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Abstract

In Person Re-Identification (Re-ID) task, combining lo-
cal and global features is a common strategy to overcome
missing key parts and misalignment on models based only
on global features. Using this combination, neural net-
works yield impressive performance in Re-ID task. Previous
part-based models mainly focus on spatial partition strate-
gies. Recently, operations on channel information, such as
Group Normalization and Channel Attention, have brought
significant progress to various visual tasks. However, chan-
nel partition has not drawn much attention in Person Re-ID.
In this paper, we conduct a study to exploit the potential of
channel partition in Re-ID task. Based on this study, we
propose an end-to-end Spatial and Channel partition Rep-
resentation network (SCR) in order to better exploit both
spatial and channel information. Experiments conducted on
three mainstream image-based evaluation protocols includ-
ing Market-1501, DukeMTMC-RelD and CUHKO3 and one
video-based evaluation protocol MARS validate the perfor-
mance of our model, which outperforms previous state-of-
the-art in both single and cross domain Re-ID tasks.

1. Introduction

Person re-identification (Re-ID) targets at searching peo-
ple across non-overlapping surveillance cameras by match-
ing person images captured by different cameras. There are
still various challenging problems to be solved in a real-
world Re-ID task, such as camera view point changes, illu-
mination differences, pose variation and partial occlusion.
With the rapid development of deep learning based tech-
niques, recent research with convolutional neural networks
[18, 40] get remarkable advances in person Re-ID, which
surpass the performance of traditional handcrafted methods
[19, 39] on large datasets.

To measure similarities between two captured images,
we need to build an appearance representation for each sam-
ple in datasets. The most intuitive method for building rep-
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Figure 1. Example of a spatial-channel partition. H, W and C stand
for respectively Height, Width and Channel in a deep feature map.
In this example, we partition a whole feature map into two spatial
parts (upper body and lower body) and two channel groups.

resentations is to extract directly global feature map from
the entire bounding box. However, Re-ID methods that rely
solely on global features of a person are prone to errors in
case of occlusion and misalignment. On the other hand, key
local features (carried objects and body parts, such as face
and hands) can not be always observable due to low camera
resolution and occlusions.

Since viewpoint change, partial occlusion and misalign-
ment are frequent in real-world Re-ID task, complement-
ing global features with local features addresses these is-
sues and builds better person representations. This further
improves a neural network’s capacity to distinguish similar
people based on small part differences.

Therefore, part-based models [1, 8, 22] have attracted a
lot of attention in Person Re-ID research community. Re-
cently, several sophisticated models [7, 30] have combined
multiple partitions conducted along the height dimension
in a pyramidal structure. They have significantly outper-
formed previous state-of-the-art. A feature map extracted
from an image has 3 dimensions, i.e., height, width and
channel (also called depth). Because height and width di-
mensions correspond both to the spatial coordinates of pix-
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els in an image, the partition conducted along the height
and width dimensions is called spatial partition. Indepen-
dently from spatial coordinates, partition conducted along
the channel dimension is called channel partition. An ex-
ample is shown in Figure 1.

Spatial partition is a common strategy in Re-ID task,
which enables part-to-part matching by extracting local fea-
tures corresponding to specific body parts. Channel infor-
mation comes from filters in a convolutional layer. As the
CNN goes deeper, last layers are more abstract, and out-
puts of the channels are higher level features, correspond-
ing potentially to concepts such as hair color, body shape,
etc. Channel partition does not extract local features from
specific body parts, but keeps features that indicate the pres-
ence of these high level concepts. By splitting channels
into several groups and training separate channel groups,
semantic concepts in each channel group can be decorre-
lated. Therefore, channel partition allows to conduct se-
mantic concept-to-concept matching (e.g., with or without
a bag strap), which can complement spatially partitioned
representations. As proven in [31, 20], semantic attributes
show a strong generalibility in cross domain Re-ID task.
By combing part-to-part and semantic concept-to-concept
matching, we are able to build discriminative and general-
izable representations with spatial-channel partition.

