
Learning Discriminative and Generalizable Representations by Spatial-Channel

Partition for Person Re-Identification

Hao Chen1,2, Benoit Lagadec2, and Francois Bremond1

1
University of Côte d’Azur, Inria, Stars Project-Team, France

{hao.chen,francois.bremond}@inria.fr
2European Systems Integration, France

benoit.lagadec@esifrance.net

Abstract

In Person Re-Identification (Re-ID) task, combining lo-

cal and global features is a common strategy to overcome

missing key parts and misalignment on models based only

on global features. Using this combination, neural net-

works yield impressive performance in Re-ID task. Previous

part-based models mainly focus on spatial partition strate-

gies. Recently, operations on channel information, such as

Group Normalization and Channel Attention, have brought

significant progress to various visual tasks. However, chan-

nel partition has not drawn much attention in Person Re-ID.

In this paper, we conduct a study to exploit the potential of

channel partition in Re-ID task. Based on this study, we

propose an end-to-end Spatial and Channel partition Rep-

resentation network (SCR) in order to better exploit both

spatial and channel information. Experiments conducted on

three mainstream image-based evaluation protocols includ-

ing Market-1501, DukeMTMC-ReID and CUHK03 and one

video-based evaluation protocol MARS validate the perfor-

mance of our model, which outperforms previous state-of-

the-art in both single and cross domain Re-ID tasks.

1. Introduction

Person re-identification (Re-ID) targets at searching peo-

ple across non-overlapping surveillance cameras by match-

ing person images captured by different cameras. There are

still various challenging problems to be solved in a real-

world Re-ID task, such as camera view point changes, illu-

mination differences, pose variation and partial occlusion.

With the rapid development of deep learning based tech-

niques, recent research with convolutional neural networks

[18, 40] get remarkable advances in person Re-ID, which

surpass the performance of traditional handcrafted methods

[19, 39] on large datasets.

To measure similarities between two captured images,

we need to build an appearance representation for each sam-

ple in datasets. The most intuitive method for building rep-

Figure 1. Example of a spatial-channel partition. H, W and C stand

for respectively Height, Width and Channel in a deep feature map.

In this example, we partition a whole feature map into two spatial

parts (upper body and lower body) and two channel groups.

resentations is to extract directly global feature map from

the entire bounding box. However, Re-ID methods that rely

solely on global features of a person are prone to errors in

case of occlusion and misalignment. On the other hand, key

local features (carried objects and body parts, such as face

and hands) can not be always observable due to low camera

resolution and occlusions.

Since viewpoint change, partial occlusion and misalign-

ment are frequent in real-world Re-ID task, complement-

ing global features with local features addresses these is-

sues and builds better person representations. This further

improves a neural network’s capacity to distinguish similar

people based on small part differences.

Therefore, part-based models [1, 8, 22] have attracted a

lot of attention in Person Re-ID research community. Re-

cently, several sophisticated models [7, 30] have combined

multiple partitions conducted along the height dimension

in a pyramidal structure. They have significantly outper-

formed previous state-of-the-art. A feature map extracted

from an image has 3 dimensions, i.e., height, width and

channel (also called depth). Because height and width di-

mensions correspond both to the spatial coordinates of pix-
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els in an image, the partition conducted along the height

and width dimensions is called spatial partition. Indepen-

dently from spatial coordinates, partition conducted along

the channel dimension is called channel partition. An ex-

ample is shown in Figure 1.

Spatial partition is a common strategy in Re-ID task,

which enables part-to-part matching by extracting local fea-

tures corresponding to specific body parts. Channel infor-

mation comes from filters in a convolutional layer. As the

CNN goes deeper, last layers are more abstract, and out-

puts of the channels are higher level features, correspond-

ing potentially to concepts such as hair color, body shape,

etc. Channel partition does not extract local features from

specific body parts, but keeps features that indicate the pres-

ence of these high level concepts. By splitting channels

into several groups and training separate channel groups,

semantic concepts in each channel group can be decorre-

lated. Therefore, channel partition allows to conduct se-

mantic concept-to-concept matching (e.g., with or without

a bag strap), which can complement spatially partitioned

representations. As proven in [31, 20], semantic attributes

show a strong generalibility in cross domain Re-ID task.

