
Self-Contained Stylization via Steganography

for Reverse and Serial Style Transfer

Hung-Yu Chen1∗† I-Sheng Fang1∗† Chia-Ming Cheng2 Wei-Chen Chiu1

1National Chiao Tung University, Taiwan 2MediaTek Inc., Taiwan

chen3381@purdue.edu nf0126@gmail.com walon@cs.nctu.edu.tw

Figure 1: As style transfer is widely used in social networks such as Facebook or Instagram nowadays, two practical appli-

cations related to style transfer are studied in this paper and can be illustrated with a scenario here. (1) Serial style transfer:

when Bob receives a stylized image from Alice, he can easily modify its style into any other arbitrary one and further share

the output to others (e.g. Carol). (2) Reverse style transfer: any user (e.g. David) who receives a stylized image can easily

reverse it back to its original photo, i.e. analogous to de-style, without requiring any additional information. Our proposed

self-contained stylization approach is capable of tackling these two applications hence could be quite useful for the social

networks, since the users of a social network tend to share photos and stylized images on the same platform.

Abstract

Style transfer has been widely applied to give real-world

images a new artistic look. However, given a stylized im-

age, the attempts to use typical style transfer methods for

de-stylization or transferring it again into another style usu-

ally lead to artifacts or undesired results. We realize that

these issues are originated from the content inconsistency

between the original image and its stylized output. There-

fore, in this paper we advance to keep the content informa-

tion of the input image during the process of style transfer

by the power of steganography, with two approaches pro-

posed: a two-stage model and an end-to-end model. We

conduct extensive experiments to successfully verify the ca-

pacity of our models, in which both of them are able to not

only generate stylized images of quality comparable with

the ones produced by typical style transfer methods, but also

effectively eliminate the artifacts introduced in reconstruct-

ing original input from a stylized image as well as perform-

ing multiple times of style transfer in series.

1. Introduction

A style transfer approach typically aims to modify an

input photo such that its content can be preserved but the

†Hung-Yu Chen and I-Sheng Fang are now with Purdue University

and National Cheng Chi University respectively.
∗Both authors contribute equally.

associated style is revised as the one of a reference im-

age. In comparison to the classical methods which gener-

ally rely on matching color statistics between the reference

image and modified output [8, 18], the recent development

of deep learning has brought a great leap by being able to

capture high-level representation for the content and style of

images, thus producing more photorealistic stylization. In

particular, after the advent of first deep-learning style trans-

fer work [5], many research efforts [4, 5, 11, 23] have gone

with the trend to propose faster, more visually appealing,

and more universal algorithms for the task of style transfer.

Without loss of generality, as these approaches basi-

cally perform transformation on the content feature of input

photo according to the style feature from reference image,

the appearance of photo is usually altered to have various

colors or textures, which inevitably causes changes to the

fine-grained details in content information. Consequently,

the stylized output no longer has the same content feature

as its original photo, leading to some issues for two novel

applications that we proposed in this paper: serial and re-

verse style transfer. The former attempts to transfer an im-

age, which is already stylized, into another arbitrary style;

while the latter aims to remove the stylization effect of a

stylized image and turn back to its original photo, as the

example scenario illustrated in the Figure 1. Particularly,

what we expect to obtain for the serial style transfer is that,

12163



even after applying multiple times of different stylizations,

the final output should be similar to the one which is pro-

duced by directly transferring the original photo into the lat-

est style (i.e. not influenced by the previous stylization). We

believe that having both serial and reverse style transfer can

open the door to exciting new ways for users to interact with

style transfer algorithms, not only allowing the freedom to

perform numerous stylizations on a photo with having its

content well preserved, but also providing the access to the

original input by recovering from a stylized image.

Although these two problems intuitively seem easy to

solve by performing style transfer again on the stylized im-

age with taking the image of another artistic style or the

original photo as the source of stylization respectively, the

results are usually not visually satisfying and lose the con-

tent consistency. For instance, when two style transfer op-

erations are performed in series, such characteristic brings

artifacts to the final output and makes it significantly dis-

tinct from the result obtained by applying the second style

transfer to the original input . Similarly, upon taking a styl-

ized image and its corresponding original photo as sources

of content and style respectively, we are not able to achieve

reverse stylization of reconstructing the original input . Fur-

thermore, there could exist a potential argument that both

reverse and serial style transfer are simple once the original

photo is always transmitted with the stylized image. How-

ever, this naı̈ve solution doubles the bit-rates for transmis-

sion thus being quite inefficient for sharing stylized images

on the internet or social networks.

