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Abstract

In this paper, we propose a novel pipeline to estimate 6D

object pose from RGB-D images of known objects present

in complex scenes. The pipeline directly operates on raw

point clouds extracted from RGB-D scans. Specifically, our

method takes the point cloud as input and regresses the

point-wise unit vectors pointing to the 3D keypoints. We

then use these vectors to generate keypoint hypotheses from

which the 6D object pose hypotheses are computed. Fi-

nally, we select the best 6D object pose from the hypothe-

ses based on a proposed scoring mechanism with geometry

constraints. Extensive experiments show that the proposed

method is robust against the variety in object shape and ap-

pearance as well as occlusions between objects, and that

our method outperforms the state-of-the-art methods on the

LINEMOD and Occlusion LINEMOD datasets.

1. Introduction

Recognizing objects and estimating their poses play an

important role in many applications, including augmented

reality [15, 16], smart medical and robotic manipulation

[43, 34]. However, it is very challenging due to variety in

object shape and appearance, clutter in the scene as well as

occlusions between objects.

Recently, great progress has been made on estimating 6D

object pose from the 2D image via deep learning architec-

tures. For example, in [38, 8, 9] the authors regard the pose

estimation as a classification problem and train the neural

networks to classify the image feature into a discretized

pose space. Instead of regressing 6D pose directly, some

other methods [25, 27, 20, 33, 22, 21] make use of 2D key-

points as an intermediate representation for pose estimation.

They regress 2D convolutional image features to 2D key-

points and then compute 6D pose by using the Perspective-

n-Point algorithm via 2D-3D correspondences. However,

image features are sensitive to occlusion and illumination

Figure 1. We propose a novel point cloud based network for 6D

object pose estimation called PointPoseNet, where the network is

trained to perform two tasks: 3D point cloud segmentation and

unit vectors prediction. Then we use a novel proposed scoring

mechanism to choose the best pose hypothesis from pose hypothe-

ses generated from unit vectors.

changes which make these methods less reliable in compli-

cated scenes.

With the popularity of 3D sensors, such as Kinect Cam-

era [41], the amount of the available 3D data (such as depth

image and point cloud) has tremendously increased. How-

ever, what deep neural network architecture to use for pose

estimation or 3D object detection from the 3D data remains

an open problem.

Some existing works convert the 3D data to volumetric

grids by quantization [17, 31, 37] and then apply convolu-

tional networks. However, this data representation transfor-

mation misses the fine geometric details of the object and

introduces quantization artifacts that can obscure natural in-

variances of the data. Some other methods [9, 13] process

the depth image as an additional image channel along with

the RGB channels. However, this approach does not make

full use of the geometric information in the data and makes

it difficult to integrate information across viewpoints [17].

To better utilize 3D information in 3D data for 6D object

pose estimation, in this paper, we propose a novel pipeline

for 6D object pose estimation from RGB-D image. Inspired

by [23, 22], we estimate 6D object pose via multi-stage.

First, we locate the object by using a 2D CNN detector.

Then, we can access the point cloud of the object in the
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frustum region. Then we use PointNets [24, 23] to do ob-

ject instance segmentation as well as pose estimation based

on the segmented point cloud.

Compared to the methods proposed in [23], we have two

improvements in this paper. Firstly, instead of directly re-

gressing the global point feature to 3D keypoints, we regress

point-wise feature to unit vectors which are pointing to the

3D keypoints. This improvement makes our method more

robust to occlusion. Secondly, we propose a new scoring

method that utilizes the geometry constraints of the object

point cloud to score the different poses computed from dif-

ferent keypoint hypotheses. Then we choose the pose with

the highest score as the final pose. Our method shares

features of PVNet [22]: both methods use unit vector re-

gression to estimate pose, however, our method takes point

cloud, and instead of using 2D keypoints we use 3D key-

points, then we use our proposed scoring mechanism to ac-

cess the final pose which is different to the optimization

based method in [22].

The output of our method is a 3D vector-field representa-

tion for 3D keypoints localization which guides the network

to learn local geometry features of the object point cloud.

This means even when the object is occluded partially, we

can still accurately estimate its pose by using only the re-

maining visible parts of the object.