By combing part-to-part and semantic concept-to-concept

matching, we are able to build discriminative and general-

izable representations with spatial-channel partition.

Another well-considered strategy for extracting discrim-

inative features is attention mechanism. Attention mecha-

nism helps CNNs to focus on the most discriminative part

(called primary information) in feature maps. Features on

other parts which are salient but less discriminative (called

secondary information) are then neglected. These features

can be complementary clues for distinguishing people with

similar appearances. Partitions enable a CNN not only to

consider primary features but also to keep secondary fea-

tures.

In this work, we focus on how to build robust person rep-

resentations for Re-ID task by complementing global fea-

tures with local features extracted through partitions.

In summary, our contribution is twofold:

1. We conduct a comparative study between spatial,

channel partitions and attention mechanism. Results of

this study can be summarized by 2 statements: (a) At-

tention mechanism may remove useful secondary in-

formation, which can be kept by partitions. (b) Com-

pared to traditional spatial partition, channel partition

shows a superior capacity of maintaining secondary lo-

cal information.

2. Spatial and channel partitions are combined (called

spatial-channel partition) to further enhance deep neu-

ral networks’ ability to learn secondary information.

By adopting multiple spatial-channel partitions in a

pyramidal structure, we propose a unified end-to-end

trainable framework for Person Re-ID.

Our proposed framework is exhaustively evaluated

on three image-based Re-ID datasets, Market-1501,

DukeMTMC-ReID, CUHK03 and one video-based dataset

MARS. On the MARS dataset, partition is also applied on

the temporal dimension to build a more robust represen-

tation for each tracklet. The evaluation results show that

our method can build both discriminative and generalizable

representations, which outperform previous state-of-the-art

in both supervised single domain and unsupervised cross-

domain Re-ID tasks.

2. Study of Appearance Representations

Building discriminative appearance representations to

measure quantitatively the similarity between query and

gallery images is a common approach in Re-ID task.

First, we evaluate robustness of appearance representations

within the state-of-the-art. Then, we explain why spatial

and channel partitions should be combined together and

why they can outperform attentive models.

2.1. State­of­the­art

The two main approaches to make appearance represen-

tations robust in the state-of-the-art consist of choosing ap-

propriate loss function and partitioning a person image into

several spatial parts.

Loss Functions for Re-ID. A domain guided dropout

is proposed in [33] to train a classification model on vari-

ous datasets, which consider Re-ID as an identification task.

Zheng et al. [40] use both pair-wise verification and classi-

fication loss to learn a more discriminative representation

for Re-ID task. However, classification loss fails in cases of

people wearing similar clothes, misaligned bounding boxes,

etc. In [10], Batch Hard triplet loss is proposed to focus

more on these hard samples. But the performance of triplet

loss highly relies on how to select the hardest positive and

negative pairs in a batch, which is difficult based on local

features extracted from body parts. More details about sam-

pling and hard pair selection are given in section 3.2. To

get a better performance, we adopt triplet and classification

losses to train our SCR model in a joint learning manner.

Spatial Part Based Models. Partitioning the entire body

image into several spatial parts has always been a popu-

lar strategy in Re-ID task. Gray et al. [8] first propose to

partition the person image into six equally-sized horizontal

stripes and extract color and texture features in each stripe.

Farenzena et al. [5] segment entire images into three salient

and meaningful regions (head, torso and legs) by exploiting

asymmetry and symmetry principles. These hand-crafted

feature based approaches work well on small datasets, but

are less robust and fail on large datasets.
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Figure 2. Comparisons of saliency maps generated by Grad-CAM [25] applied on 4 CNN models on Market-1501 test set. (a): A ResNet-

50 w/o partitions nor attention mechanism. (b) to (e): A ResNet-50 w/ spatial-channel partition, where (b) and (c) are saliency maps on two

spatial parts after spatial partition, (d) and (f) are saliency maps on two channel groups after channel partition. (f): Squeeze-and-Excitation

Network [12]. (g): Residual Attention Network [29].

