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Abstract

The top accuracy of object detection to date is led by

region-based approaches, where the per-region stage is re-

sponsible for recognizing proposals generated by the re-

gion proposal network. In that stage, sampling heuristics

(e.g., OHEM, IoU-balanced sampling) is always applied

to select a part of examples during training. But nowa-

days, existing samplers ignore the overlaps among exam-

ples, which may result in some low-quality predictions pre-

served. To mitigate the issue, we propose Overlap Sam-

pler that selects examples according to the overlaps among

examples, which enables the training to focus on the im-

portant examples. Benefitted from it, the Faster R-CNN

could obtain impressively 1.5 points higher Average Pre-

cision (AP) on the challenging COCO benchmark, a state-

of-the-art result among existing samplers for region-based

detectors. Moreover, the proposed sampler also yields

considerable improvements for the instance segmentation

task. Our code is released at https://github.com/

ChenJoya/overlap-sampler.

1. Introduction

Deep object detectors become prevalent since the suc-

cess of Region-based CNN (R-CNN [13]). R-CNN-like de-

tectors [2, 4, 12, 14, 23, 28, 32, 37] usually work in two

stages: the region proposal network (RPN [32]) first gener-

ates some candidate regions, then followed by a per-region

stage for refining the locations, classifying the categories of

these candidate regions. Despite various detection frame-

works proposed over years (e.g., one-stage [25, 27, 30, 31,

41, 44] and anchor-free [17, 20, 21, 29, 34, 40, 42, 43] ap-

proaches), region-based object detectors still lead the top

accuracy on most benchmarks [7, 10, 26].
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Figure 1. The overlaps between ground-truths and examples are

quite different from those between examples themselves. See

this figure, the IoU between the ground-truth and the positive

(IoUg,p), as well as the IoU between the ground-truth and the neg-

ative (IoUg,n) in (a), is equal to that in (b). However, the overlaps

between examples themselves, i.e. the IoU between the positive

and the negative (IoUp,n) has obvious difference in (a) and (b).

Nevertheless, previous works [28, 32, 33] have demon-

strated that the imbalance between positives and negatives

would impede region-based detectors to attain higher accu-

racy. Specifically, the number of negative examples is much

larger than that of positive examples during training (e.g.,

100k vs. 100). Although the RPN could remove most nega-

tives, they still account for ˜90% in the remaining examples

at the per-region stage, which may cause the training domi-

nated by huge negatives.

To alleviate the imbalance between positives and nega-

tives, sampling heuristics [19] is widely adopted for training

object detectors, such as loss-based sampling [22, 25, 33]

and IoU-based sampling [3, 6]. For region-based detectors,

the latter shows higher efficiency as it only selects a part of

examples to train, thus eliminating extra computational cost

incurred by loss-based sampling. However, existing IoU-

based samplers only consider the overlaps between ground-
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truths and examples, but ignore the overlaps among exam-

ples themselves. As shown in Figure 1, these two types of

overlaps are quite different. We believe that taking the over-

laps among examples into account would be beneficial to

improve the detection accuracy, which would be beneficial

to the better non-maximum suppression (NMS1) procedure.

Take the Figure 1 as an instance: the negative example has

a high overlap with the positive example, which may cause

the latter to be wrongly suppressed at the NMS procedure.

By taking the overlaps among examples into account dur-

ing sampling, we believe that the training could put more

focuses on this case.

To utilize the overlaps among examples during sampling,

we propose Overlap Sampler that selects training exam-

ples according to the overlaps among them. Current IoU-

based samplers (e.g., IoU-balanced sampling [28]) always

assign sampled probability by overlaps between ground-

truths and examples. In contrast, the proposed overlap sam-

pler is based on the overlaps among examples. Our analysis

reveals that the overlap sampler could achieve higher up-

per bound in accuracy than other IoU-based samplers, as

it helps the training to put more focuses on those highly

overlapped cases. Therefore, a detector with the overlap

sampler would tend to preserve the relatively high-quality

results from multiple candidate proposals.