Another well-considered strategy for extracting discrim-
inative features is attention mechanism. Attention mecha-
nism helps CNNs to focus on the most discriminative part
(called primary information) in feature maps. Features on
other parts which are salient but less discriminative (called
secondary information) are then neglected. These features
can be complementary clues for distinguishing people with
similar appearances. Partitions enable a CNN not only to
consider primary features but also to keep secondary fea-
tures.

In this work, we focus on how to build robust person rep-
resentations for Re-ID task by complementing global fea-
tures with local features extracted through partitions.

In summary, our contribution is twofold:

1. We conduct a comparative study between spatial,
channel partitions and attention mechanism. Results of
this study can be summarized by 2 statements: (a) At-
tention mechanism may remove useful secondary in-
formation, which can be kept by partitions. (b) Com-
pared to traditional spatial partition, channel partition
shows a superior capacity of maintaining secondary lo-
cal information.

2. Spatial and channel partitions are combined (called
spatial-channel partition) to further enhance deep neu-
ral networks’ ability to learn secondary information.
By adopting multiple spatial-channel partitions in a
pyramidal structure, we propose a unified end-to-end

trainable framework for Person Re-ID.

Our proposed framework is exhaustively evaluated
on three image-based Re-ID datasets, Market-1501,
DukeMTMC-RelD, CUHKO3 and one video-based dataset
MARS. On the MARS dataset, partition is also applied on
the temporal dimension to build a more robust represen-
tation for each tracklet. The evaluation results show that
our method can build both discriminative and generalizable
representations, which outperform previous state-of-the-art
in both supervised single domain and unsupervised cross-
domain Re-ID tasks.

2. Study of Appearance Representations

Building discriminative appearance representations to
measure quantitatively the similarity between query and
gallery images is a common approach in Re-ID task.
First, we evaluate robustness of appearance representations
within the state-of-the-art. Then, we explain why spatial
and channel partitions should be combined together and
why they can outperform attentive models.

2.1. State-of-the-art

The two main approaches to make appearance represen-
tations robust in the state-of-the-art consist of choosing ap-
propriate loss function and partitioning a person image into
several spatial parts.

Loss Functions for Re-ID. A domain guided dropout
is proposed in [33] to train a classification model on vari-
ous datasets, which consider Re-ID as an identification task.
Zheng et al. [40] use both pair-wise verification and classi-
fication loss to learn a more discriminative representation
for Re-ID task. However, classification loss fails in cases of
people wearing similar clothes, misaligned bounding boxes,
etc. In [10], Batch Hard triplet loss is proposed to focus
more on these hard samples. But the performance of triplet
loss highly relies on how to select the hardest positive and
negative pairs in a batch, which is difficult based on local
features extracted from body parts. More details about sam-
pling and hard pair selection are given in section 3.2. To
get a better performance, we adopt triplet and classification
losses to train our SCR model in a joint learning manner.

Spatial Part Based Models. Partitioning the entire body
image into several spatial parts has always been a popu-
lar strategy in Re-ID task. Gray et al. [8] first propose to
partition the person image into six equally-sized horizontal
stripes and extract color and texture features in each stripe.
Farenzena et al. [5] segment entire images into three salient
and meaningful regions (head, torso and legs) by exploiting
asymmetry and symmetry principles. These hand-crafted
feature based approaches work well on small datasets, but
are less robust and fail on large datasets.
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Figure 2. Comparisons of saliency maps generated by Grad-CAM [25] applied on 4 CNN models on Market-1501 test set. (a): A ResNet-
50 w/o partitions nor attention mechanism. (b) to (e): A ResNet-50 w/ spatial-channel partition, where (b) and (c) are saliency maps on two
spatial parts after spatial partition, (d) and (f) are saliency maps on two channel groups after channel partition. (f): Squeeze-and-Excitation

Network [12]. (g): Residual Attention Network [29].

Recently, part-based deep learning methods build more
robust representations with deep features learned on large
datasets. Yao et al. [36] train CNN in several maximally
activated regions on feature maps. In [4], authors propose a
spatial-channel loss to ensure that each channel in the rep-
resentation pays attention to a dedicated partitioned part of
the body. But original channel information in the feature
map is replaced by spatial information, making this loss
inappropriate to maintain specifically channel information.
Part-based Convolutional Baseline (PCB) proposed in [27]
introduces a simple yet effective model based on six iden-
tical horizontal stripes. But same body part can be found
in different stripes between different training samples, es-
pecially when bounding boxes are misaligned. To address
this issue, a recent research trend is to combine multiple
partitions to build a robust appearance representation.