To tackle the aforementioned issues, it calls for a frame-

work which can not only generate visually appealing styl-

ized images as typical style-transfer approaches do, but also

maintain the important representations related to the content

feature of input photo, so that the content inconsistency be-

tween the stylized image and the original photo can be com-

pensated afterwards. In this paper we propose to achieve so

by integrating the power of steganography [6, 1, 26] into

style transfer approaches, where the content information of

input photo is hidden into the style-transferred output with

steganographic method. With a decoder trained to extract

the hidden information from the stylized image produced

by our proposed method, the issue of having severe artifacts

while doing reverse or serial transfer could be resolved. As

the content information is self-contained in the stylized im-

age via the use of steganography, in the scenario of Fig-

ure 1, the serial and reverse style transfer are now naturally

achievable without any additional cost of transmitting the

original photo or any other forms of attaching data. It is also

worth noting that, with a simple extension on our approach

such as a gate to control whether the content information of

original photo is provided for the steganography component

or not, the users can easily control the usage right of their

stylized images, i.e. allowing or forbidding the images to

be further style-transferred or de-stylized.

We implement the idea with two different deep-learning

architectures, where one is a two-stage model and the other

one is an end-to-end model, as going to be detailed in Sec-

tion 3. The two-stage model needs to hide a bigger amount

of information into the image, but can be coupled with var-

ious style transfer methods, leading to a better adaptability;

the end-to-end model is highly dependent on the traits of

AdaIN [9], but it only needs to encrypt a small amount of

information into the image, being more robust to the poten-

tial error accumulation during multiple serial style transfers.

We conduct extensive experimental validation comparing to

several baselines and demonstrate the efficacy of our pro-

posed method to advance serial and reverse style transfer.

2. Related Works

Style transfer. Giving images a new artistic style or tex-

ture has long been a topic that attracts researchers’ attention.

Some of the early research works prior to the renaissance of

deep learning tackle the style transfer by simply matching

the characteristic in color, or searching for the correspon-

dences across source and style images [3, 8]. Instead of us-

ing low-level feature cues as early works, Gatys et al. [4, 5]

utilize representations obtained from the pre-trained convo-

lutional neural network (CNN) to extract more semantic de-

scription on the content and style features of images. Their

methods can generate visually appealing results; however, it

is extremely slow due to iterative optimization for matching

style features between the output and style image.

In order to speed up the process of image style trans-

fer, several feed-forward approaches (e.g. [11, 23]) are pro-

posed, which directly learn feed-forward networks to ap-

proximate the iterative optimization procedure with respect

to the same objectives. The style transfer now can be carried

out in real time, however, there usually exists a trade-off be-

tween the the processing speed and the image quality of the

stylized output. For example, the result of [11] suffers from

repetitive patterns in plain area. Fortunately, Ulyanov et

al. [23] uncover that the image quality produced by the net-

work of [11] could be greatly improved through replacing

its batch normalization layers (BN) with instance normal-

ization (IN) ones, while [24] steps further to introduce con-

ditional instance normalization and learns to perform real-

time style transfer upon multiple styles that have been seen

during training. Nevertheless, all these feed-forward mod-

els are typically constrained to particular styles and hardly

generalizable to arbitrary stylization. That’s where adaptive

instance normalization (AdaIN) [9] comes into play.

AdaIN could be roughly seen as IN with a twist. It ba-

sically follows the IN steps, except now the content feature

of input photo is first normalized then affine-transformed

by using the mean and standard deviation of the style fea-

tures of style image. This operation matches the statistics of

2164



content and style features in order to transfer the input photo

into an arbitrary style, since the parameter applied in AdaIN

is dependent on the target style. Given a content feature x

and a style feature y, the procedure of AdaIN is:

AdaIN(x, y) = σ(y)

(

x− µ(x)

σ(x)

)

+ µ(y) (1)

where µ and σ denote the mean and standard deviation re-

spectively. There are other research works [13, 17] sharing

the similar idea with AdaIN, where various manners are in-

troduced for adaptively transforming the content feature of

input photo in accordance to the style image. Since the sim-

plicity of AdaIN and its ability for universal style transfer,

we utilize AdaIN as the base model in our proposed method

for style transfer and make extensions for handling issues

of serial and reverse stylizations.