To validate the effectiveness of the overlap sampler, we

incorporate it into two well-known region-based detectors,

Faster R-CNN [32] and Mask R-CNN [14], and evaluate

their performances on the challenging COCO [26] bench-

mark. Our experiments show that with the ResNet-50-

FPN backbone [15, 24], the upgraded Faster R-CNN, Mask

R-CNN could obtain 1.5 box AP, 0.8 mask AP improve-

ments, respectively. With a strong backbone of ResNext-

101-FPN [24, 39], we observed that the Faster R-CNN com-

bined with our overlap sampler achieves 42.5 AP, surpass-

ing existing sampling heuristics in region-based detectors.

Our main contributions are as follows:

• By a careful investigation for IoU-based sampling

heuristics, we reveal the overlaps among examples have a

tremendous impact on the detection accuracy.

• Motivated by this, we propose Overlap Sampler to im-

prove region-based detectors, which selects training sam-

ples according to the overlaps among examples.

• Extensive experiments have demonstrated that overlap

sampler is more effective than existing sampling heuristics.

Without any bells and whistles, it improves the 1.5 box AP

and 0.8 mask AP for Faster R-CNN and Mask R-CNN on

the challenging COCO benchmark, respectively.

1NMS [5, 1] algorithm is widely adopted in object detection frame-

works, which is responsible for removing highly overlapped bounding-

boxes. While running the NMS algorithm, a bounding-box with the maxi-

mum detection score is selected and its neighboring boxes are suppressed

using a predefined IoU threshold (e.g.,0.5).

2. Related Work

Classic Object Detectors. Before the boom of deep learn-

ing, the sliding-window paradigm and hand-crafted features

were widely used in object detection. Well-known repre-

sentatives include face detection by Viola and Jones [36]

and pedestrian detection by DPM [8]. However, recent

years have witnessed the outstanding performance of CNN-

based general-purpose object detectors, which outperform

the classic detectors by a large margin on the object detec-

tion benchmarks [7, 26].

Region-Based Detectors. Region-based detector is also

termed as the two-stage detector, which is introduced and

popularized by R-CNN [13]. It firstly generates a sparse

set of candidates by some low-level vision algorithms [35,

45], then determines the accurate bounding boxes and the

classes by convolutional networks. A number of R-CNN

variations [4, 12, 14, 32] appear over years, yielding a large

improvement in detection accuracy. Among them, Faster

R-CNN [32] is one of the most successful approach. It in-

troduces the region proposal network (RPN) [32, 38], which

has been a standard module in region-based approaches.

Sampling Heuristics for Region-Based Detectors. Al-

though the foreground-background class imbalance has

been greatly alleviated by RPN, the overwhelming number

of the negatives still dominate the training procedure. The

methods for handling the imbalance can be divided into two

categories: (1) loss-based sampling, such as OHEM [33],

Focal Loss [25] and GHM [22]. (2) IoU-based sampling,

e.g.,IoU-balanced sampling [28], ISR [3]. The loss-based

sampling methods, however, require the losses of all candi-

date boxes, which will introduce considerable memory and

computing costs. On the other hand, despite the random

sampling has higher efficiency than hard mining, but as il-

lustrated in the previous works [25, 28, 33], it usually sam-

ples excessive easy negatives such that leads to inefficient

training. Recent IoU-based sampling methods managed to

solve this dilemma. Specifically, the IoU-balanced sam-

pling tends to select the negative example which has high

overlap with ground-truth objects, while the ISR is likely

to focus on the positive examples of high overlaps with

ground-truth objects. Beyond them, our overlap sampler

also considers the overlaps among examples during sam-

pling, which has not been explored before.

Non-Maximum Suppression. Non-maximum suppression

(NMS) has been an integral part of many detection algo-

rithms. Popular greedy NMS is proposed by Dalal and

Triggs [5], where a bounding box with the maximum de-

tection score is selected and its neighboring boxes are sup-

pressed using a predefined IoU threshold. Recently, several

works [1, 16, 18] attempt to improve its performance from

the perspective of the network. In contrast, we focus on the

sampling procedure to avoid incorrect suppression.
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Method Algorithm Condition Upper bound AP

IoU-balanced [28] Evenly sample negatives in each IoU bin Sn = 0 44.2

ISR [3] Sample and reweight prime positives Sp = IoUg,p 45.1

Overlap Sampler (Ours) Sample and reweight highly overlapped examples Sei = IoUg,ei , Sej = IoUg,ej 49.5

Table 1. An empirical analysis of the upper bound in accuracy for different IoU-based sampling heuristics. We use Faster R-CNN [32] with

ResNet-50-FPN [15, 24] backbone implemented on maskrcnn-benchmark [9] to analyze the upper bound on COCO minival [26].