Recently, part-based deep learning methods build more

robust representations with deep features learned on large

datasets. Yao et al. [36] train CNN in several maximally

activated regions on feature maps. In [4], authors propose a

spatial-channel loss to ensure that each channel in the rep-

resentation pays attention to a dedicated partitioned part of

the body. But original channel information in the feature

map is replaced by spatial information, making this loss

inappropriate to maintain specifically channel information.

Part-based Convolutional Baseline (PCB) proposed in [27]

introduces a simple yet effective model based on six iden-

tical horizontal stripes. But same body part can be found

in different stripes between different training samples, es-

pecially when bounding boxes are misaligned. To address

this issue, a recent research trend is to combine multiple

partitions to build a robust appearance representation.

Multi-partition Pyramidal Models. In HPM [7], Fu et

al. partition respectively the entire body feature map into

one, two, four and eight identical horizontal stripes. In

MGN [30], authors split last layers of a ResNet into three

branches and partition feature maps into one, two and three

horizontal stripes. CPM [37] adopts multiple overlapping

partitions. However, experiments show that these overlap-

ping partitions do not increase the performance of our net-

work. All these methods only consider multiple spatial par-

titions and neglect the channel ones.

Channel Group Operations. In AlexNet [14],

Krizhevsky et al. firstly partition channels into 2 groups and

introduce grouped convolutions to distribute a model into

two GPUs. In ResNeXt [34], authors show that a larger

number of channel groups can improve accuracy in image

classification task without increasing computational com-

plexity. MobileNet [11] adopts channel-wise convolutions

where the number of groups equals the number of chan-

nels. In a similar way, by partitioning channels into several

groups and computing within each channel group the mean

and the variance for normalization, Group Normalization

[32] outperforms Batch Normalization [13]. These studies

confirm the potential of partitioned channel groups as an ef-

fective dimension in various visual tasks. In the following

subsection, we discuss using partitioned channel groups to

enhance the robustness of representations in Re-ID task.

2.2. Study of Partitioned Representations

In Figure 2 (a), the heat map generated by Grad-CAM

[25] shows that a vanilla ResNet-50 trained with cross-

entropy classification loss focuses on upper body especially

on the region next to right arm, where other regions, e.g.,

right arm, legs and shoes are totally neglected. When train-

ing in this way, a CNN solely considers features on some

discriminative regions. In consequence, it suffers from

over-fitting on these regions and becomes less robust for

hard samples. To overcome this issue and build a more

generalized appearance representation, we employ spatial-

channel partitions and train multiple classifiers separately

on partitioned maps. Specific local features are fed sep-

arately into dedicated classifiers, each of them can be re-

garded as a local expert. A local expert works better on a

dedicated part. Combining all local experts allows to build

more robust representations for Re-ID. To verify this idea,

we have conducted experiments on Market-1501 dataset,

whose results are shown in Figure 2 (b) to (e). With spatial

partition, more regions in upper and lower body are high-

lighted respectively in Figure 2 (b) and (c) as compared to

(a). With channel partition, the model does not train local

experts on dedicated body parts but on a group of high level

features. Thanks to channel partition, in Figure 2 (d) and

(e), the obtained saliency maps have more highlighted re-

gions corresponding to semantic concepts, such as shoulder

strap and shoes. The T-shirt is highlighted in (d), while the
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shoulder strap and shoes are highlighted in (e). Different

activated semantic concepts in (d) and (e) show that chan-

nel partition is able to decorrelate high level features in dif-

ferent channel groups and conduct finer concept-to-cencept

matching.

Since activated regions of channel partitions are differ-

ent from those of spatial partitions, we can infer that local

features extracted from both types of partitions are comple-

mentary when trained jointly. Harmonious Attention [18]

is a combination of multiple attention mechanisms, such as

Channel Attention [12] and Spatial Attention [29]. Inspired

by Harmonious Attention, we propose to combine both

types of partitions to form a spatial-channel partition. Com-

parison results between only spatial partition, only channel

partition and spatial-channel partition are reported in Table

2. The performance of channel partition is better than that

of spatial partition, because semantic concept-to-concept

matching is more robust to misalignment than body part-

to part matching. Spatial-channel partition can further en-

hance the performance.