Image de-stylization / Reverse style transfer. As image

style transfer typically applies artistic styles to the input im-

ages, image de-stylization or reverse style transfer attempts

to remove those styles from the stylized images and recover

them back to their original appearance. To the best of our

knowledge, only a handful of research works tackle this

topic. Shiri et al. [19, 20] explore the field of image de-

stylization with a particular focus on human faces. Their

methods learn a style removal network to recover the photo-

realistic face images from the stylized portraits and retain

the identity information. However, they rely on the specific

properties of human faces, so it can hardly be generalized to

other object categories. [22] proposes to translate artworks

to photo-realistic images, which is similar to de-stylization

but is limited to only few artistic styles. The naı̈ve approach

of having the original input as the style image and other

methods from the image-to-image translation area (e.g. Cy-

cleGAN [27] or Pix2Pix [10]) are also incapable of achiev-

ing image de-stylization or only applicable to the seen styles

(thus not universal), as already shown in [20].

Image steganography. Image steganography is a way to

deliver a message secretly by hiding it into in an irrele-

vant cover image while minimizing the perturbations within

the cover, and has been studied for a long period in the

area of image processing [12, 2]. In general, traditional

approaches rely on carefully and manually designed algo-

rithms to achieve both message hiding and retrieval from

the cover image. Some examples of such methods would be

HUGO [16] and least significant bit steganography [6].

After the application of deep learning has grown pop-

ular, few research works [7, 1, 26] explore the possibil-

ity of having deep neural networks perform steganogra-

phy on images, where the hiding and revealing processes

are learned together in the manner of end-to-end training.

[7] proposes to train the steganographic algorithm and ste-

ganalyzer jointly via an adversarial scheme between three-

players. In comparison to handling lower bit rates of [7],

[1] intends to hide an image entirely into another image of

the same size, but has a potential drawback of being de-

tectable. For the method proposed in [26], it hides relatively

smaller amount of message into an irrelevant cover image

but specifically tackles the problem of making the hidden

message robust to noises.

3. Proposed Methods

3.1. TwoStage Model

Our two-stage model is a pipeline built upon a straight-

forward integration of style transfer and steganography net-

works, as shown in Figure 2(a). In the first stage, we stylize

the content image Ic according to the style image Is based

on a style transfer model. Afterward in the second stage,

the steganography network learns an encoder to hide the

content information of Ic into the stylized image It from

the previous stage, as well as a paired decoder which is able

to retrieve the hidden information from the encoded image.

3.1.1 Style Transfer Stage

We adopt AdaIN [9] as our primary reference method while

our two-stage model is capable of incorporating with other

style transfer algorithms (e.g. WCT [13] or [23], please re-

fer to the supplementary materials for more details). The

architecture is composed of a pre-trained VGG19 [21] en-

coder EV GG and a decoder DAdaIN . The concept of the

training procedure can be briefly summarized as follows:

1) the encoder extracts the content feature vc =
EV GG(Ic) and style feature vs = EV GG(Is) from con-

tent image Ic and style image Is respectively; 2) based on

Eq. 1, the content feature vc is adaptively redistributed ac-

cording to the statistics of style feature vs to obtain the tar-

get feature vt; 3) the stylized output It is finally produced

by DAdaIN (vt).
While encoder EV GG is pre-trained and fixed (based on

first few layers of VGG19 up to relu4 1), the learning

of AdaIN style transfer focuses on training DAdaIN with

respect to the objective (same as in AdaIN [9]):

Lstyle−transfer = Lcontent + λstyleLstyle (2)

in which the content loss Lcontent and style loss Lstyle are

defined as follows with their balance controlled by λstyle

(which is set to 10 in all our experiments, as used in [9]):

Lcontent = ‖EV GG(It)− vt‖2 (3)

Lstyle =

L
∑

i

‖µ(li(It))− µ(li(Is))‖2 +

L
∑

i

‖σ(li(It))− σ(li(Is))‖2

(4)

2165



(a) Visualization of the architecture and training objectives for our proposed two-stage model, which is composed of a style transfer stage

(shaded in purple) and a steganography stage (shaded in green).