Multi-partition Pyramidal Models. In HPM [7], Fu et
al. partition respectively the entire body feature map into
one, two, four and eight identical horizontal stripes. In
MGN [30], authors split last layers of a ResNet into three
branches and partition feature maps into one, two and three
horizontal stripes. CPM [37] adopts multiple overlapping
partitions. However, experiments show that these overlap-
ping partitions do not increase the performance of our net-
work. All these methods only consider multiple spatial par-
titions and neglect the channel ones.

Channel Group Operations. In AlexNet [14],
Krizhevsky et al. firstly partition channels into 2 groups and
introduce grouped convolutions to distribute a model into
two GPUs. In ResNeXt [34], authors show that a larger
number of channel groups can improve accuracy in image
classification task without increasing computational com-
plexity. MobileNet [11] adopts channel-wise convolutions
where the number of groups equals the number of chan-
nels. In a similar way, by partitioning channels into several

groups and computing within each channel group the mean
and the variance for normalization, Group Normalization
[32] outperforms Batch Normalization [13]. These studies
confirm the potential of partitioned channel groups as an ef-
fective dimension in various visual tasks. In the following
subsection, we discuss using partitioned channel groups to
enhance the robustness of representations in Re-ID task.

2.2. Study of Partitioned Representations

In Figure 2 (a), the heat map generated by Grad-CAM
[25] shows that a vanilla ResNet-50 trained with cross-
entropy classification loss focuses on upper body especially
on the region next to right arm, where other regions, e.g.,
right arm, legs and shoes are totally neglected. When train-
ing in this way, a CNN solely considers features on some
discriminative regions. In consequence, it suffers from
over-fitting on these regions and becomes less robust for
hard samples. To overcome this issue and build a more
generalized appearance representation, we employ spatial-
channel partitions and train multiple classifiers separately
on partitioned maps. Specific local features are fed sep-
arately into dedicated classifiers, each of them can be re-
garded as a local expert. A local expert works better on a
dedicated part. Combining all local experts allows to build
more robust representations for Re-ID. To verify this idea,
we have conducted experiments on Market-1501 dataset,
whose results are shown in Figure 2 (b) to (e). With spatial
partition, more regions in upper and lower body are high-
lighted respectively in Figure 2 (b) and (c) as compared to
(a). With channel partition, the model does not train local
experts on dedicated body parts but on a group of high level
features. Thanks to channel partition, in Figure 2 (d) and
(e), the obtained saliency maps have more highlighted re-
gions corresponding to semantic concepts, such as shoulder
strap and shoes. The T-shirt is highlighted in (d), while the
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shoulder strap and shoes are highlighted in (e). Different
activated semantic concepts in (d) and (e) show that chan-
nel partition is able to decorrelate high level features in dif-
ferent channel groups and conduct finer concept-to-cencept
matching.

Since activated regions of channel partitions are differ-
ent from those of spatial partitions, we can infer that local
features extracted from both types of partitions are comple-
mentary when trained jointly. Harmonious Attention [18]
is a combination of multiple attention mechanisms, such as
Channel Attention [12] and Spatial Attention [29]. Inspired
by Harmonious Attention, we propose to combine both
types of partitions to form a spatial-channel partition. Com-
parison results between only spatial partition, only channel
partition and spatial-channel partition are reported in Table
2. The performance of channel partition is better than that
of spatial partition, because semantic concept-to-concept
matching is more robust to misalignment than body part-
to part matching. Spatial-channel partition can further en-
hance the performance.