The condition to achieve the upper bound for each sampling method is described as follows: (a) IoU-balanced sampling: For any negative

n, the predicted score satisfies Sn = 0. (b) ISR: For any positive p and the corresponding ground-truth g, the predicted score satisfies

Sp = IoUg,p. (c) Overlap sampler: For any overlapped examples ei and ej , the predicted score satisfies Sei = IoUg,ei , Sej = IoUg,ej .

In our experiments, the overlap sampler attains the highest upper bound in accuracy.

3. Methodology

In this section, we introduce the proposed overlap sam-

pler starting from an investigation for different IoU-based

sampling heuristics, which will show the advantages of the

sampling according to overlaps among examples. Specif-

ically, we will perform an empirical analysis of the upper

bound in accuracy of IoU-balanced sampling [28], ISR [3],

and our overlap sampler. Based on the investigation, the

overlap sampler is proposed, which could take the overlaps

among examples themselves into account during sampling.

For simplicity, we follow the Figure 1 to denote the over-

lap2 between example ei and example ej as IoUei,ej . Fur-

thermore, for the sake of fairness, all of our experiments and

baselines are implemented on maskrcnn-benchmark [9]

with the same training and inference configurations, e.g.,

the backbone is ResNet-50-FPN [15, 24], the learning rate

is 0.02 with 1× schedule (∼12 epochs on COCO [26]), the

input scale is 1333× 800.

3.1. Investigation

As shown in Table 1, an empirical analysis is performed

to estimate the upper bound in accuracy of different IoU-

based sampling heuristics. We will describe how they select

examples, then discuss the conditions for them to achieve

the upper bound.

IoU-balanced sampling. IoU-balanced sampling is the

sampling part of Libra R-CNN [28]. As shown in Fig-

ure 2(a), it evenly splits the sampling interval into K bins

(an example of K = 2 is visualized in the figure) accord-

ing to IoU between ground-truths and negatives and selects

samples from them uniformly. Therefore, its optimal accu-

racy would be achieved if all negatives could be accurately

recognized. In the first row of the Table 1, we set the pre-

dicted scores of all negatives to zero (i.e., Sn = 0) and

obtain 44.2 AP on COCO minival.

ISR. Importance-based sample reweighting (ISR) belongs

to the classification part of PISA [3]. It hopes to measure

the importance of different examples, then selects the prime

ones to train. As shown in Figure 2(b), an IoU-HLR algo-

rithm [3] is developed to rank the importance of different

2To avoid conflict, we use “overlap” to refer to the intersection-over-

union (IoU), but use “IoU” in the mathematical formulas.
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Figure 2. We give two visualization examples for the pipeline of

IoU-balanced sampling and ISR, to make the analysis of the upper

bound more clear. IoU-balanced sampling uniformly selects nega-

tives (yellow) from evenly split bins of overlaps between ground-

truths and negatives, whereas ISR weights positives (red) accord-

ing to the ranking results produced by IoU-HLR [3].

positives. Then ISR assigns higher weights for the “prime

examples” (the positives with higher overlaps to their cor-

responding ground-truths). Therefore, as presented in the

second row of the Table 1, we set the predicted scores of all

positives to IoUg,p to estimate the upper bound of ISR. It is

observed that ISR achieves 45.1 AP on COCO minival,

which is a 0.9 AP higher result than the upper bound of

IoU-balanced sampling.

In the above, ISR has shown that different positives

should be weighted according to their overlaps with the

ground-truths. Compared with IoU-balanced sampling, the

gain of ISR in the upper bound is from the improvement

of NMS, as the weighting scheme would help the detector

to output a higher score for a higher-quality positive exam-

ple. Motivated by this, we propose an overlap sampler that

directly focuses on those NMS-related examples.
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Figure 3. This figure illustrates the pipeline of our overlap sampler, which consists of the positive overlap sampler and the negative overlap

sampler. Both of them select examples according to the overlaps between positives (red) and negatives (yellow), i.e., IoUp,n. To better

learn the overlapped positives, the positive sampler also applies a reweighting scheme, to focus on those examples with higher IoUg,p.