Both partition and attention mechanism aim at enhanc-

ing the ability of neural networks to extract more discrim-

inative features, but in opposite ways. Attention mecha-

nism guides neural networks in locating the most important

region in an image. As a consequence, secondary infor-

mation may be neglected by attention mechanism. On the

contrary, training local experts on partitioned parts enables

neural networks to learn more local features. Heat maps of

attention models in Figure 2 (g) and (f) keep less secondary

information in the feature map than a ResNet-50 in Figure

2 (a), while partition based models in Figure 2 (b) to (e)

keep more secondary information. Results in Table 1 vali-

date that keeping secondary information by spatial-channel

partition brings more improvement compared to removing

secondary information by attention.

Model Rank1 mAP

ResNet-50 89.5 73.3

ResNet-50 + channel attention (SENet) 90.8 75.6

ResNet-50 + spatial-channel partition 94.4 85.8

Table 1. Comparison of results (%) between attention and partition

on Market-1501 dataset. SENet refers to Squeeze-and-Excitation

Network [12]. Spatial-channel partition refers to the model trained

with 2 spatial parts and 2 channel groups.

3. Proposed Framework

3.1. Spatial and Channel Partition Representation
Network (SCR)

The general architecture of our proposed SCR network is

represented in Figure 3. A batch of input images are fed into

a backbone network. Last layers of backbone network are

split into 3 independent branches in order to satisfy the need

for a pyramidal structure, which generate 3 feature maps of

equal size. A global feature map is extracted from each

branch. The second and third feature maps are then par-

titioned into 2 and 3 spatial-channel parts respectively. A

global max pooling (GMP) is used to replace global aver-

age pooling (GAP) in order to extract the most discrimina-

tive features in each part. Global and local feature maps

are transferred to vectors with distinct dimensions. Next,

dimensions of feature vectors are unified by 1*1 convolu-

tional layers into 256. We train 13 fully connected layers

as classifiers with 13 softmax cross-entropy losses respec-

tively on each feature vector and 3 triplet losses on the 3

global feature vectors. More details are given in the follow-

ing.

Backbone Network. Our proposed framework can take

any convolutional neural network designed for image clas-

sification as backbone network, such as VGG [26] and

ResNet [9]. To conduct a fair comparison, we follow previ-

ous state-of-the-art methods [30, 27] and use a ResNet-50

as our backbone. Two modifications are conducted: (1) the

down-sampling with stride-2 convolution is replaced by a

stride-1 convolution in the conv5 1 layer. (2) all the layers

after conv4 1 layer are duplicated to form 3 independent

branches. With these modifications, more high level fea-

tures can be kept in the feature map.

Multiple Spatial-channel Partitions in a Pyramidal

structure. To take full advantage of information contained

in the feature map, global, spatial and channel partitioned

features should be trained separately in the network. A

pyramidal structure has proven to be beneficial for part

based models in the previous state-of-the-art [37]. Thus,

the second feature map is partitioned equally into 2 spa-

tial parts and 2 channel groups. Similarly, the third feature

map is partitioned into 3 spatial parts and 3 channel groups.

With GMP, each partitioned map is transformed to a vector.

Besides these local feature vectors, a global feature vector

is extracted from each unpartitioned feature map. In total,

there are 3 global vectors and 10 local vectors.

3.2. Loss Functions

Softmax Cross-Entropy loss. The Softmax Cross-

Entropy loss in a mini-batch can be described as:

LCE = −

Ni
∑

i=1

log

(

exp(x[y])
∑Nid

j=1
exp(x[j])

)

(1)

where Ni denotes the number of images in the mini-batch,

Nid is the number of identities in the whole training set. y is

the ground truth identity of input image and x[j] represents

the output of fully-connected layer for jth identity.

Triplet loss. For a better performance on hard samples,

the variant Batch Hard [10] is adopted. In a mini-batch
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Figure 3. Spatial and Channel Partition Representation network. For the backbone network, we duplicate layers after conv4 1 into 3 identi-

cal but independent branches that generate 3 feature maps ”p1”, ”p2” and ”p3”. Then, multiple spatial-channel partitions are conducted on

the feature maps. ”s2” and ”c2” refer to 2 spatial parts and 2 channel groups. ”s3” and ”c3” refer to 3 spatial parts and 3 channel groups.