Both partition and attention mechanism aim at enhanc-
ing the ability of neural networks to extract more discrim-
inative features, but in opposite ways. Attention mecha-
nism guides neural networks in locating the most important
region in an image. As a consequence, secondary infor-
mation may be neglected by attention mechanism. On the
contrary, training local experts on partitioned parts enables
neural networks to learn more local features. Heat maps of
attention models in Figure 2 (g) and (f) keep less secondary
information in the feature map than a ResNet-50 in Figure
2 (a), while partition based models in Figure 2 (b) to (e)
keep more secondary information. Results in Table 1 vali-
date that keeping secondary information by spatial-channel
partition brings more improvement compared to removing
secondary information by attention.

’ Model \ Rankl1 \ mAP ‘

ResNet-50 89.5 73.3
ResNet-50 + channel attention (SENet) | 90.8 75.6
ResNet-50 + spatial-channel partition 94.4 85.8

Table 1. Comparison of results (%) between attention and partition
on Market-1501 dataset. SENet refers to Squeeze-and-Excitation
Network [12]. Spatial-channel partition refers to the model trained
with 2 spatial parts and 2 channel groups.

3. Proposed Framework

3.1. Spatial and Channel Partition Representation
Network (SCR)

The general architecture of our proposed SCR network is
represented in Figure 3. A batch of input images are fed into
a backbone network. Last layers of backbone network are

split into 3 independent branches in order to satisfy the need
for a pyramidal structure, which generate 3 feature maps of
equal size. A global feature map is extracted from each
branch. The second and third feature maps are then par-
titioned into 2 and 3 spatial-channel parts respectively. A
global max pooling (GMP) is used to replace global aver-
age pooling (GAP) in order to extract the most discrimina-
tive features in each part. Global and local feature maps
are transferred to vectors with distinct dimensions. Next,
dimensions of feature vectors are unified by 1*1 convolu-
tional layers into 256. We train 13 fully connected layers
as classifiers with 13 softmax cross-entropy losses respec-
tively on each feature vector and 3 triplet losses on the 3
global feature vectors. More details are given in the follow-
ing.

Backbone Network. Our proposed framework can take
any convolutional neural network designed for image clas-
sification as backbone network, such as VGG [26] and
ResNet [9]. To conduct a fair comparison, we follow previ-
ous state-of-the-art methods [30, 27] and use a ResNet-50
as our backbone. Two modifications are conducted: (1) the
down-sampling with stride-2 convolution is replaced by a
stride-1 convolution in the conv5_1 layer. (2) all the layers
after conv4_1 layer are duplicated to form 3 independent
branches. With these modifications, more high level fea-
tures can be kept in the feature map.

Multiple Spatial-channel Partitions in a Pyramidal
structure. To take full advantage of information contained
in the feature map, global, spatial and channel partitioned
features should be trained separately in the network. A
pyramidal structure has proven to be beneficial for part
based models in the previous state-of-the-art [37]. Thus,
the second feature map is partitioned equally into 2 spa-
tial parts and 2 channel groups. Similarly, the third feature
map is partitioned into 3 spatial parts and 3 channel groups.
With GMP, each partitioned map is transformed to a vector.
Besides these local feature vectors, a global feature vector
is extracted from each unpartitioned feature map. In total,
there are 3 global vectors and 10 local vectors.

3.2. Loss Functions

Softmax Cross-Entropy loss. The Softmax Cross-
Entropy loss in a mini-batch can be described as:

Lew— -3 (puyn> |
CE 2108 SN (1

j=1 exp(z[j])

where NN; denotes the number of images in the mini-batch,
N, 4 is the number of identities in the whole training set. y is
the ground truth identity of input image and x[j] represents
the output of fully-connected layer for jth identity.

Triplet loss. For a better performance on hard samples,
the variant Batch Hard [10] is adopted. In a mini-batch
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Figure 3. Spatial and Channel Partition Representation network. For the backbone network, we duplicate layers after conv4_1 into 3 identi-
cal but independent branches that generate 3 feature maps “p1”, ”p2” and ”p3”. Then, multiple spatial-channel partitions are conducted on
the feature maps. ”s2” and “c2” refer to 2 spatial parts and 2 channel groups. ”s3” and ”c3” refer to 3 spatial parts and 3 channel groups.
After global max pooling (GMP), dimensions of global (dim = 2048) and local (dim = 2048, 1024*2 and 683*2+682) features are unified
by 1*1 convolution (1*1 Conv) and batch normalization (BN) to 256. Then, fully connected layers (FC) give identity predictions of input
images. All the dimension unified feature vectors (dim = 256) are aggregated together as appearance representation (Rep) for testing.