3.2. Overlap Sampler

In the above, we have illustrated that, by accurately rec-

ognizing the examples that highly overlapped examples, the

detection accuracy would be significantly improved. To

achieve this goal, it is natural to select more highly over-

lapped examples during sampling. In this section, we in-

troduce the overlap sampler, which considers the overlaps

among examples to sample. As shown in Figure 3, it con-

sists of two parts, for sampling positive and negative exam-

ples. Since the number of positives is always not enough,

we first introduce the main negative overlap sampler.

Negative Overlap Sampler. Let’s start by revisiting the

mini-batch random sampling at the per-region stage in

Faster R-CNN [32]. After the proposal stage (RPN), there

are ˜2000 candidate proposals, in which most of them are

negatives. Rather than use all of them, a common method

is to sample 512 proposals in an image to compute the loss

function of a mini-batch, where the sampled positive and

negative anchors have a ratio of up to 1:3. If there are

fewer than 128 positive samples in an image, we pad the

mini-batch with negative ones. Generally, the examples of

IoUg,e >= 0.5 and IoUg,e < 0.5 are assigned to be pos-

itives and negatives, respectively. Our goal is to sample a

subset from all negatives and combine them with the sam-

pled positives to a mini-batch.

Different from random sampling and IoU-balanced sam-

pling, our overlap sampler takes the overlaps among exam-

ples into account. According to the analysis in Section 3.1,

we hope to sample more negatives with higher IoUp,n here.

Suppose we need to sample N negative examples from

M corresponding candidate negatives without replacement.

For the i-th negative example, its sampled probability and

the maximum IoUp,n are denoted as pi and IoUp,n
i , re-

spectively. By these definitions, we design several methods

to set the sampled probability.

Uniform probability sampling: This strategy is com-

pletely the same as random sampling. Each example has a

uniform sampled probability of pi = N/M .

Hard probability sampling: Analysis in Section 3.1 re-

veals that the highly overlapped examples should be accu-

rately recognized. Naturally, we can sample all IoUp,n
i >=

θ examples to train, where θ is the NMS threshold:

U =
M∑

i=1

1IoUp,n

i
>=θ. (1)

In Equation 1, 1() denote the indicate function, and U
denote the number of sampled negatives. After that, we ap-

ply a uniform probability sampling to sample the N − U
negatives with IoUp,n

i < θ.
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Soft probability sampling: The hard probability sam-

pling strategy may lead the detector excessively focus to the

IoUp,n
i >= θ negative examples. Furthermore, the number

of IoUp,n
i >= θ examples is always not enough, which

would waste some examples with IoUp,n
i < θ. Hence, we

introduce a soft probability sampling method here, which is

similar to the IoU-balanced sampling [28]. Specifically, we

first evenly split the sampling interval into K bins according

to IoUp,n. Then, we select samples from them uniformly:

pi =
N

K
·
1

Nk

, IoUp,n
i ∈ [

k · IoUp,n
max

K
,
(k + 1) · IoUp,n

max

K
),

(2)

where Nk denotes the number of sampling candidates in the

corresponding interval and k denotes the index of each in-

terval (k ∈ [0,K)). The IoUp,n
max is the maximum IoUp,n

in the interval3. Figure 3 shows an example of the soft prob-

ability sampling.

Linear probability sampling: It simply adopts the nor-

malized IoUp,n as the sampled probability.

pi =
IoUp,n

i∑M

i=1
IoUp,n

i

·N. (3)

However, this sampling method would not select the neg-

atives with IoUp,n = 0, which performs worse than the

hard and soft probability sampling. We will further discuss

them in Section 4.

Positive Overlap Sampler. The negative overlap sampler is

responsible for sampling more negatives with high IoUp,n.