After global max pooling (GMP), dimensions of global (dim = 2048) and local (dim = 2048, 1024*2 and 683*2+682) features are unified

by 1*1 convolution (1*1 Conv) and batch normalization (BN) to 256. Then, fully connected layers (FC) give identity predictions of input

images. All the dimension unified feature vectors (dim = 256) are aggregated together as appearance representation (Rep) for testing.

which contains P identities and K images for each identity,

Batch Hard triplet loss aims at pulling the hardest positive

pair (a, p) together while pushing the hardest negative pair

(a, n) away by a margin. A Batch Hard triplet loss can be

defined as:

Ltriplet =
P
∑

i=1

K
∑

a=1

[ max
p=1,...,K

‖ai − pi‖2

− min
n=1,...,K
j=1,...,P

j 6=i

‖ai − nj‖2 + α]+
(2)

where ai, pi and ni are the feature vectors of anchor, posi-

tive and negative samples respectively, and α is the margin

to control the distance between positive and negative pair.

Total loss. Training the SCR model on global and lo-

cal features jointly helps to build more robust representa-

tions. Local features extracted from small parts are sensitive

to misalignment and viewpoint changes. Searching for the

hardest positive and negative pairs with local features can

be challenging, for example, we can not only look at the

upper body when two people wear similar white T-shirts.

Thus, the triplet loss is only employed on global features.

Softmax cross-entropy loss helps to estimate the presence

of specific features in small parts, which makes it more suit-

able for local features.

Ltotal = λ
1

NCE

NCE
∑

i=1

LCE +
1

Ntriplet

Ntriplet
∑

i=1

Ltriplet (3)

where NCE and Ntriplet are the number of softmax cross

entropy losses and triplet losses respectively. In the SCR

model, we have NCE = 13 and Ntriplet = 3. Parameter

λ balances the contribution of two types of loss functions.

Several possibilities of λ are tested in the next section to

find an optimal setting for all experiments.

4. Experiments

4.1. Implementation Details

First of all, input images are resized to 384∗192. For the

backbone network, we use a ResNet-50 pretrained on Ima-

geNet [2] to accelerate the training process. All the layers

after conv4 1 are duplicated into 3 independent branches.

Each 1*1 convolutional layer is followed by a Batch Nor-

malization [13] layer and a fully connected layer. These

layers do not share weights. Following previous state-of-

the-art methods [30, 27], we apply a standard Random Hor-

izontal Flip for data augmentation. The batch size is set to
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32 with randomly selected 8 identities and 4 images for each

identity. We train our model with an Adam optimizer with

AMSGrad setting [23] for 500 epochs. The weight decay

factor for L2 regularization is set to 5e-4. The initial learn-

ing rate is set to 2e-4 and decay to 2e-5 after 300 epochs

and to 2e-6 after 400 epochs. The margin α in triplet loss is

set to 1.2 in all experiments and the parameter λ in total loss

is set to 2. For the evaluation, we concatenate all the fea-

ture vectors after Batch Normalization layer together as the

appearance representation for images in query and gallery

sets. Our model is implemented on PyTorch framework and

takes about 6 hours on a single NVIDIA 1080 Ti GPU for

training on Market-1501 dataset.

4.2. Datasets and Protocols

To validate the effectiveness of our proposed SCR

model, experiments are conducted on four mainstream Re-

ID datasets: Market-1501 [39], DukeMTMC-reID [24, 41],

CUHK03 [17] and MARS [38].

Image based datasets. Market-1501 dataset is collected

in front of a supermarket in Tsinghua University. It con-

tains 19,732 images of 751 identities in the training set and

12,936 images of 750 identities in the testing set. There are

17.2 images per identity in the training set. DukeMTMC-

reID is a subset of the DukeMTMC dataset. It contains

16,522 images of 702 persons in the training set and 2,228

query images and 17,661 gallery images of 702 persons for

testing. There are 23.5 images per identity in the training

set. CUHK03 contains 14,096 images of 1,467 identities

captured from Chinese University of Hong Kong campus.

Each identity is captured from two cameras and has an av-

erage of 4.8 images in each camera. CUHK03 dataset pro-

vides both manually labeled bounding boxes and DPM [6]

detected bounding boxes.