In summary, the key contributions of this work are as fol-

lows:

1. We present a novel deep learning approach that regresses

point-wise feature to unit vectors pointing to the 3D key-

points for 6D pose estimation. Our network learns 3D

vector-field representation to account for object 3D local

geometry information as well as localize 3D keypoints.

2. We propose a new scoring mechanism which utilizes

the geometry constraints to select the best pose hypothesis

among those that are generated by predicted 3D unit vec-

tors.

3. We validate the effectiveness of our proposed approach

by covering extensive numerical experiments on three pub-

lic datasets.

2. Related work

Pose from RGB images: Given a monocular RGB im-

age, traditional methods [4, 12, 14] compute 6D object pose

by matching RGB features between a 3D model and test im-

ages. These methods rely on hand-crafted features which

are sensitive to image variations and background clutter

[40, 29]. Learning-based methods [25, 22, 27, 20] address

this problem by training their model to predict the 2D key-

points and estimate the pose by PnP algorithm [3, 19]. Also,

[38, 8, 33] regard the pose estimation as a classification

problem and train neural networks to classify the image fea-

ture into a discretized pose space. However, the RGB im-

age features can be affected by illumination changes which

can make pose estimation from RGB image less robust than

methods that use depth information to illumination changes.

Pose from RGB image with depth information: Con-

ventional approaches [1, 32, 36, 5] extract 3D features from

the input RGB-D data and perform correspondence group-

ing and hypothesis verification. However, it is reported that

the methods are not robust enough to image variations and

background clutter [40, 29] or sensitive to occlusion. Re-

cently, several deep learning-based methods [9, 13] fuse the

depth input as an additional channel to a CNN-based ar-

chitecture. These approaches simply treat the depth chan-

nel as an additional channel, along with the RGB chan-

nels. While this approach is simple to implement, combin-

ing depth information with RGB information in this way

cannot make full use of the geometric information in the

data and makes it difficult to integrate information across

viewpoints [17]. Instead, in this paper, we lift depth maps

to 3D point cloud and directly process the 3D point cloud

by PointNets [24, 23] which are shown can extract 3D geo-

metric features more efficiently.

Pose from depth/point cloud: Recently, Qi et al.

[24, 23] have shown that processing depth information in

3D space via point cloud representation can achieve better

performance than that in 2.5 D space. Based on that, some

PointNets methods [23, 35, 42, 39] directly perform 6D

pose estimation or 3D object detection on 3D point cloud

data. They use a PointNet-like [24] architecture to com-

pute pose or access 3D detected results from point cloud. In

this work, we also make use of PointNet-like architecture

but with 3D vector-field representation and we will show

that with this new representation, the proposed method can

achieve better performance than state-of-the-art methods.

3. Proposed method

The overview of our proposed pipeline is shown in Fig-

ure 2. When given an RGB-D image, we first use a state-of-

the-art 2D detector to locate the object with a bounding box

and output the object label. Then, we transform the corre-

sponding depth region to point cloud. However, the point

cloud derived from this region contains both target points

and background points. To access the points only belong-

ing to the object and predict the unit vectors pointing to the

keypoints (see Section 3.4 for details), given the point cloud

transformed from the depth image in the target region, our

network will perform two related tasks. First, the object in-

stance is segmented by a binary classification of each point.

Second, the network predicts point-wise unit vectors point-

ing to the keypoints. Then, given the directions to a certain

object keypoint from all points belonging to the object, we

generate hypotheses of 3D locations for that keypoint. With

theses keypoints hypotheses, we can compute correspond-

ing pose hypotheses, then we choose the best pose hypoth-

esis as the final pose by our proposed scoring mechanism.
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Figure 2. Overview of the proposed pipeline. (a) Given an RGB image, we use CNN to detect the bounding box of the target object

and the object label which is used as one-hot feature for PointPoseNet. (b) Given the point clouds in the target region, we use proposed

PointPoseNet to do 3D segmentation and vector prediction. (c) Top: 3D mask for target object; bottom: Point-wise unit vectors pointing

to the keypoint. (d) 3D keypoints hypotheses generated from the unit vectors. (e) Final pose after hypotheses selection. (f) Legend of this

figure. The number is the output channel of the corresponding layer.