To better collaborate with it, as shown in Figure 3, we pro-

pose a positive overlap sampler to sample positives with

high IoUp,e, which means the overlap between positives

and all examples. For simplicity, we use the same probabil-

ity sampling methods in the negative overlap sampler.

Nevertheless, sampling positives is more complicated

than sampling negatives. As the number of positives is of-

ten not enough during training, it is common to sample all

positives. However, the sampled positives always have dif-

ferent quality (i.e., IoUg,p), and the positives with higher

IoUg,p are more important for improving accuracy, which

suggests that it is not appropriate to train them equally.

To address the issue, ISR [3] proposes IoU-HLR [3] and

CARL [3] techniques to focus on the prime examples with

high IoUg,p. However, they usually incur the extra compu-

tational cost. Instead, we propose a simple loss reweight-

ing scheme to supplement the positive overlap sampler. For

each ground-truth, we find its best matched positive exam-

ple, and multiple their weights by a factor ǫ during loss com-

puting. In this way, the positive overlap sampler can not

3The IoU interval in IoU-balanced sampling is [0, 0.5), which corre-

sponds to the interval of negatives. However, in negative overlap sampler,

we consider the overlaps among examples to sample. As the RPN uses the

NMS of 0.7 thresholds, the IoU interval in the per-region stage is [0, 0.7).

Figure 4. This figure illustrates IoU distribution of negatives from

different sampling heuristics, including random sampling [32],

IoU-balanced sampling [28] with 2 IoU bins, and our overlap sam-

pler with a soft probability sampling strategy in K = 2. The

IoU mentioned here denotes the maximum IoU between positives

(IoUg,p
≥ 0.5) and negatives (IoUg,n < 0.5).

only sample more positives that highly overlap with nega-

tive examples but also support the detector to predict more

high-quality positives.

Differences. To address the foreground-background im-

balance, numerous sampling heuristics [3, 28, 33] and

reweighting schemes [22, 25] are proposed in recent years.

Although some of them are widely used in one-stage detec-

tors, they are not popularized in region-based detectors due

to the extra computational cost. Specifically, OHEM [33],

Focal Loss [25] and GHM [22] are driven by the loss values

of examples, which require computing the loss values for all

proposals at the time-consuming per-region stage. On the

other hand, random sampling has much higher efficiency,

but it usually results in easy domination problem [25]. For-

tunately, recent IoU-based sampling methods [3, 28] solve

this dilemma, which can select more effective examples

based on overlaps with ground-truths rather than introduc-

ing extra loss computational cost.

In fact, our overlap sampler can also be regarded as

an IoU-based sampling method, as it selects examples ac-

cording to overlaps among examples. In Table 1, we have

demonstrated that the upper bound in accuracy of overlap

sampler is higher than that of IoU-balanced sampling and

ISR. To highlight the uniqueness of our overlap sampler, we

also compare the distribution of examples produced by dif-

ferent sampling heuristics. As shown in Figure 4, we visual-

ize the IoU distribution of random sampling, IoU-balanced

sampling, and our overlap sampler selected negatives. It

can be seen that in the sampled negatives, both random sam-

pling and IoU-balanced sampling select little examples with

high IoUp,n. In contrast, our overlap sampler can easily

sample more examples with high IoUp,n, to help the detec-

tor to focus on them during training.
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Figure 5. Mask R-CNN [14] (top) vs. Mask R-CNN with our overlap sampler (bottom) in ResNet-50-FPN [24, 15] backbone. The latter

exhibits higher object detection box AP and instance segmentation mask AP on COCO minival [26].

4. Experiments

In this section, we present the experimental results of the

overlap sampler on the COCO [26] dataset. Section 4.1 de-

scribes the training and evaluation configurations, as well

as our implementation details for Faster R-CNN [32] and

Mask R-CNN [14]. Then, we present ablation studies for

our overlap sampler in Section 4.2. Finally, Section 4.3

compares the results of overlap sampler with other sam-

pling heuristics. All of our models are implemented base

on maskrcnn-benchmark [9].