which contains P identities and K images for each identity,
Batch Hard triplet loss aims at pulling the hardest positive
pair (a, p) together while pushing the hardest negative pair
(a,n) away by a margin. A Batch Hard triplet loss can be
defined as:

P K
Ltriplet = Z Z[p:Hf,aX,K Hai - pi”g
i=1 a=1 (2)
- Jninfag —njll; +aly
j=1,..,P
J#i
where a;, p; and n; are the feature vectors of anchor, posi-
tive and negative samples respectively, and « is the margin
to control the distance between positive and negative pair.
Total loss. Training the SCR model on global and lo-
cal features jointly helps to build more robust representa-
tions. Local features extracted from small parts are sensitive
to misalignment and viewpoint changes. Searching for the
hardest positive and negative pairs with local features can
be challenging, for example, we can not only look at the
upper body when two people wear similar white T-shirts.
Thus, the triplet loss is only employed on global features.
Softmax cross-entropy loss helps to estimate the presence

of specific features in small parts, which makes it more suit-
able for local features.

1 Nee 1 Niriplet
Liotar = A\— Log + Liripiet (3)
tota NCE ; Ntriplet FZI triplet

where Nog and Nypipie; are the number of softmax cross
entropy losses and triplet losses respectively. In the SCR
model, we have Ncg = 13 and Nyjpier = 3. Parameter
A balances the contribution of two types of loss functions.
Several possibilities of A are tested in the next section to
find an optimal setting for all experiments.

4. Experiments
4.1. Implementation Details

First of all, input images are resized to 384 x 192. For the
backbone network, we use a ResNet-50 pretrained on Ima-
geNet [2] to accelerate the training process. All the layers
after conv4_1 are duplicated into 3 independent branches.
Each 1*1 convolutional layer is followed by a Batch Nor-
malization [13] layer and a fully connected layer. These
layers do not share weights. Following previous state-of-
the-art methods [30, 27], we apply a standard Random Hor-
izontal Flip for data augmentation. The batch size is set to
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32 with randomly selected 8 identities and 4 images for each
identity. We train our model with an Adam optimizer with
AMSGrad setting [23] for 500 epochs. The weight decay
factor for L2 regularization is set to Se-4. The initial learn-
ing rate is set to 2e-4 and decay to 2e-5 after 300 epochs
and to 2e-6 after 400 epochs. The margin « in triplet loss is
set to 1.2 in all experiments and the parameter A in total loss
is set to 2. For the evaluation, we concatenate all the fea-
ture vectors after Batch Normalization layer together as the
appearance representation for images in query and gallery
sets. Our model is implemented on PyTorch framework and
takes about 6 hours on a single NVIDIA 1080 Ti GPU for
training on Market-1501 dataset.

4.2. Datasets and Protocols

To validate the effectiveness of our proposed SCR
model, experiments are conducted on four mainstream Re-
ID datasets: Market-1501 [39], DukeMTMC-relD [24, 41],
CUHKO3 [17] and MARS [38].

Image based datasets. Market-1501 dataset is collected
in front of a supermarket in Tsinghua University. It con-
tains 19,732 images of 751 identities in the training set and
12,936 images of 750 identities in the testing set. There are
17.2 images per identity in the training set. DukeMTMC-
relD is a subset of the DukeMTMC dataset. It contains
16,522 images of 702 persons in the training set and 2,228
query images and 17,661 gallery images of 702 persons for
testing. There are 23.5 images per identity in the training
set. CUHKO3 contains 14,096 images of 1,467 identities
captured from Chinese University of Hong Kong campus.
Each identity is captured from two cameras and has an av-
erage of 4.8 images in each camera. CUHKO3 dataset pro-
vides both manually labeled bounding boxes and DPM [6]
detected bounding boxes.