(b) Illustrations of how to apply our two-stage model in the tasks of reverse and serial style transfer respectively.

Figure 2: Overview of the training and testing procedure of our two-stage model. Please refer to Section 3.1 for details.

where each li denotes the feature map obtained from a layer

in VGG19, and L = { relu1 1, relu2 1, relu3 1,

relu4 1 } in our experiments.

In addition to the objective function above which en-

courages DAdaIN (vt) to output the stylized image It with

its content feature EV GG(It) close to target vt and similar

style as It, we also train DAdaIN with identity mapping, i.e.

reconstructing content image Ĩc solely from its content fea-

ture vc, for the purpose of better dealing with reverse style

transfer later on. To achieve identity mapping, we occasion-

ally place the same photo for both content and style images

during the training of DAdaIN , so that the content feature

vc and target feature vt are identical. Thus, the output It of

DAdaIN is similar to Ic by the same objectives as Eq. 3.

3.1.2 Steganography Stage

The steganography stage in our model contains a message

encoder Emsg and a corresponding message decoder Dmsg .

The message encoder Emsg aims to hide content feature

vc into stylized image It and produce the encoded image

Ie = Emsg(It, vc), which is exactly the output of our two-

stage model, while the message decoder Dmsg tries to de-

code vc out from Ie. As the typical scheme of steganogra-

phy, the difference between the encoded image Ie and styl-

ized image It should be visually undetectable, therefore the

Emsg is trained to minimize the objective defined as:

Limage = ‖Ie − It‖2 (5)

On the other hand, the message decoder Dmsg is optimized

to well retrieve the message vc hidden in Ie, with respect to

the objective:

Lmessage = ‖Dmsg(Ie)− vc‖2 (6)

where the architecture designs of both Emsg and Dmsg fol-

low the ones used in the recent steganography paper [26].

The objective for the steganography stage is summarized as:

Lsteganography = λimgLimage + λmsgLmessage (7)

where λimg and λmsg are used to balance Limage and

Lmessage respectively.

3.1.3 Reverse & Serial Stylization by Two-Stage Model

Reverse style transfer. As shown in the left portion of Fig-

ure 2(b), by using the decoder DAdaIN , which is capable of

performing identity mapping, to decode the content feature

vc from a given encoded image Ie, the original content im-

age Ic can now be recovered by DAdaIN (Dmsg(Ie)).
Serial style transfer. To transfer the encoded image Ie
(which is already stylized) into another style given by I ′s, as

shown in the right portion of Figure 2(b), the content feature

vc = Dmsg(Ie) decoded from Ie and the style feature v′s =
EV GG(I

′

s) extracted from I ′s are taken as inputs for AdaIN

transformation, then the serial style transfer is achieved by

computing I ′t = DAdaIN (AdaIN(Dmsg(Ie), v
′

s)). In ad-

dition, performing multiple times of style transfer in series

2166



Figure 3: Overview of our end-to-end model and its training objectives, where the image stylization and content information

encryption are now particularly performed jointly in a single network Dencrypt. Please refer to Section 3.2 for more details.

Figure 4: Illustration of applying proposed end-to-end model, especially the reconstructed content feature (cf. Eq. 10), for

both tasks of reverse and serial style transfer network, denoted by different colors respectively.

is naturally doable when the steganography is applied for

encoding vc into I ′t again.

3.2. EndtoEnd Model

Aside from the two-stage model which can take several

style transfer methods as its base (e.g. WCT [13] or [23],

please refer to our supplementary material), our end-to-end

model digs deeply into the characteristic of AdaIN for en-

abling image stylization and content information encryption

simultaneously in a single network. As we know, the pro-

cedure of AdaIN (cf. Eq. 1) produce a target feature vt by

transforming the content feature vc to match the statistics

of the style feature vs, i.e. mean µ(vs) and standard devia-

tion σ(vs). Assume there exists an inverse function which

can estimate the corresponding target feature vt of a styl-

ized image Ist, we hypothesize that the content feature vc is

derivable from vt by σ(vc)
vt−µ(vt)
σ(vt)

+µ(vc) once its original

statistics {µ(vc), σ(vc)} is available.