4.1. Implementation Details

COCO Datasets. Following standard practice [2, 14, 24],

we train the model on the COCO [26] train2017, and

evaluate all ablations on COCO minival. To compare

with other sampling heuristics, we also submit the detec-

tion results to the COCO test-dev evaluation server. As

COCO applies average precision (AP) at different IoU val-

ues and sizes as the main evaluation metrics, we report the

COCO-style AP metrics as the detection accuracy, includ-

ing AP, AP50, AP75, and APS , APM , APL.

Faster R-CNN and Mask R-CNN with Overlap Sam-

pler. To validate the effectiveness of the proposed over-

lap sampler, we incorporate it into the well-known Faster

R-CNN [32] and Mask R-CNN [14]. Then we train them

and evaluate their box AP and mask AP on COCO, respec-

tively. We use ResNet-50-FPN [15, 24] as the backbone

for ablation studies, while the heavier backbone [39] is also

used to report the performance. For better coordinating

the detectors and the sampler, we carefully tune the hyper-

parameters, i.e., probability sampling strategy (hard, soft,

linear), loss reweighting parameter (ǫ) and NMS threshold

(θ). They will be further discussed in Section 4.2.

Other Hyper-parameters. To keep the consistency with

maskrcnn-benchmark [9], we follow their configurations

for training Faster R-CNN and Mask R-CNN. Specifically,

we set the batch size as 16 with the weight decay of 0.0001

and momentum of 0.9 and set the initial learning rate as

2×10−2 in the first 60k iterations, then decay it by to 10

and 102 for training another 20k and 10k iterations, which

is called “1×” training schedule [11].

4.2. Ablation Study

Negative Overlap Sampler. As presented in Table 2(a),

(b) and (c), we do experiments for negative overlap sampler

to determine the optimal probability sampling strategy and

hyper-parameters. We discuss them as follows.

• Probability Sampling Strategy: As illustrated in Sec-

tion 3.2, there are several probability sampling strategies

for the negative overlap sampler, including hard, soft and

linear probability sampling. The hard sampling simply se-

lects all negatives with IoUp,n >= θ, then randomly sam-

ples in IoUp,n < θ negatives. Similarly, the soft sampling

evenly splits negatives to K groups according to the interval

of IoUp,n, and assigns uniform probabilities for negatives

in each group. The linear sampling directly assigns proba-

bility for each negative according to normalized IoUp,n.

We compare their performance in Table 2(a). First, the

uniform sampling means baseline model, which yields 36.8

AP on COCO minival. Among hard, soft and linear

probability sampling strategies, it is shown that the soft

sampling could achieve the highest 37.7 AP, which is 0.2

AP and 0.7 AP higher than hard sampling and linear sam-

pling, respectively. It is worth noting that the performance

of linear sampling is obvious lower than hard and soft sam-

pling. In Section 3.2, We have discussed this problem that
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(a) Sampling strategy in negative overlap sampler

Strategies AP AP50 AP75

uniform (baseline) 36.8 58.4 40.0

hard 37.5 58.6 41.1

soft 37.7 58.9 41.0

linear 37.0 58.4 40.2

(b) The number of bins in soft strategy

Number AP AP50 AP75

K = 1 36.8 58.4 40.0

K = 2 37.7 58.9 41.0

K = 3 37.7 58.9 41.0

K = 4 37.7 58.9 41.0

(c) Varying NMS threshold during inference

NMS AP AP50 AP75

θ = 0.45 37.5 58.7 40.9

θ = 0.50 37.7 58.9 41.0

θ = 0.55 37.9 58.9 41.5

θ = 0.60 37.8 58.7 41.5

(d) Sampling strategy in positive overlap sampler

Strategies AP AP50 AP75

uniform (baseline) 36.8 58.4 40.0

hard 37.1 58.9 39.9

soft 37.2 59.0 39.9

linear 37.0 58.7 39.9

(e) Varying loss reweighting factor

ǫ AP AP50 AP75

ǫ = 1 37.2 59.0 39.9

ǫ = 2 37.4 59.0 40.5

ǫ = 3 37.4 58.9 40.5

ǫ = 5 37.2 58.3 40.6

(f) Box AP and mask AP of various combinations.

