the training

and testing locations are different or the shape of the object

changes somewhat. Table 1 shows the results of the com-

parison in Experiment MD-1.

While the HOG and Haar cascade models can in princi-

ple be used at different locations, the accuracy results under

transfer are not very convincing. The CNN model, which

was trained with less data, is nevertheless better than the

HOG and Haar cascades. If we add more training data, the

model may further improve. Hence, we conclude that while

HOG and Haar cascades are overly sensitive to scene view

changes, the CNN (YOLO) model is much less affected.

In Experiment MD-2, we attempted to further improve

the motorcycle detection rate by collecting more data from

many locations and training another HOG model, Haar cas-

cade, and CNN (YOLO). Results are shown in Table 2. The

YOLO CNN performs best. The recall is lower than in Ex-

periment MD-1 because the test data are more difficult. The

data set includes motorcycles in which we cannot see the li-

cense plate because of overlap with other motorcycles.

3.2. Helmet Violation Classification

The ground truth image set for violation classification

contains 1,498 images: 556 violation images and 942 non-
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Figure 8. Client-Server communication in the multi-camera processing system diagram.

Table 3. Results of helmet violation classification from initial base-

line model, (GoogleNet).

Predict: Helmet Predict: Head

Actual: Helmet 823 119

Actual: Head 59 497

Total accuracy: 88%

Table 4. Results of helmet violation classification in Experiment

HC-1 (balanced data, GoogleNet).

Predict: Helmet Predict: Head

Actual: Helmet 899 43

Actual: Head 32 524

Total accuracy: 94%

violation images. The accuracy of the baseline model was

0.88. In Experiment HC-1, we used a similar number of

training items for each class, and we obtained an accuracy

of 0.94. In Experiment HC-2, using a large positive training

set, we obtained an accuracy of 0.95. The details are shown

in Tables 3, 4, and 5. The remaining problem is that the

model is confused in some cases; for example, black hel-

mets and heads are similar. Some riders wear a cap or cover

their head with a scarf or other clothing, and some complex

cases also cause errors. Examples of wrong classification

results are shown in Figure 9.

Figure 9. Examples of wrong classification. (a,b) Helmets pre-

dicted as heads. (c,d) Heads predicted as helmets.

3.3. Tracking

The baseline tracking method sometimes gives duplicate

violations. This type of error occurs most frequently when

the motorcyclist drives very quickly, so that the bounding

box of the motorcycle does not overlap sufficiently in suc-
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Table 5. Results of helmet violation classification in Experiment

HC-2 (large dataset, GoogleNet).

Predict: Helmet Predict: Head

Actual: Helmet 899 43

Actual: Head 29 527

Total accuracy: 95%

Table 6. Results of Experiment T-1. MT 30%: More than 30%

tracked. LT 30%: Less than 30% tracked. MAT: Tracks that are

mixed with one or more other track.

GT MT 30 % LT 30 % MAT Miss

164 108 7 37 8

Table 7. Results of tracking with Kristan et al. method in Exper-

iment T-2. The Dlib implementation of the tracking method is

superior to histogram matching.

GT MT 30 % LT 30 % MAT Miss

164 125 31 0 8

cessive frames. When a motorcycle is missed, a tracking-

by-detection approach will not help. Another problem was

that when a motorcycle enters a crowded area, the tracks

can become confused.

Although duplicate violation declarations will eventually

be screened when the license plate is recognized, resource

utilization will be improved if fewer duplicate candidates

are submitted for license plate recognition. The results of

Experiments T-1 and T-2 are shown in Tables 6, and 7,

showing dramatically reduced errors.

3.4. Architecture Evaluation

The baseline system performs detection, classification,

and tracking on one machine. The motorcycle detector in

the baseline system runs at approximately 35 frames per

second. The client-server architecture places the detection

module on a separate GPU server machine. Classification

and tracking are performed on the client machine, which

does not require a discrete GPU. In the client-server archi-

tecture, the server application uses 1.760 GB of GPU mem-

ory for one YOLO model. We trained this detection model

using YOLO version 3. When we run the client-server ar-

chitecture with one application on the server, we found that

increasing the buffer size increases throughput in terms of

frames per second but also increases latency for the client.

When we increase the number of client applications, the

buffer size must be decreased. Client machines can run

more applications when the buffer size is small. A com-

parison of time usage for different buffer sizes and number

Figure 10. Frame rate for different buffer sizes, with client and

server on separate machines on the same LAN. Frame rate is aver-

aged over all applications. The GPU is the GTX 1060.

of applications is shown in Figure 10.