Based on this hypothesis, our end-to-end model is de-

signed to have several key components as shown in Fig-

ure 3: 1) a encrypted image decoder Dencrypt which takes

vt, µ(vc), σ(vc) as input and produce a stylized image Ist

with {µ(vc), σ(vc)} being encrypted into it; 2) a decrypter

Edecrypt which is able to decrypt {µ(vc), σ(vc)} out from

Ist; and 3) an inverse target encoder Einv which is capable

of estimating vt from the given stylized image Ist. In the

following and Figure 3 we detail the overall computation of

our model and the objectives for training.

First, the output image Ist of the encrypted image de-

coder Dencrypt, which is simultaneously encrypted and

stylized, should still have the similar content/style fea-

ture as the one in the content/style image respectively (i.e.

{vc, vs}). The same objective functions, Lcontent and

Lstyle, defined in Eq. 3, can then be adopted to optimize

Dencrypt by simply replacing It with Ist here.

Second, we see that the {µ(vc), σ(vc)} encrypted into

Ist with Dencrypt should be retrievable by using the cor-

responding decrypter Edecrypt. Therefore, the output

of Edecrypt, {µ̂(vc), σ̂(vc)}, is compared to the original

{µ(vc), σ(vc)}, leading to the decryption loss Ldecrypt for

jointly optimizing Dencrypt and Edecrypt:

Ldecrypt = ‖µ̂(vc)− µ(vc)‖2 + ‖σ̂(vc)− σ(vc)‖2 (8)

Third, as motivated in our hypothesis, there should be

an inverse target encoder Einv which is able to recover the

2167



Content Style Gatys [5] AdaIN [9] Two-stage End-to-end

Figure 5: Example results of regular style transfer produced by different methods. First two columns show the pairs of

content/style images; third to last columns present the results from Gatys [5], AdaIN [9], our two-stage model, and our end-

to-end model respectively. We observe that our models are able to generate results with quality comparable to the baselines.

target vector vt used for generating Ist. It is worth noting

that, here we design Einv to have the same architecture as

EV GG, but it is trained to ignore the influence caused by the

encrypted information in Ist and focus on retrieving the tar-

get vector vt. With denoting the feature vector estimated by

Einv as v̂t = Einv(Ist), the objective function for training

Einv is then defined as

Linv = ‖v̂t − vt‖2 (9)

Fourth, with having {µ̂(vc), σ̂(vc)} and v̂t obtained from

Edecrypt and Einv(Ist) respectively, we can reconstruct the

content feature v̂c according to:

v̂c = σ̂(vc)
v̂t − µ(v̂t)

σ(v̂t)
+ µ̂(vc) (10)

Then an objective is defined based on the difference be-

tween v̂c and the original vc:

Ldestyle = ‖v̂c − vc‖2 (11)

where it can update Dencrypt, Edecrypt, and Einv jointly.
Fifth, as a similar idea of having identity mapping in

our two-stage model, here we learn a plain image decoder

Dplain which can map a content feature back to the corre-

sponding content image Ic. Its training is simply done by:

Lplain = ‖Dplain(EV GG(Ic))− Ic‖2 (12)

The overall objective function Lend2end for our end-to-end

model training is then summarized as below, where λ pa-

rameters are used to balance weights of different losses:

Lend2end = λcLcontent + λsLstyle + λdecLdecrypt

+ λinvLinv + λdesLdestyle + λpLplain

(13)

3.2.1 Reverse & Serial Stylization by End-to-End

Model

After our end-to-end model are properly trained, since the

content vector of the original content image can be recon-

structed by using Eq. 10, the reverse and serial style transfer

are now straightforwardly achievable, as shown in Figure 4.

Reverse style transfer. The reverse style transfer, which

recovers the original image based on a stylized image Ist, is

done by having the decrypted content feature v̂c go through

the plain image decoder Dplain.