Component Settings

Negative Overlap Sampler (soft, K = 2, θ = 0.55) ✗ ✓ ✗ ✓

Positive Overlap Sampler (soft, ǫ = 2) ✗ ✗ ✓ ✓

box AP 36.8 37.9 (+1.1) 37.4 (+0.6) 38.3 (+1.5)

box AP50 58.4 58.9 (+0.5) 59.0 (+0.6) 59.4 (+1.0)

box AP75 40.0 41.5 (+1.5) 40.5 (+0.5) 41.9 (+1.9)

mask AP 34.2 34.8 (+0.6) 34.5 (+0.3) 35.0 (+0.8)

mask AP50 56.0 56.3 (+0.3) 56.5 (+0.5) 56.7 (+0.7)

mask AP75 36.3 37.2 (+0.9) 36.5 (+0.2) 37.4 (+1.1)

Table 2. Ablation studies for our overlap sampler. If not specified, default values are: soft probability sampling strategy with K = 2,

loss reweighting factor ǫ = 1, NMS threshold θ = 0.5. (a), (b), (c) show the ablations for the negative overlap sampler, which achieves

37.9 AP by soft sampling strategy with K = 2, θ = 0.55. (d) and (e) are the ablations for the positive overlap sampler, which obtains

37.4 AP by soft sampling strategy with ǫ = 2. Moreover, we also construct three variants for comparing their box AP and mask AP

improvements in Table 2 (f). Note that these experiments are conducted with Faster R-CNN (box AP) [32] and Mask R-CNN (mask

AP) [14] of ResNet-50-FPN [15, 24] backbone on COCO minival [26], which are implemented on maskrcnn-benchmark [9].

the linear sampling would not select the negatives with

IoUp,n = 0. However, these negatives occupy the main

part of all negatives, which may be detrimental to learning

negative examples. In conclusion, it suggests that the sam-

pler can not fully ignore low IoUp,n negatives.

• IoU Bins: In soft probability sampling, we evenly split

the IoU interval to K bins, and selects examples uniformly

from the bins. The default value of K is 2, but we hope

to find the most suitable K to improve our negative overlap

sampler. Unfortunately, it is shown in the Table 2(b) that

the performance of soft sampling is not sensitive to K.

• NMS Threshold: During inference, we tune the NMS

threshold θ to find the optimal performance of the nega-

tive overlap sampler in Table 2(c). By setting θ = 0.55, it

achieves the best 37.9 AP on COCO minival.

Positive Overlap Sampler. Now we discuss the experi-

ments for positive overlap sampler in Table 2(d) and (e).

• Probability Sampling Strategy: We use the same

sampling strategies of negative overlap sampler for positive

overlap sampler. Among them, the soft sampling still per-

forms best, which yields 0.4 higher AP than baseline.

• Loss Reweighting Factor: The loss reweighting factor

ǫ controls the loss weights of the positives with a maximum

IoUg,p for each ground-truth, which has been discussed in

Section 3.2. In Table 2(e), as ǫ increases, we can see the

AP50 drops but AP75 keeps improving, which illustrates

that increasing ǫ is beneficial to yield high-quality predic-

tions. By setting ǫ = 2, we could achieve the optimal 37.4

AP here, which improves the soft sampling by 0.2 AP.

Box AP and Mask AP of Various Combinations. The

performances of negative overlap sampler and positive over-

lap sampler for Faster R-CNN, which have been presented

in Table 2, are achieved 37.9 AP and 37.4 AP at most, re-

spectively. When we combine them as shown in Table 2(f),

we obtain an impressive 38.3 AP, which is 1.5 AP higher

than baseline. To evaluate the generalization for our over-

lap sampler, we also train the Mask R-CNN with overlap

sampler for instance segmentation task. It helps the Mask

R-CNN to achieve 35.0 mask AP, which is 0.8 AP higher

than the original model. What can be observed is that the

improvements on Faster R-CNN and Mask R-CNN mainly

come from AP75, which indicates the sampler helps the

model to yield higher-quality predictions.
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Method Backbone AP AP50 AP75 APS APM APL

Faster R-CNN [9, 32]

ResNet-50-FPN [15, 24]