Video based dataset. MARS is an extension of the
Market-1501 dataset. There are 509,914 bounding boxes
for training, belonging to 8,298 tracklets of 625 identities.
There are 681,089 bounding boxes for test (gallery+query),
belonging to 12,180 tracklets of 636 identities.

Evaluation Protocols. Both Cumulative Matching
Characteristics (CMC) and mean Average Precisions (mAP)
are used in our experiments. CMC represents the match-
ing accuracy of Person Re-ID and CMC at Rankl is the
most intuitive metric where each query has only one ground
truth match. mAP is more appropriate for the case where
each query has multiple gallery matches. On CUHKO3
dataset, to simplify the evaluation procedure and meanwhile
enhance the accuracy of the performance reflected by re-
sults, we employed the new protocol described in [42]. For
MARS dataset, we conduct a tracklet-to-tracklet search by
building an overall appearance representation on each track-
let instead of on single image. Re-ranking algorithm is not
used to further improve mAP in all experiments.

CUHKO03

Partition Type Labelled Detected

Rankl \ mAP | Rankl \ mAP
Spatial
pl+p2(s2)+p3(s3) 759 | 721 | 756 | 71.8
Channel
pl+p2(c2)+p3(c3) 81.5 | 774 | 779 | 739
Spatial-Channel
p1+p2(s2c2)+p3(s3c3) 83.8 | 804 | 822 | 77.6

Table 2. Performance comparison (%) of different partition types
(spatial partition, channel partition and spatial-channel partition)
on CUHKO3 dataset using the new protocol [42] where the bold
font denotes the best partition type. ”s2” and “’s3” refer that the
entire feature map is partitioned into 2 and 3 spatial parts, while
”c2” and “c3” refer respectively to 2 and 3 channel groups.

4.3. Ablation Studies

To verify the effectiveness of each component in SCR
and design an optimal architecture, we conduct exten-
sive ablation studies on Market-1501, DukeMTMC-relD,
CUHKO3 and MARS datasets.

Partition Strategies. We conduct extensive experiments
to validate the effectiveness of spatial-channel partition by
comparing our proposed model with only spatial partitions,
with only channel partitions and with spatial-channel parti-
tions. These partition strategies are compared on the most
challenging dataset CUHKO3. Results are reported in Table
2. The model with spatial-channel partitions outperforms
respectively the one with only channel partitions and the
one with only spatial partitions by an average margin of 3%
and 7% on CUHKO3 dataset.

Pyramidal Multi-Branch Architectures. Each branch
”pl”, ’p2” and "p3” is separately tested. As shown in Table
3, performances of ”p2” and ’p3” with spatial-channel par-
tition have a significant improvement as compared to ’p1”
without partition. But the results are still below those of
state-of-the-art. Thus, we adapt a pyramidal multi-branch
architecture to our proposed SCR, which gives a boost to the
performance of our model. We gradually increase the num-
ber of branch and report their performance in Table 3. Two
phenomena are observed: 1) Spatial-channel partitions sig-
nificantly increase the performance of the neural network in
Re-ID task. 2) Multi-branch structure further enhances per-
formance of the model. We also tested a similar architecture
with 4 branches where the feature map was partitioned into
4 spatial strips and 4 channel groups. It did not give a fur-
ther improvement. Thus, we set the number of branches as
3.

Parameters in Total Loss. To balance contributions of
softmax cross-entropy and triplet losses, a weight parame-
ter A\ should be determined. Four possibilities A = 1,2, 3
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Architecture Number of | Representation | Market-1501 | DukeMTMC-reID | CUHKO3-detected
Branches Dimension Rankl [ mAP | Rankl | mAP Rankl [ mAP

pl 1 256%1 89.5 | 733 83.3 66.8 52.4 46.3

p2(s2c2) 1 256*5 944 | 858 | 89.6 77.6 73.7 68.4

p3(s3c3) 1 256*7 94.5 86.3 89.2 78.7 75.1 70.7

pl+p2(s2c2) 2 256*(1+5) 949 | 873 89.5 78.6 74.8 70.2

pl4+p2(s2c2)+p3(s3c3) 3 256*(1+5+7) 95.7 | 89.0 | 911 814 82.2 77.6

Table 3. Performance comparison (%) of the proposed SCR with different number of branches where the bold font denotes the best

9993
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architecture. “pl”, ”’p2” and "p3” refer to 3 feature maps in SCR. ”’s” and c” represent “spatial” and “channel” respectively, followed by
the number of parts. For instance, ’s2” and “c2” refer that the entire feature map is partitioned into 2 spatial parts and 2 channel parts.