Serial style transfer. Given a stylized image Ist, by de-

crypting content feature v̂t from Ist and extracting style

feature v′s from a new style image, the serial style transfer

is then produced based on Dplain(AdaIN(v̂c, v
′

s)). Please

note here we can encrypt the statistics of content feature into

the output again, as shown in the lower part of Figure 4, for

enabling multiple times of style transfer in series.

4. Experiment

Dataset We follow the similar setting in [9] to build up

the training set for our models. We randomly sample 10K

content and 20K style images respectively from the training

set of MS-COCO [14] and the training set of WikiArt [15].

These training images are first resized to have the smallest

dimension be 512 while the aspect ratio is kept, then ran-

domly cropped to the size of 256×256.

4.1. Qualitative Evaluation

We compare our proposed models to the baselines from

Gatys et al. [5] and AdaIN [9] (more baselines, e.g. [13,

23], in the supplement), based on the qualitative results for

the tasks of regular, reverse and serial style transfer. In

particular, we apply two times of stylization sequentially

in the serial style transfer experiments, for both qualitative

and quantitative evaluations (subsection 4.1 and 4.2 respec-

tively). Please note that all the style images used in qualita-

tive evaluation have never been seen during our training.

4.1.1 Regular Style Transfer

As the goal of our proposed models is not aiming to im-

prove the quality of regular style transfer, we simply ex-

amine whether the stylization produced by our models is

2168



(1) (1)

Content

(2)

Content

(2)

Gatys [5] AdaIN [9] Two-Stage End-to-End Gatys [5] AdaIN [9] Two-Stage End-to-End

(a) (b)

Figure 6: Two sets of example results for reverse style transfer. The rows show (1) stylized images and (2) the de-stylized

results. The corresponding content image is provided in the left of each set. Our models better reconstruct the overall structure

of original content images.

(1) (1)

Content

(2)

Content

(2)

(3) (3)

New Style Gatys [5] AdaIN [9] Two-Stage End-to-End New Style Gatys [5] AdaIN [9] Two-Stage End-to-End

(a) (b)

Figure 7: Two sets of example results of serial style transfer. The rows from top to bottom sequentially show (1) stylized

images based on the first style, (2) the expectation of new stylization on the content image, and (3) results of serial stylization

produced by different methods. The corresponding content image and the new style going to be applied on it are provided in

the left of each set. Our models have results better aligned w.r.t. the corresponding expectations.

reasonable in comparison to the baselines. Figure. 5 pro-

vides example results of regular style transfer generated by

using different methods. We can see that although both our

two-stage and end-to-end models have different stylized re-

sults w.r.t their base AdaIN approach, they retain compara-

ble quality where the global structure of content image is

maintained and the stylization is effective.

4.1.2 Reverse Style Transfer

The goal of reverse style transfer is performing de-

stylization on a stylized image, such that the content image

can be reconstructed as close to its original appearance as

possible. As the baselines, Gatys et al. [5] and AdaIN [9],

have no corresponding procedures for reverse style trans-

fer, we thus utilize a naı̈ve solution for them, where the

stylization is applied to a given stylized image with having

the original content image as source of target style. Please

note here that this naı̈ve solution of reverse style transfer for

baselines needs the access to original content image, while

our proposed models can perform de-stylization solely with

the given stylized image. Two sets of example results for the

task of reverse style transfer are shown in Figure 6. From

set (a), both baselines, especially AdaIN, fail to preserve the

contour of the face. Although the results of our two-stage

and end-to-end models have some mild color patches and

slight color shift respectively, they both well reconstruct the

overall structure of the content image. Similar observation

also exists in set (b). The results of both our models are un-

affected by the fuzzy patterns in stylized images, and have

clear boundaries between objects, while the baselines could

not discriminate the actual contours from the edges caused

by stylization, which leads to the results with severe arti-

facts. These experimental results verify the capability of our

models toward resolving the issue of reverse style transfer.

