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Abstract

Time-of-Flight (ToF) cameras require active illumina-

tion to obtain depth information thus the power of illumina-

tion directly affects the performance of ToF cameras. Tradi-

tional ToF imaging algorithms are very sensitive to illumi-

nation and the depth accuracy degenerates rapidly with the

power of it. Therefore, the design of a power efficient ToF

camera always creates a painful dilemma for the illumina-

tion and the performance trade-off. In this paper, we show

that despite the weak signals in many areas under extreme

short exposure setting, these signals as a whole can be well

utilized through a learning process which directly translates

the weak and noisy ToF camera raw to depth map. This cre-

ates an opportunity to tackle the aforementioned dilemma

and make a very power efficient ToF camera possible. To

enable the learning, we collect a comprehensive dataset un-

der a variety of scenes and photographic conditions by a

specialized ToF camera. Experiments show that our method

is able to robustly process ToF camera raw with the expo-

sure time of one order of magnitude shorter than that used

in conventional ToF cameras. In addition to evaluating our

approach both quantitatively and qualitatively, we also dis-

cuss its implication to designing the next generation power

efficient ToF cameras.

1. Introduction

Depth sensing is one of the core components of many

computer vision tasks. Amplitude-modulated continuous-

wave (AMCW) time-of-flight (ToF) has a brief and definite

physical meaning in depth construction of scenes thus it

attracts a lot of commercial attention, such as Kinect V2.

It is also widely used in academic research of computer

vision [13, 30], including human tracking [29], 3D scene

∗Indicates equal contribution.

(a) Conventional depth map under (b) Our result from
extreme short exposure ToF raw of (a)

(c) Conventional depth map under (d) Our result from
regular exposure ToF raw of (c)

Figure 1. We propose an end-to-end pipeline to translates the weak

and noisy ToF camera raw to high quality depth map. (a) Depth

image produced by the ToF camera’s default imaging pipeline with

200us exposure time. The quality is very poor. (b) Depth image

produced by our method applied to the ToF camera raw from (a).

(c) Depth image produced by the ToF camera’s default imaging

pipeline with regular exposure time. Some of the depth informa-

tion is still lost due to objects with low reflectivity or long dis-

tances. (d) Depth image produced by our method applied to the

ToF camera raw from (c).

reconstruction [18], robotics [17], object detection, ges-

ture recognition [23, 33], and scene understanding [31, 15].

However, comparing with traditional RGB cameras, ToF

cameras compute the depth by emitting a periodic ampli-

tude modulated illumination signal and receive the demod-

ulated signal reflected by the objects. Higher power of ac-

tive illumination enables the ToF sensor to receive the sig-

nal with higher signal noise ratio (SNR) and higher level of

confidence. Therefore, the power of illumination directly

influences the performance of ToF cameras.
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Traditional ToF imaging algorithms are very sensitive

to illumination and the depth accuracy degenerates rapidly

with the decreasing illumination power. In order to obtain

more accurate depth information, one way is to increase the

intensity of the received active illumination signal. Other

than increasing the illumination power, an alternative treat-

ment to this issue is to increase the physical size of the pix-

els on the sensor to collect more light. However, this signifi-

cantly decreases the depth map resolution. According to the

inverse square law, one can also cut the depth sensing range

of the camera. This obviously decreases the usability of

the camera in many applications. Therefore, to make a ToF

camera with satisfactory depth quality as well as reason-

able resolution and sensing range, the painful dilemma for

the illumination and the performance trade-off always trou-

bles the designer of the camera if the conventional imaging

pipeline is used.