CUHKO03
Loss Function Labelled Detected
Rank]1 \ mAP | Rankl \ mAP
W/0 Liriplet 76.9 73.5 75.1 70.5
A=1 84.8 81.4 79.5 75.5
A=2 83.8 80.4 82.2 77.6
A=3 82.2 78.8 80.7 76.8

Table 4. Performance comparison (%) of training SCR with differ-
ent parameter values for A from L;o.q;. The bold font denotes the
best parameter.

Temporal Pooling Ranll\q/llA\RrSn AP
TP(R) 845 | 789
TPP(R) 86.6 | 80.8
TP(E) 857 | 795
TPP(E) 87.3 | 813

Table 5. Comparison of different temporal pooling strategies
where the bold font denotes the best method. ”"R” and “E” re-
fer respectively to Random Sampling and Even Sampling. "TP”
refers to conventional Temporal Pooling. ”TPP” refers to Tempo-
ral Partiton Pooling.

and without triplet loss are tested on CUHKO3 dataset with
both labelled and detected bounding boxes. Results in Ta-
ble 4 shows that SCR gets best performance with A = 2
on detected bounding boxes, while it gets best performance
with A = 1 on labeled bounding boxes. To form a unified
framework, we set A = 2 for all experiments.

Temporal Partition Pooling (TPP). For video based
Re-ID, a traditional approach for building a tracklet repre-
sentation is to use a temporal average (or max) pooling on
all sampled image representations for the tracklet. To gen-
eralize partition strategies for the video-based Re-ID task,
we conduct a partition on the temporal dimension over the
tracklet. Instead of adopting directly a temporal pooling on
all sampled images in a tracklet, we firstly split the images
into several sub-tracklets and use the temporal pooling sepa-
rately on each sub-tracklet. Representations of sub-tracklets

Market-1501 DukeMTMC-relD

Method Rankl | mAP | Rankl | mAP
HA-CNN [18] | 012 | 75.7 | 805 | 6338
Mancs [28] 931 | 823 | 849 | 7138
PCB+RPP[27] | 938 | 816 | 833 | 69.2
SCPNet-a[4] | 94.1 | 818 | 844 | 685
HPM [7] 942 | 827 | 866 | 743
CAMA[35] | 947 | 845 | 858 | 729
MGN [30] 957 | 86.9 | 887 | 784
CPM [37] 95.7 | 882 | 89.0 | 79.0
SCR(ours) 95.7 89.0 91.1 814

Table 6. Comparison of supervised results (%) on Market-1501
and DukeMTMC-relD dataset.

are concatenated together to form a final representation of
the tracklet. To validate the performance of our proposed
TPP, we fix the sample size to 15 and partition the 15 im-
ages into 3 groups (beginning, middle, end). Different sam-
ple size and group number are tested but they do not have
a strong effect on results. A temporal average pooling is
performed on each sub-tracklet. Results in Table 5 show
that temporal partition can enhance the performance of our
model for the video-based Re-ID task.

4.4. Comparison with State-of-the-art

We compare our proposed model SCR with current state-
of-the-art methods on the 4 candidate datasets.

Results on Market-1501. Comparisons between SCR
and state-of-the-art methods on Market-1501 are shown in
Table 6. To get a better understanding on how our proposed
SCR can outperform previous state-of-the-art, we compare
some retrieved results between PCB [27] and our SCR in
Figure 4. These results confirm the effectiveness of spatial-
channel partition on keeping more salient information and
that of pyramidal structure to deal with misalignment.