3.1. 2D object region detection

In this step, we derive the point cloud that represents the

object of interest in the depth image. To do so, we train a 2D

CNN detector, YOLO V3 [28], to localize the object in the

RGB image with a bounding box and output the object label

which is used as one-hot class vector for better point cloud

instance segmentation in PointPoseNet. The bounding box

is then applied to extract the corresponding region in the

depth image. By inverting the image formation process, the

localized depth region can be then converted to 3D point

cloud in the camera space with known camera parameters.

3.2. 3D keypoints localization

In contrast to directly regressing the 3D bounding box

for the object [23], the proposed network is trained to pre-

dict point-wise directional vectors which will enforce the

network to focus more on the local feature of the object.

Different to [22, 38] which predict dense vectors pointing to

2D keypoints, our network predicts dense vectors pointing

to 3D keypoints. There are two advantages of our method:

i) our method enables to locate invisible keypoint(s) from

other visible parts of the object point cloud in 3D space,

and

ii) previous methods [23, 24] have shown that learning

in 3D space better exploits the geometric and topological

structure of 3D space which is useful to pose estimate.

More concretely, for a point p, our network outputs its

semantic label with the unit vectors vk(p) that denotes the

direction from the point p to kth 3D keypoint xk of the ob-

ject. The definition of vk(p) is defined as

vk(p) =
xk − p

‖xk − p‖2
. (1)

Another possible way is to output the displacement vec-

tor xk − p, however, in experiments (see Table A in supple-

mentary material) we show that regressing to unit vector can

achieve better results (98.4%) than predicting absolute dis-

placement (96.3%). [38] suggests that scale-invariant unit

vector are easier to train.

Given semantic labels and unit vectors, we generate 3D

keypoint hypotheses with voting weight. First, we find the

points of the target object by using the 3D segmentation

mask. Then, we randomly sample N point pairs and use

the intersection of the straight lines that have their vectors

as direction vector as N hypotheses for keypoints (see Fig-

ure 4 (b) and (c) for the illustration on how to derive the

keypoints from two points). However, different from 2D

cases in [22, 38] where two nonparallel lines always have

an intersection, two nonparallel lines in 3D can have no in-

tersection. To address this problem, in this paper, we use

the midpoint of the shortest line segment of two lines where

the two vectors lie, as the intersection (see Figure 3 for the

illustration). Finally, we need a criterion to score each hy-

pothesis for the next procedure. Intuitively, a reliable hy-

pothesis should satisfy these requirements: (1) it should co-

incide with different predicted directions; (2) the distance

between two lines that generate this hypothesis should be
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Figure 3. Find intersection. lk12 is the shortest line segment be-

tween line V k

1 and V k

2 . Mk

12 is the midpoint of lk12. dk12 is the

length of lk12.

close. Based on these two requirements, we calculate the

voting weight wk,i of a hypothesis hk,i as

wk,i =
∑

p∈O

I

(
I(dki ≤ ǫ)

(hk,i − p)T

‖hk,i − p‖
vk(p) ≥ θ

)
, (2)

where I represents the indicator function, θ is a threshold,

and p ∈ O means that the point p belongs to the object

O. vk(p) is the kth predicted vector of point p. dki is the

distance between two straight lines where the vectors are

located, this distance is used to measure the confidence of

the intersection (see Figure 3 for details). ǫ is a distance

threshold.

The generated hypotheses characterize the spatial proba-

bility distribution of a keypoint in the point cloud. We then

estimate the mean µk and the covariance Σk for a keypoint

xk. Then the Mahalanobis distance between a hypothesis

and the mean µk is calculated as

Dk,i = (hk,i − µk)
TΣ−1(hk,i − µk). (3)

We will use this distance to limit the search space in next

section.

3.3. Scoring hypotheses with geometry constraint

We have generated N keypoints hypotheses, then we

sample the hypotheses which are close to µk according to

the Mahalanobis distance (defined in Equation 3). Assum-

ing that we have sample M keypoints hypotheses, by using

the keypoints in canonical frame and Kabsch algorithm [7]

we can compute M pose hypotheses via 3D-3D correspon-

dences. However, not all these pose hypotheses are good

for our task. We need to find the best pose hypothesis from

these hypotheses (see Figure 5 for illustration). According

to the definition of the pose, the mesh model transformed

by the good pose hypothesis should match the point cloud

of the object in the test scene very well. The question is

how to measure this match. Here we use interior point count

to measure this match: If a point in the test scene is close

enough to the transformed mesh model, we call this point
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Figure 4. Keypoints selection and generation. (a) The corners on

the 3D bounding box of the object are selected as the keypoints; (b)

two arbitrary points (p1 and p2) are selected, and for each point the

network predicts four directional vectors (for a better visualization

the top 4 corners are selected as the keypoints); (c) for each vector

pair (v1 and v′

1 for example), an intersection point can be located,

which is defined as a keypoint hypothesis. In this example, four

keypoints are generated.