37.2 59.3 40.3 21.3 39.5 46.9

OHEM* [33] 37.4 59.5 40.3 21.2 40.3 47.1

PISA [3] 37.8 58.0 41.7 22.1 40.8 46.6

Libra R-CNN [28] 38.7 59.9 42.0 22.5 41.1 48.7

Overlap Sampler 38.6 60.2 41.9 22.4 41.1 48.6

Faster R-CNN [9, 32]

ResNet-101-FPN [15, 24]

39.3 61.4 42.7 22.1 41.9 50.1

Libra R-CNN [28] 40.3 61.3 43.9 22.9 43.1 51.0

Overlap Sampler 40.6 62.0 44.0 23.7 43.5 51.1

Faster R-CNN [9, 32]

ResNext-101-FPN-32x4d [39, 24]

41.3 61.9 44.9 24.3 44.4 51.8

PISA [3] 41.5 61.8 45.8 24.7 44.7 51.9

Overlap Sampler 42.5 62.4 46.2 25.1 45.0 52.3

Note: The symbol “*” means our re-implemented results.
Table 3. Comparisons with existing sampling heuristics designed for Faster R-CNN on COCO test-dev (single model, without bells

and whistles). Note, in the literature [28], the Libra R-CNN can achieve 41.1 AP with “2×” training schedules. As we use “1×” training

schedule in all experiments, for a fair comparison, we only show the accuracy of Libra R-CNN with “1×” schedule. Furthermore, the

ISR and Libra R-CNN do not report their result in ResNet-101-FPN and ResNext-101-FPN-32x4d, respectively. Therefore, we only report

their COCO AP with the corresponding backbone.

4.3. Results on COCO Test Set.

To further validate the effectiveness of our overlap sam-

pler, we train Faster R-CNN [32] with various backbones,

and submit their results to COCO test-dev evaluation

server, to compare it with other sampling heuristics. As

shown in Table 3, with ResNet-50-FPN [15, 24] backbone,

the Faster R-CNN (baseline) could achieve 37.2 AP. We

also implement OHEM [33] for Faster R-CNN that selects

the hard examples per image during training. However, this

scheme has brought little improvement (37.4 AP vs. 37.2

AP). Then, we present the COCO AP results of Libra R-

CNN [28] and ISR [3]. It is shown that they can get an

obviously higher 37.8 AP and 38.7 AP, respectively.

Finally, we incorporate our overlap sampler into the

Faster R-CNN, with the hyper-parameters determined in

Section 4.2. In the fifth row of Table 3, we can see the detec-

tor yields 38.6 AP, which is 1.4 AP higher than the original

Faster R-CNN. Unfortunately, it is slightly worse than Libra

R-CNN [28]. This is because Libra R-CNN benefits from

feature pyramid [28] and balanced L1 loss [28] that have

been proven to be effective, which are not sampling heuris-

tics. We believe our overlap sampler combined with these

methods could achieve better performance. Nevertheless,

with a large ResNet-101-FPN [15, 24] backbone, our over-

lap sampler achieves higher COCO AP results (40.6 AP)

than Libra R-CNN (40.3 AP). It suggests that our method

can still work even on a stronger baseline.

As PISA [3] does not report its performance in ResNet-

101-FPN [15, 24], we also adopt ResNext-101-FPN [24, 39]

to do the comparison. Table 3 shows that the Faster R-CNN

with our overlap sampler achieves an impressive 42.5 AP,

which is 1.0 AP and 1.2 AP higher than PISA and the base-

line, respectively.

5. Conclusion

In this paper, we carefully investigate different sampling

heuristics for region-based detectors, and discover the over-

laps among examples is crucial for improving the IoU-based

sampling heuristics. Motivated by the analysis, a novel

Overlap Sampler is proposed, which samples according to

IoU between examples themselves, rather than IoU between

ground-truth and example. With the overlap sampler, we

upgrade the two well-known region-based detectors Faster

R-CNN and Mask R-CNN. Extensive experiments present

that overlap sampler is more effective than the random sam-

pling and IoU-balanced sampling, which yields 1.5 higher

box AP and 0.8 higher mask AP for Faster R-CNN and

Mask R-CNN on COCO minival, respectively. Given

the performance of the proposed method that surpassing

ISR [3] and Libra R-CNN [28] on COCO test-dev, we

expect overlap sampler could be adopted in other region-

based detectors.
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