Video based dataset. MARS is an extension of the

Market-1501 dataset. There are 509,914 bounding boxes

for training, belonging to 8,298 tracklets of 625 identities.

There are 681,089 bounding boxes for test (gallery+query),

belonging to 12,180 tracklets of 636 identities.

Evaluation Protocols. Both Cumulative Matching

Characteristics (CMC) and mean Average Precisions (mAP)

are used in our experiments. CMC represents the match-

ing accuracy of Person Re-ID and CMC at Rank1 is the

most intuitive metric where each query has only one ground

truth match. mAP is more appropriate for the case where

each query has multiple gallery matches. On CUHK03

dataset, to simplify the evaluation procedure and meanwhile

enhance the accuracy of the performance reflected by re-

sults, we employed the new protocol described in [42]. For

MARS dataset, we conduct a tracklet-to-tracklet search by

building an overall appearance representation on each track-

let instead of on single image. Re-ranking algorithm is not

used to further improve mAP in all experiments.

Partition Type

CUHK03

Labelled Detected

Rank1 mAP Rank1 mAP

Spatial
75.9 72.1 75.6 71.8

p1+p2(s2)+p3(s3)

Channel
81.5 77.4 77.9 73.9

p1+p2(c2)+p3(c3)

Spatial-Channel
83.8 80.4 82.2 77.6

p1+p2(s2c2)+p3(s3c3)

Table 2. Performance comparison (%) of different partition types

(spatial partition, channel partition and spatial-channel partition)

on CUHK03 dataset using the new protocol [42] where the bold

font denotes the best partition type. ”s2” and ”s3” refer that the

entire feature map is partitioned into 2 and 3 spatial parts, while

”c2” and ”c3” refer respectively to 2 and 3 channel groups.

4.3. Ablation Studies

To verify the effectiveness of each component in SCR

and design an optimal architecture, we conduct exten-

sive ablation studies on Market-1501, DukeMTMC-reID,

CUHK03 and MARS datasets.

Partition Strategies. We conduct extensive experiments

to validate the effectiveness of spatial-channel partition by

comparing our proposed model with only spatial partitions,

with only channel partitions and with spatial-channel parti-

tions. These partition strategies are compared on the most

challenging dataset CUHK03. Results are reported in Table

2. The model with spatial-channel partitions outperforms

respectively the one with only channel partitions and the

one with only spatial partitions by an average margin of 3%

and 7% on CUHK03 dataset.

Pyramidal Multi-Branch Architectures. Each branch

”p1”, ”p2” and ”p3” is separately tested. As shown in Table

3, performances of ”p2” and ”p3” with spatial-channel par-

tition have a significant improvement as compared to ”p1”

without partition. But the results are still below those of

state-of-the-art. Thus, we adapt a pyramidal multi-branch

architecture to our proposed SCR, which gives a boost to the

performance of our model. We gradually increase the num-

ber of branch and report their performance in Table 3. Two

phenomena are observed: 1) Spatial-channel partitions sig-

nificantly increase the performance of the neural network in

Re-ID task. 2) Multi-branch structure further enhances per-

formance of the model. We also tested a similar architecture

with 4 branches where the feature map was partitioned into

4 spatial strips and 4 channel groups. It did not give a fur-

ther improvement. Thus, we set the number of branches as

3.

Parameters in Total Loss. To balance contributions of

softmax cross-entropy and triplet losses, a weight parame-

ter λ should be determined. Four possibilities λ = 1, 2, 3
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Architecture
Number of Representation Market-1501 DukeMTMC-reID CUHK03-detected

Branches Dimension Rank1 mAP Rank1 mAP Rank1 mAP

p1 1 256*1 89.5 73.3 83.3 66.8 52.4 46.3

p2(s2c2) 1 256*5 94.4 85.8 89.6 77.6 73.7 68.4

p3(s3c3) 1 256*7 94.5 86.3 89.2 78.7 75.1 70.7

p1+p2(s2c2) 2 256*(1+5) 94.9 87.3 89.5 78.6 74.8 70.2

p1+p2(s2c2)+p3(s3c3) 3 256*(1+5+7) 95.7 89.0 91.1 81.4 82.2 77.6

Table 3. Performance comparison (%) of the proposed SCR with different number of branches where the bold font denotes the best

architecture. ”p1”, ”p2” and ”p3” refer to 3 feature maps in SCR. ”s” and ”c” represent ”spatial” and ”channel” respectively, followed by

the number of parts. For instance, ”s2” and ”c2” refer that the entire feature map is partitioned into 2 spatial parts and 2 channel parts.