as an interior point. Therefore, in this task we aim at find-

ing the pose hypothesis that can maximize the interior point

count:

H∗ = argmax
H∈H

∑

i

Idist(Pi, MH)<τ , (4)

where P ∈ ❘n×3 denotes the points belonging to object in

the camera space. M ∈ ❘
m×3 is the mesh model of the

corresponding object. MH ∈ ❘
m×3 is the mesh model,

transformed into the camera space via the pose matrix H .

Here H ∈ H represents the rotation R ∈ ❘
3×3 and the

translation T ∈ ❘
3×1. H denotes all the pose estimation

hypotheses. ✶ is the indicator function, which is 1 if the

statement is true. dist(pi,MH) stands for the shortest eu-

clidean distance between the ith point in P and the trans-

formed mesh model MH . τ is a positive threshold. The

formulation can be efficiently optimized by the pre-emptive

RANSAC [30].

3.4. Keypoint selection

To train our network, we need to define keypoints. The

keypoints are defined based on the 3D object model. Two

aspects need to be decided for the keypoints: number and

location. A simple way is to use the 8 corner of the 3D

bounding box of the object as the keypoints. This definition

is widely used by many CNN based methods in 2D cases

[25, 26, 20, 33]. We also use this keypoint definition in

our experiment, since the 3D bounding box corners are dis-

tributed well in the 3D space which should be easier for the

network to regress. Another way is proposed in [22] which

uses the farthest point sampling (FPS) algorithm to sample

the keypoints. Figure 6 shows an example of different key-

point selection schemes. In Section 4.3, we will show how

the number and position of the keypoints influence the pose

estimation results.
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Figure 5. Hypotheses selection. From left to right: (1) Generated keypoints hypotheses, the black points are the ground truth keypoints.

(2) Pose hypotheses from keypoint hypotheses, the black box is the ground truth pose. (3) The mean pose (green box) of these pose

hypotheses, which does not match the ground truth very well. (4) Pose selected (blue box) by our scoring mechanism, which matches the

ground truth very well.

Figure 6. Visualization of different keypoint selection schemes.

The left image is a 3D object point cloud and its 3D bounding

box; the right image is the keypoint selected by FPS algorithm.

The keypoints are shown in red color.

4. Experiments

In this section, we will describe how we train our net-

work and analyze the experimental results.

4.1. Training details

First we fine-tune the YOLO-V3 [28] which is pre-

trained on the ImageNet [2] to localize the 2D region of

the interest. To prevent overfitting, we adopt the data aug-

mentation, which includes random rotation, resize and crop

as well as adding synthetic images to the training set. We

use the default training parameters in the YOLO-V3, apart

from setting the maximum epoch 200.

Then we train our proposed network. We use PointNet

[24] as our backbone network but remove the transformer

networks proposed in [24] to preserve viewpoint informa-

tion. Another major difference is that we add an input one-

hot class vector to provide semantic information. The archi-

tecture details are shown in Figure A in the supplementary

material.

Our network performs two related tasks: point cloud seg-

mentation and unit vector prediction. Therefore, the loss

function of our network consists of two different loss func-

tions. For point cloud segmentation we use cross-entropy

as the loss function. For learning unit vectors, according

to experimental results, the loss function is defined as the

mean square error between the predicted and ground truth

directional vectors:

ℓ(θ) = min
θ

1

K |P|

K∑

k=1

∑

i

‖ṽk(Pi;θ)− vk(Pi)‖
2
2 , (5)

where K is the number of keypoints. θ is the network pa-

rameters. ṽk(Pi;θ) and vk(Pi) are the predicted vector and

the ground truth vector, respectively. P ∈ ❘n×3 denotes

the object points in the camera space. |P| denotes the num-

ber of object points.

We use Adam [10] to optimize the proposed network.