The baseline system has lower latency because the sys-

tem does not waste time on network communication. The

baseline uses one GPU machine, but the number of applica-

tions that can be run on it depends on the GPU memory of

the machine. The client-server method has higher latency

because the system has communication overhead between

server and client. One GPU machine is needed to run the

server, and another machine (no need for a GPU) runs the

client. The clients’ main constraint is CPU capacity. If we

want to scale with minimal resources, this method is best.

3.5. Performance Model

To install the system at one junction with 12 cameras, we

estimate compute costs using an Intel Core i5-7400 CPU @

3.0GHz × 4 with 8 GB RAM and one GPU machine with

a GTX 1060 with 6 GB, which currently costs 721.84 USD

at our location. A suitable machine without a GPU costs

482.95 USD.

The baseline would require at least 6 GTX GPUs. The

total cost for one junction would therefore be approximately

4,330.25 USD. If we use the client-server architecture, the

total cost is much lower at 3,377.35 USD. The system with

two servers and three client machines further only costs

2,891.61 USD, representing a 20-30% reduction from base-

line with no decrease in accuracy. The architecture of the

recommended system is shown in Figure 12. The cost esti-

mates are shown in Table 8.

The complete helmet violation system was evaluated on

one continuous hour of video of a real-world scene not used

for training or testing, and multiple detections of the same

violation were discarded. The result is shown in Table 9.

We also evaluated the helmet violation detection system

during the night time using a video from a different real-

world scene not used for training or testing. The result is

shown in Table 10. To achieve these results, it was nec-
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Figure 11. An example view at night time.

Table 8. System design with frame buffer size recommendation

and cost estimates. SM: Number of server machines. CM: Number

of client machines. FB: Frame buffer size. Cost units are USD.

SM CM Cameras FB Cost

Baseline 6 0 12 - 4,330.25

Arch 1 2 4 12 40-50 3,377.35

Arch 2 2 3 12 20-30 2,891.61

Figure 12. Architecture of client-server system.

Table 9. Final helmet violation evaluation during daytime. VA:

Violations from application. TP: True positives.

GT VA TP (Recall) False Alarms Misses

153 178 150 (98%) 28 (15%) 3

Table 10. Final helmet violation evaluation in night time. VA: Vi-

olations from application. TP: True positives.

GT VA TP (Recall) False Alarms Misses

125 95 84 (67%) 11 (11%) 41

essary to install sufficient extra lighting of the intersection

with over head floodlights. An example view at night time

is shown in Figure 11.

4. Conclusion

We have developed a high performance, low cost helmet

violation detection system and a performance model for the

violation detection system. The system comprises motor-

cycle detection and helmet violation/non-violation classifi-

cation. The YOLO convolutional neural network (CNN)

is more effective than histograms of oriented gradients

(HOG) or Haar cascades. For violation classification, a

GoogleNet CNN trained from scratch on 12,751 images

performs well. We find that tracking using a tracking-by-

classification framework improves performance. We devel-

oped a performance model for the CPU-GPU architecture in

which we have multiple clients on separate machines feed-

ing data to a GPU server that performs object detection.

The connection between client and server uses JSON over

HTTP between two separate machines on the same LAN.

The buffer size and number of clients affect the time us-

age of each application. If the size of the buffer is small,

we can run more applications, but processing time is in-

creased. The GPU server is an Intel Core i5 CPU 650

@ 3.20GHz × 4 with 7.7 GB RAM and a GeForce GTX

1060 6GB/PCIe/SSE2. The client machine uses an Intel

Core i5-7200U CPU @ 2.50GHz × 4 with 7.7 GB RAM

and a GeForce 920MX/PCIe/SSE2. This modest platform

can detect and process helmet law violations in four camera

streams. The GPU server requirement scales more slowly

than the CPU client requirement.

5. Discussion

In this work, our goal is to get recall sufficient to deter

violations at minimum cost. If we increase the resources

available, recall may improve, or false positive rates may

reduce, but at some point, we obtain diminishing returns

and possibly obtain negative returns on the incremental in-

vestment. Our system has a 15% false alarm rate, but this is

acceptable, as this is a human-in-the-loop system in which a

human officer has to check each violation before a ticket can

be issued. False alarms are therefore relatively easy to ig-

nore or remove. To reduce false alarms, the motorcycle de-

tection and helmet violation classification can be improved

by increasing the training data set to include observed false

alarms or by collecting more data from that specific loca-

tion.

The main limitation of the system is the quality of the

dataset used for training. Another is that although the sys-

tem works well at night time, recall is lower because of

unclear images. Night time accuracy can be further im-

proved by adding additional lighting to make the images

clear enough.
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