4.1.3 Serial Style Transfer

Serial style transfer attempts to transfer a stylized image

into another different style, while keeping the result min-

imally affected by the previous stylization. Ideally, the re-

sult of serial style transfer is expected to be close to the one

obtained by stylizing the original content image with the

new style image. Two sets of example results of serial style

transfer are shown in Figure 7. It is obvious that the results

produced by our proposed method are more similar to their

respective expectations than the ones from baselines which

are deeply influenced by the previous stylization. There-

fore our proposed models are successfully verified for their

competence on dealing with serial style transfer.

2169



Gatys

[5]

AdaIN

[9]

Two-

Stage

End-to-

End

Reverse

Style

Transfer

L2 4.4331 0.0368 0.0187 0.0193

SSIM 0.2033 0.3818 0.4796 0.5945

LPIPS 0.3684 0.4614 0.3323 0.3802

Serial

Style

Trasfer

L2 7.5239 0.0213 0.0148 0.0104

SSIM 0.0472 0.5470 0.7143 0.8523

LPIPS 0.4317 0.3637 0.2437 0.1487

Table 1: The averaged L2 distance, SSIM, and LPIPS [25]

between the results and their corresponding expectations.

4.2. Quantitative Evaluation

We conduct experiments to quantitatively evaluate the

performance of our proposed models in both reverse and

serial style transfer. A test set is built upon 1000 content im-

ages randomly sampled from the testing set of MS-COCO,

with each of them transferred into 5 random styles that have

never been used in the training phase. We perform reverse

and serial style transfer with different models and compare

the outputs with respect to their corresponding expectations.

The averaged L2 distance, structural similarity (SSIM), and

learned perceptual image patch similarity (LPIPS [25]) are

used to measure the difference and the results are shown

in Table 1. Both our models perform better than the base-

lines. Particularly, our two-stage model performs the best

for reverse style transfer while the end-to-end model does

so for serial style transfer. We believe that our two stage

model benefits from its larger amount of encrypted informa-

tion and the design of identity mapping, leading to the bet-

ter result in reverse style transfer, and the end-to-end model

shows its advantage in having less information to hide, mak-

ing it more robust to the propagated error caused by serial

style transfer.

4.3. Ablation Study

Here we perform ablation studies to verify the benefits of

some design choices in our proposed models. Due to page

limit, please refer to our supplement for more studies.

Identity mapping of two-stage model As described in

Sec. 3.1.1, for the decoder DAdaIN , we have an additional

objective based on identity mapping. From the example re-

sults provided in Figure 8, we can see the ones produced by

our DAdaIN have less artifacts, which clearly demonstrate

the benefits to the task of reverse style transfer brought by

using identity mapping in our proposed model, in compari-

son to the decoder used in the typical style transfer method.

Using Einv to recover vt from Ist in end-to-end model

There is a potential argument that we could replace Einv

with EV GG due to the similarity between Linv and Lcontent

in our end-to-end model (please note that EV GG is pre-

trained and kept fixed). Hence we perform experiments ac-

cordingly in the task of reverse style transfer, and observe

AdaIN Identity mapping Ground truth

Figure 8: Comparison between results of using the AdaIN

decoder trained w/o and w/ identity mapping in the task of

reverse style transfer. It shows the AdaIN decoder trained

w/ identity mapping generates results with less artifacts.

Content Ic Stylized Ist Einv EV GG

Figure 9: Comparison between using Einv and EV GG to

extract the target feature vt in reverse style transfer. The

ones of using Einv show less influence from the stylization.

that the results of using Einv preserve the overall content

structure better, while the ones of using EV GG tend to have

severe interference from stylization as shown in Figure 9.

The benefit of having Einv in our model is thus verified.

Please note that more results and videos are available in the

supplementary material. All the source code and datasets

(or trained models) will be made available to the public.

5. Conclusion

In this paper, we introduce the issues and artifacts that

are inevitably introduced by typical style transfer methods

in the scenarios of serial and reverse style transfer. We suc-

cessfully address these problems by proposing a two-stage

and an end-to-end approach while retaining the image qual-

ity of stylized output comparable to the state-of-the-art style

transfer method simultaneously. Our methods are novel on

uniquely integrating the steganography technique into style

transfer for preserving the important characteristic of con-

tent features extracted from input photo, and the extensive

experiments clearly verify the capability of our networks.