We set the initial learning rate as 0.001 and halve it every

60 epochs. The maximum epoch is 300.

However, the original LINEMOD and Occlusion

LINEMOD datasets do not provide the label for each point.

To train the proposed network in a supervised way, we pro-

pose an automatic method to generate the label of each point

for the point cloud. First, for the 3D mesh model of each

object, we transform it into the camera space using the cor-

responding ground truth pose matrix. We use the imple-

mentation in the package of [6] for this process. Second,

for each point on the corresponding point cloud in target re-

gion, we compute its shortest distance to the transformed

mesh model. If the distance is smaller than a small thresh-

old ǫ = 8mm we label the point as 1, otherwise 0. Figure 7

further illustrates the labeling process.

4.2. Evaluation metrics

We use the ADD metric proposed in [4] for evaluation.

In ADD metric, we compute the mean distance between
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(a) (b) (c)
Figure 7. Point cloud labeling. (a) The mesh model of the object

ape in LINEMOD dataset; (b) the point cloud derived from the

depth images in target region; (c) the transformed mesh model

is overlapped on the point cloud. We can label each point cloud

according the distance between the points on the point cloud and

the corresponding transformed mesh model.

the two transformed point sets. When the distance is less

than 10% of the 3D model diameter, we regard that esti-

mated pose as correct answer. For symmetric objects, we

use ADD-S metric [4] where the average distance is com-

puted using the closest point distance. When evaluating on

YCB-Video dataset, we use the ADD-S AUC metric pro-

posed in [38] which is the area under the accuracy-threshold

curve. The maximum threshold is set to 10cm same as in

[38].

4.3. Ablation studies

We conduct ablation studies to compare different key-

points selection schemes, and the numbers of keypoints on

LINEMOD dataset. Table 1 summarizes the results of abla-

tion studies.

In Section 3.4, we discussed the keypoints selection

schemes. Here we compare the pose estimation results

based on different keypoint sets: we refer using the 8 bound-

ing box corners as “BBX-8-S”, and “FPS-8-S” represents

the 8 points are selected by FPS algorithm. “S” represents

accessing final pose by our scoring mechanism. Comparing

“BBX-8-S” and “FPS-8-S” in Table 1, the results show that

“BBX-8-S” can get better accuracy that “FPS-8-S”. Fur-

thermore, to explore the influence of the keypoint number

on pose estimation, we train our network to regress to dif-

ferent numbers of keypoints that are selected by FPS al-

gorithm. Comparing columns “FPS-4-S”, “FPS-8-S” and

“FPS-12-S” shows that selection 8 keypoints can achieve

better results. For efficiency and simplicity, we use “BBX-

8-S” in all other experiments.

We also compared different mechanisms to access fi-

nal pose from pose hypotheses which are generated from 8

bounding box corners keypoints. We refer to the mechanism

which uses the mean value of all pose hypotheses without

scoring mechanism as “MEA” and the mechanism using

similar optimization method as [22] to compute the final

pose from pose hypotheses as “OPT”. Comparing “BBX-8-

S”, “BBX-8-MEA” and “BBX-8-OPT” in Table 1, the re-

Table 1. Ablation studies on different parameters for pose estima-

tion on LINEMOD dataset. The metric we used to measure per-

formance is ADD(-S) metric where Glue and Egg Box are con-

sidered as symmetric objects. BBX-8 means using the 8 corners

of 3D bounding box as keypoints. FPS-K means that we detect K

keypoints generated by the FPS algorithm. The last two columns

show using different mechanisms to access final pose from pose

hypotheses. MEA means using the mean value of all hypotheses

without pose sampling and selection. OPT means using similar

optimization method as [22] to compute final pose from pose hy-

potheses.