Loss Function

CUHK03

Labelled Detected

Rank1 mAP Rank1 mAP

w/o Ltriplet 76.9 73.5 75.1 70.5

λ = 1 84.8 81.4 79.5 75.5

λ = 2 83.8 80.4 82.2 77.6

λ = 3 82.2 78.8 80.7 76.8

Table 4. Performance comparison (%) of training SCR with differ-

ent parameter values for λ from Ltotal. The bold font denotes the

best parameter.

Temporal Pooling
MARS

Rank1 mAP

TP(R) 84.5 78.9

TPP(R) 86.6 80.8

TP(E) 85.7 79.5

TPP(E) 87.3 81.3

Table 5. Comparison of different temporal pooling strategies

where the bold font denotes the best method. ”R” and ”E” re-

fer respectively to Random Sampling and Even Sampling. ”TP”

refers to conventional Temporal Pooling. ”TPP” refers to Tempo-

ral Partiton Pooling.

and without triplet loss are tested on CUHK03 dataset with

both labelled and detected bounding boxes. Results in Ta-

ble 4 shows that SCR gets best performance with λ = 2
on detected bounding boxes, while it gets best performance

with λ = 1 on labeled bounding boxes. To form a unified

framework, we set λ = 2 for all experiments.

Temporal Partition Pooling (TPP). For video based

Re-ID, a traditional approach for building a tracklet repre-

sentation is to use a temporal average (or max) pooling on

all sampled image representations for the tracklet. To gen-

eralize partition strategies for the video-based Re-ID task,

we conduct a partition on the temporal dimension over the

tracklet. Instead of adopting directly a temporal pooling on

all sampled images in a tracklet, we firstly split the images

into several sub-tracklets and use the temporal pooling sepa-

rately on each sub-tracklet. Representations of sub-tracklets

Method
Market-1501 DukeMTMC-reID

Rank1 mAP Rank1 mAP

HA-CNN [18] 91.2 75.7 80.5 63.8

Mancs [28] 93.1 82.3 84.9 71.8

PCB+RPP [27] 93.8 81.6 83.3 69.2

SCPNet-a [4] 94.1 81.8 84.4 68.5

HPM [7] 94.2 82.7 86.6 74.3

CAMA [35] 94.7 84.5 85.8 72.9

MGN [30] 95.7 86.9 88.7 78.4

CPM [37] 95.7 88.2 89.0 79.0

SCR(ours) 95.7 89.0 91.1 81.4

Table 6. Comparison of supervised results (%) on Market-1501

and DukeMTMC-reID dataset.

are concatenated together to form a final representation of

the tracklet. To validate the performance of our proposed

TPP, we fix the sample size to 15 and partition the 15 im-

ages into 3 groups (beginning, middle, end). Different sam-

ple size and group number are tested but they do not have

a strong effect on results. A temporal average pooling is

performed on each sub-tracklet. Results in Table 5 show

that temporal partition can enhance the performance of our

model for the video-based Re-ID task.

4.4. Comparison with State­of­the­art

We compare our proposed model SCR with current state-

of-the-art methods on the 4 candidate datasets.

Results on Market-1501. Comparisons between SCR

and state-of-the-art methods on Market-1501 are shown in

Table 6. To get a better understanding on how our proposed

SCR can outperform previous state-of-the-art, we compare

some retrieved results between PCB [27] and our SCR in

Figure 4. These results confirm the effectiveness of spatial-

channel partition on keeping more salient information and

that of pyramidal structure to deal with misalignment.