Acknowledgements This project is supported by Medi-

aTek Inc., MOST-108-2636-E-009-001, MOST-108-2634-

F-009 -007, and MOST-108-2634-F-009-013. We are grate-

ful to the National Center for Highperformance Computing

for computer time and facilities.

2170



References

[1] S. Baluja. Hiding images in plain sight: Deep steganogra-

phy. In Advances in Neural Information Processing Systems

(NIPS), 2017. 2, 3

[2] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt. Digital

image steganography: Survey and analysis of current meth-

ods. Signal Processing, 2010. 3

[3] A. A. Efros and W. T. Freeman. Image quilting for tex-

ture synthesis and transfer. ACM Transactions on Graphics

(TOG), 2001. 2

[4] L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis

using convolutional neural networks. In Advances in Neural

Information Processing Systems (NIPS), 2015. 1, 2

[5] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016. 1,

2, 6, 7, 8

[6] S. Gupta, A. Goyal, and B. Bhushan. Information hiding

using least significant bit steganography and cryptography.

International Journal of Modern Education and Computer

Science (IJMECS), 2012. 2, 3

[7] J. Hayes and G. Danezis. Generating steganographic images

via adversarial training. In Advances in Neural Information

Processing Systems (NIPS), 2017. 3

[8] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.

Salesin. Image analogies. ACM Transactions on Graphics

(TOG), 2001. 1, 2

[9] X. Huang and S. Belongie. Arbitrary style transfer in real-

time with adaptive instance normalization. In IEEE Interna-

tional Conference on Computer Vision (ICCV), 2017. 2, 3,

6, 7, 8

[10] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-

image translation with conditional adversarial networks. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. 3

[11] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

Conference on Computer Vision (ECCV), 2016. 1, 2

[12] G. C. Kessler and C. Hosmer. An overview of steganography.

Advances in Computers, 2011. 3

[13] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang.

Universal style transfer via feature transforms. In Advances

in Neural Information Processing Systems (NIPS), 2017. 3,

5, 6

[14] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European Conference on Com-

puter Vision (ECCV), 2014. 6

[15] K. Nichol. Painter by numbers, wikiart. https://www.

kaggle.com/c/painter-by-numbers, 2016. 6

[16] T. Pevný, T. Filler, and P. Bas. Using high-dimensional im-

age models to perform highly undetectable steganography. In

Proceedings of the International Conference on Information

Hiding (IH), 2010. 3

[17] L. Sheng, Z. Lin, J. Shao, and X. Wang. Avatar-net: Multi-

scale zero-shot style transfer by feature decoration. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018. 3

[18] Y. Shih, S. Paris, F. Durand, and W. T. Freeman. Data-driven

hallucination of different times of day from a single outdoor

photo. ACM Transactions on Graphics (TOG), 2013. 1

[19] F. Shiri, X. Yu, P. Koniuszand, and F. Porikli. Face destyl-

ization. In Proceedings of the International Conference

on Digital Image Computing: Techniques and Applications

(DICTA), 2017. 3

[20] F. Shiri, X. Yu, F. Porikli, R. Hartley, and P. Koniusz.

Identity-preserving face recovery from portraits. In IEEE

Winter Conference on Applications of Computer Vision

(WACV), 2018. 3

[21] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations (ICLR), 2015. 3

[22] M. Tomei, M. Cornia, L. Baraldi, and R. Cucchiara.

Art2Real: Unfolding the Reality of Artworks via

Semantically-Aware Image-to-Image Translation. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019. 3

[23] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-

ture networks: Feed-forward synthesis of textures and styl-

ized images. In International Conference on Machine Learn-

ing (ICML), 2016. 1, 2, 3, 5, 6

[24] M. K. Vincent Dumoulin, Jonathon Shlens. A learned rep-

resentation for artistic style. In International Conference on

Learning Representations (ICLR), 2017. 2

[25] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.

The unreasonable effectiveness of deep features as a percep-

tual metric. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. 8

[26] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei. Hidden: Hid-

ing data with deep networks. In European Conference on

Computer Vision (ECCV), 2018. 2, 3, 4

[27] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In IEEE International Conference on Computer Vi-

sion (ICCV), 2017. 3

2171