Method BBX-8-S FPS-8-S FPS-4-S FPS-12-S BBX-8-MEA BBX-8-OPT

Ape 97.9% 96.5% 90.2% 97.8% 96.8% 96.5%

Bench Vise 99.6% 96.7% 92.1% 95.6% 94.0% 97.3%

Camera 98.5% 98.9% 94.4% 97.3% 96.2% 96.3%

Can 99.4% 98.7% 93.8% 97.4% 97.2% 97.6%

Cat 99.3% 99.0% 97.4% 98.7% 97.7% 98.6%

Driller 97.5% 96.5% 95.3% 96.4% 96.4% 96.3%

Duck 96.1% 99.6% 98.9% 92.8% 90.9% 90.5%

Egg Box 97.9% 97.8% 99.0% 97.8% 96.0% 96.7%

Glue 100% 98.9% 97.9% 98.5% 96.8% 97.5%

Hole Puncher 97.8% 99.4% 93.8% 98.1% 98.1% 97.9%

Iron 99.4% 99.0% 99.5% 97.4% 95.3% 97.2%

Lamp 99.1% 99.6% 97.7% 97.9% 98.1% 98.8%

Phone 98.9% 98.9% 99.9% 99.7% 99.1% 99.2%

Ave 98.4% 98.3% 94.6% 97.3% 94.2% 96.4%

sults show that our pose sampling and scoring mechanism

achieve better results.

4.4. Comparison with the state­of­the­art

In this section, we compare our method with the

state-of-the-art pose estimation methods on three popular

datasets: LINEMOD [4], Occlusion LINEMOD [4, 1],

and YCB-Video dataset [38]. We empirically set the

number of hypotheses as 10k for LINEMOD and Occlu-

sion LINEMOD dataset, and set the number as 20k for

YCB-Video dataset. Both visual and quantitative results

will be given.

Results on LINEMOD dataset. In Table 2, we summarize

the pose estimation results from the original papers on

the LINEMOD dataset. We compare our method with

state-of-the-art RGB and RGB-D methods. In Table 2,

the second and third column are RGB methods. The rest

are RGB-D methods. From this table, we can see that the

best RGB-D methods can outperform about 10% of the

best RGB methods. We use Frustum-PointNets [23] as our

baseline. We re-implement Frustum-PointNets to regress

3D bounding box corners of the objects. From Table 2,

we can see that our method outperforms its 2D counterpart

PVNet [22], the baseline and other state-of-the-art meth-

ods, which shows that our method can better utilize 3D

information from depth image.

Results on Occlusion LINEMOD dataset. Same as other

state-of-the-art methods, we train our model on LINEMOD

dataset and test it on the Occlusion LINEMOD. We sum-
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Table 2. 6D pose estimation accuracy on the LINEMOD dataset. We use ADD metric to evaluate the methods. For symmetric objects

Egg Box and Glue we use ADD-S metric

Method PVNet [22]
PoseCNN +

DeepIM [38, 13]
Frustum-P [23] Hinterstoisser [5] DenseFusion [35] Ours

Ape 43.6% 77.0% 85.5% 98.5% 92.3% 97.9%

Bench Vise 99.9% 97.5% 93.2% 99.0 % 93.2% 99.6%

Camera 86.9% 93.5% 90.0% 99.3% 94.4% 98.5%

Can 95.5% 96.5% 91.4% 98.7% 93.1% 99.4%

Cat 79.3% 82.1% 96.5% 99.9% 96.5% 99.3%

Driller 96.4% 95.0% 96.8% 93.4% 87.0% 97.5%

Duck 52.6% 77.7% 82.9% 98.2% 92.3% 96.1%

Egg Box 99.2% 97.1% 99.9% 98.8% 99.8% 97.9%

Glue 95.7% 99.4% 99.2% 75.4% 100% 100%

Hole Puncher 81.9% 52.8% 92.2% 98.1% 92.1% 97.8%

Iron 98.9% 98.3% 93.7% 98.3% 97.0% 99.4%

Lamp 99.3% 97.5% 98.2% 96.0% 95.3% 99.1%

Phone 92.4% 87.7% 94.2% 98.6% 92.8% 98.9%

Average 86.3% 88.6% 93.4% 96.3 % 94.3 % 98.4 %

Table 3. 6D pose estimation accuracy on the Occlusion LINEMOD

dataset in terms of the ADD(-S) metric, where Egg Box and Glue

are considered as symmetric objects

Method
PoseCNN[38]

+ICP

Michel

[18]

Hinterstoisser

[5]