Results on DukeMTMC-reID. Results of SCR and pre-

vious state-of-the-art methods on DukeMTMC-reID dataset

are reported in Table 6. Our SCR network also performs ex-

cellently on DukeMTMC-reID dataset. SCR outperforms
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Method

CUHK03

Labelled Detected

Rank1 mAP Rank1 mAP

HA-CNN [18] 44.4 41.0 41.7 38.6

PCB+RPP [27] - - 63.7 57.5

HPM [7] - - 63.9 57.5

MGN [30] 68.0 67.4 68.0 66.0

CAMA [35] 70.1 66.5 66.6 64.2

CPM [37] 78.9 76.9 78.9 74.8

SCR(ours) 83.8 80.4 82.2 77.6

Table 7. Comparison of supervised results (%) on CUHK03

dataset using the new protocol [42] .

Method
MARS

Rank1 mAP

IDE+Kissme [38] 68.3 49.3

TriNet [10] 79.8 67.7

DRSTA [16] 82.3 65.8

M3D [15] 84.4 74.0

SCR(ours) 87.3 81.3

Table 8. Comparison of supervised results (%) on MARS dataset.

Method
M→D D→M

Rank1 mAP Rank1 mAP

SPGAN [3] 41.1 22.3 51.5 22.8

TJ-AIDL [31] 44.3 23.0 58.2 26.5

ATNet [21] 45.1 24.9 55.7 25.6

HHL [43] 46.9 27.2 62.2 31.4

SCR(ours) 53.6 32.4 59.7 30.6

Table 9. Comparison of unsupervised cross-domain results

(%). M→D refers to training on Market-1501 and testing on

DukeMTMC-reID. D→M refers to training on DukeMTMC-reID

and testing on Market-1501.

the former state-of-the-art by 2.1% on Rank1 and 2.4% on

mAP.

Results on CUHK03. Table 7 shows results on

CUHK03 dataset. Due to less training samples per iden-

tity, algorithms tend to get lower scores on CUHK03, which

makes CUHK03 the most challenging evaluation protocol.

With the same parameter settings, SCR outperforms previ-

ous state-of-the-art CPM by a large margin.

Results on MARS. To validate the adaptability of our

model in the video-based Re-ID task, we conduct experi-

ments on MARS dataset and report results in Table 8. Our

model is able to outperform current state-of-the-art video-

based models. SCR outperforms the previous most perfor-

mant model M3D [15] by a large margin.

Unsupervised cross-domain results. Our proposed

method also shows a strong generalizability on unsuper-

Figure 4. Examples of several mismatched samples in PCB [27] on

Market-1501 dataset, which are addressed by our proposed SCR.

Red borders refers to mismatched samples. ”#1”, ”#2” and ”#3”

correspond to top 3 retrieved gallery samples.

vised cross-domain problem, in which a model is trained on

a source domain and tested on a target domain. We compare

results of SCR and unsupervised cross-domain methods in

Table 9. Without using unlabeled images in target domain

like [3, 43, 21] or extra attribute annotation [31], our SCR

outperforms previous state-of-the-art under a direct deploy-

ment (no re-training on target domain) setting.

5. Conclusion

In this work, we carry out a comparative study between
spatial, channel partitions and attention mechanism. Based
on this study, a novel end-to-end trainable Spatial and Chan-
nel partition Representation network (SCR) is proposed to
maintain salient local information by spatial-channel parti-
tions. By combining spatial-channel partitioned local fea-
tures with global features, our SCR model is able to build
a discriminative and generalizable representation for each
sample for Re-ID task. In addition, to address the misalign-
ment problem, we use spatial-channel partitions in a pyra-
midal multi-branch architecture, which can further improve
the robustness of local features. To get a better performance
in video based Re-ID, partition is extended to the temporal
dimension. The effectiveness of each proposed component
is validated in the ablation studies. Crucial components, like
spatial-channel partition and temporal partition pooling, can
be easily embedded into other part based models for Re-ID.
By incorporating all these components, our well-designed
method outperforms current state-of-the-art in both image
and video based supervised Re-ID task, as well as in unsu-
pervised cross domain task. A major disadvantage of the
proposed method is the extra parameters and computational
complexity of 13 classifiers used for spatial-channel parti-
tions, which will slow down the inference. In our future
work, we will consider the effectiveness and efficiency in
the same time.
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