Results on DukeMTMC-relD. Results of SCR and pre-
vious state-of-the-art methods on DukeMTMC-relD dataset
are reported in Table 6. Our SCR network also performs ex-
cellently on DukeMTMC-relD dataset. SCR outperforms
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CUHKO03

Method Labelled Detected

Rankl | mAP | Rankl | mAP
HA-CNN [18] 44.4 41.0 41.7 38.6
PCB+RPP [27] - - 63.7 57.5
HPM [7] - - 63.9 57.5
MGN [30] 68.0 67.4 68.0 66.0
CAMA [35] 70.1 66.5 66.6 64.2
CPM [37] 78.9 76.9 78.9 74.8
SCR(ours) 83.8 80.4 82.2 77.6

Table 7. Comparison of supervised results (%) on CUHKO3
dataset using the new protocol [42] .

MARS
Method Rankl [ mAP
IDE+Kissme [38] 68.3 493
TriNet [10] 79.8 67.7
DRSTA [16] 82.3 65.8
M3D [15] 84.4 74.0
SCR(ours) 87.3 | 813

Table 8. Comparison of supervised results (%) on MARS dataset.

M—D D—-M
Rank1 \ mAP | Rankl \ mAP

SPGAN [3] 41.1 22.3 51.5 22.8
TJ-AIDL [31] | 44.3 23.0 | 582 26.5
ATNet [21] 45.1 24.9 55.7 25.6
HHL [43] 46.9 27.2 62.2 | 314
SCR(ours) 53.6 | 324 | 59.7 30.6

Method

Table 9. Comparison of unsupervised cross-domain results
(%). M — D refers to training on Market-1501 and testing on
DukeMTMC-relD. D — M refers to training on DukeMTMC-relD
and testing on Market-1501.

the former state-of-the-art by 2.1% on Rankl1 and 2.4% on
mAP.

Results on CUHKO03. Table 7 shows results on
CUHKO3 dataset. Due to less training samples per iden-
tity, algorithms tend to get lower scores on CUHKO03, which
makes CUHKO3 the most challenging evaluation protocol.
With the same parameter settings, SCR outperforms previ-
ous state-of-the-art CPM by a large margin.

Results on MARS. To validate the adaptability of our
model in the video-based Re-ID task, we conduct experi-
ments on MARS dataset and report results in Table 8. Our
model is able to outperform current state-of-the-art video-
based models. SCR outperforms the previous most perfor-
mant model M3D [15] by a large margin.

Unsupervised cross-domain results. Our proposed
method also shows a strong generalizability on unsuper-

SCR{ours)

Figure 4. Examples of several mismatched samples in PCB [27] on
Market-1501 dataset, which are addressed by our proposed SCR.
Red borders refers to mismatched samples. “#17, "#2” and "#3”
correspond to top 3 retrieved gallery samples.

vised cross-domain problem, in which a model is trained on
a source domain and tested on a target domain. We compare
results of SCR and unsupervised cross-domain methods in
Table 9. Without using unlabeled images in target domain
like [3, 43, 21] or extra attribute annotation [31], our SCR
outperforms previous state-of-the-art under a direct deploy-
ment (no re-training on target domain) setting.

5. Conclusion

In this work, we carry out a comparative study between
spatial, channel partitions and attention mechanism. Based
on this study, a novel end-to-end trainable Spatial and Chan-
nel partition Representation network (SCR) is proposed to
maintain salient local information by spatial-channel parti-
tions. By combining spatial-channel partitioned local fea-
tures with global features, our SCR model is able to build
a discriminative and generalizable representation for each
sample for Re-ID task. In addition, to address the misalign-
ment problem, we use spatial-channel partitions in a pyra-
midal multi-branch architecture, which can further improve
the robustness of local features. To get a better performance
in video based Re-ID, partition is extended to the temporal
dimension. The effectiveness of each proposed component
is validated in the ablation studies. Crucial components, like
spatial-channel partition and temporal partition pooling, can
be easily embedded into other part based models for Re-ID.
By incorporating all these components, our well-designed
method outperforms current state-of-the-art in both image
and video based supervised Re-ID task, as well as in unsu-
pervised cross domain task. A major disadvantage of the
proposed method is the extra parameters and computational
complexity of 13 classifiers used for spatial-channel parti-
tions, which will slow down the inference. In our future
work, we will consider the effectiveness and efficiency in
the same time.
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