Krull

[11]
Ours

Ape 76.2% 80.7% 81.4% 68.0% 80.2 %

Can 87.4% 88.5% 94.7% 87.9% 90.1%

Cat 52.2% 57.8% 55.2% 50.6% 61.2%

Driller 90.3% 94.7% 86.0% 91.2% 94.8%

Duck 77.7% 74.4% 79.7% 64.7% 77.6 %

Egg Box 72.2% 47.6% 65.5% 41.5% 72.9%

Glue 76.7% 73.8% 52.1% 65.3% 77.5%

Hole Puncher 91.4% 96.3% 95.5% 92.9% 81.8%

Average 78.0% 76.7% 76.3% 70.3% 79.5%

Table 4. 6D pose estimation accuracy on the YCB-Video datasets

in terms of the ADD-S AUC metric. For performance about each

object, please refer to supplementary material

Method
PoseCNN

[38]

DenseFusion

[35]

MCN

[13]
Ours

Average 93.0% 93.1% 94.3% 93.2 %

marize the experimental results from the original papers

into Table 3. We compare our method with state-of-the-art

methods. Overall, our method outperforms other methods.

Some qualitative results are shown in Figure 8. The

improvement of our method is the most obvious on the

Cat and Glue. For the cat, its ears and tail are useful

local geometry information for pose estimation. For the

Glue, its bulge on its shoulder is useful local geometry

information for pose estimation (see Figure 9). Our

proposed method can better utilize this kind of 3D local

geometry information via 3D vector-field representation,

making it more robust to the occlusions. However, from

Table 3 we can see that the performance of our method is

particularly low on object Hole Puncher. From Figure

9, we can see that the Hole Puncher object has large

flat surfaces. Our proposed method extracts local 3D

geometry information from the object. However, when

only the flat surfaces are visible, there are no unique local

features to extract, then in keypoint hypotheses generation

step, our method generates some non-focused keypoint

hypotheses, especially when nonflat parts are occluded by

other objects, which makes it difficult to access a good pose.

Results on YCB-Video dataset. In Table 4, we compared

our method with other state-of-the-art methods [38, 13, 35].

We use ADD-S AUC metrics. Our method achieves compa-

rable results with the state-of-the-art methods and only falls

behind MCN [13]. One possible reason is that the objects in

YCB-Video dataset contain much useful texture (see Figure

B in supplementary material), since we only use RGB im-

age to locate the object, our method cannot utilize this kind

of information in pose computing process.

4.5. Running time

Given a 480 × 640 image with its corresponding depth

image, our method runs at 2 ∼ 4 fps (with 10K hypothe-

ses) on a desktop with an Intel i7-4930K 3.4GHz CPU and

a GTX 1080 Ti GPU. Specifically, the 2D detector takes 10

ms for object location, and pose estimation for each bound-

ing box takes a total of 230 ms ∼530 ms of which 30 ms for

vector prediction and 3D segmentation by PointPoseNet,

and 200 ms ∼500 ms for hypotheses generation and selec-

tion.
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Figure 8. Visualizing pose estimation results. White 3D bounding boxes are the ground truth, while blue 3D bounding boxes represent

our results. For each object in the Occlusion LINEMOD dataset, we show two predicted results.

Figure 9. Visualizing LINEMO objects. Left: Cat; middle:

Glue; right: Hole Puncher

5. Conclusion

In this paper, we introduce a novel deep learning pipeline

for 6D object pose estimation in 3D point clouds which

mainly consists of two parts. In the first part, we train the

proposed network to regress point-wise unit vectors which

pointing to the pre-defined 3D keypoints, the corners of the

3D bounding box. Then these vectors are used to generate

different pose hypotheses. In the second part, we select the

best pose hypothesis by using the proposed scoring mecha-

nism. Our method can utilize the 3D local geometry infor-

mation of point clouds via the 3D vector-field representation

and geometry constraint via the proposed scoring mecha-

nism, and therefore is robust to occlusions, cluttered scenes

and variety in object shape and appearance. The experimen-

tal results show that our method outperforms state-of-the-

art methods on both LINEMOD and Occlusion LINEMOD

datasets.

On the other hand, there are some limitations of our

work, which indicate possible directions for future ef-

forts. First, our pipeline cannot process multiple object

instances simultaneously. We deploy our PointPoseNet on

all instances sequentially to process multi objects instances,

however, this will increase the running time. Deploying our

method in parallel on multiple GPUs should reduce the run-

ning time. Second, the target region is based on 2D detec-

tion, which means when given no 2D detection the pipeline

will not work. In the future, we will try to overcome these

limitations to make our work more robust and efficient.
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