Such dilemma can be tackled if there is a way to recover

high quality depth information from weak signals. A num-

ber of recent studies show that it is plausible to recover low

SNR natural images from very noisy data using deep learn-

ing. [27, 16, 5]. Chen et al. [5] showed impressive results on

recovering high quality color image from camera Bayer pat-

tern which is captured under extremely low light condition

with short exposure. Inspired by these research, we show

for the first time that for ToF cameras, despite the weak sig-

nals in many areas under the extreme short exposure set-

ting, these signals as a whole can be well utilized through

a learning process which directly translates the weak and

noisy ToF camera raw to high quality depth map. This cre-

ates an opportunity to address the aforementioned dilemma

and makes it possible to design a very power efficient ToF

camera possibly with higher resolution and longer sensing

range. To enable the learning, we collect a comprehensive

dataset under a variety of scenes and photographic condi-

tions via a specialized ToF camera. The dataset contains

ToF raw measurements and depth maps collected under ex-

treme short exposure settings and long exposure settings re-

spectively. We show in the experiments that our proposed

method is able to robustly process ToF raw measurements

with an exposure time that is one order of magnitude shorter

than that used in a conventional ToF camera.

The contributions of our work can be summarized as fol-

lows.
• We show for the first time that our proposed method

is able to recover high quality depth information from

very weak ToF raw data (one order of magnitude

shorter exposure time).

• We introduce a real-world dataset used for training and

validating the this learning tasks.
• We shed light on the design of the next generation ToF

camera by providing an effective alternative to opti-

mize the performance and power consumption trade-

off.

2. Related Work

Depth reconstruction based on ToF cameras. ToF cam-

eras face a lot of challenging problems when extracting

depth from raw phase-shifted measurements with respect

to emitted modulated infrared signal. Dorrington et al. [7]

established a two-component, dual-frequency approach to

resolving phase ambiguity, achieving significant improve-

ments of the accuracy when distortion is caused by multi-

path interference (MPI). Several methods were proposed to

deal with MPI distortions, including adding or modifying

hardware [34, 14, 26, 3], employing multiple modulation

frequencies [7, 8, 4, 12] and estimating light transport via

an approximation of depth [9, 10]. Marco et al. [22] cor-

rect MPI errors by a two-stage training strategy, training the

encoder to represent MPI-corrupted depth images with cap-

tured dataset firstly and then use synthetic scenes to train the

decoder to correct the depth. However, the above pipelines

are based on the assumption that there is no cumulative er-

ror and information loss introduced in the previous stages,

thus the final results of these methods are likely to contain

cumulative errors of multiple stages.

Krishna et al. [35] filled the missing depth pixels by us-

ing a color-aware Gaussian-weighted averaging filter to es-

timate depth value. However, its performance is limited by

the similarity between the neighborhood pixels and target

pixels and the information of the target region is wasted.

An end-to-end ToF image processing framework presented

by Su et al. [32] can efficiently reduce noise, correct MPI

and resolve phase ambiguity. However, the training data is

not realistic. Therefore, depth reconstruction may fail when

the scene contains low reflectivity materials and objects. To

the best of our knowledge, none of existing depth recon-

struction method is able to obtain high quality depth map

from the weak and noisy ToF camera raw measurements.

Image enhancement under low light. For conventional

RGB cameras, photography in low light is challenging.

Several techniques have been proposed to increase the SNR

of the recovered image [11, 25, 20, 21, 6]. Chen at el. [5]

established a pipeline by training a fully convolutional neu-

ral network which directly translate the very noise and

dark Bayer pattern camera raw to high quality color im-

ages. Though impressive results from the aforementioned

studies, deep learning and data-driven approaches have not

yet been adopted to recover high quality depth information

from weak and noisy ToF raw. It remains unclear if such

methodology is effective for ToF imaging. The aim of this

paper is to disclose its feasibility.

Depth datasets. Although recently many datasets of depth

maps are proposed, most of them consist of synthetic data,

such as transient images generated via time-resolved ren-

dering. A dataset of ToF measurements [22] is proposed
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via simulating 25 different scenes with a physically-based,

time-resolved renderer. Besides, Su et al. [32] offer a large-

scale synthetic dataset of raw correlation time-of-flight with

ground truth labels. However, the ToF raw with artificial

distortions and Gaussian noise is not realistic enough to

support the real life generalization especially when deal-

ing with areas with large noise caused by low reflectivity.

Only the raw RGB data, depth map and accelerometer data

are provided in the NYU-Depth V2 dataset [24] but ToF

raw measurements are missing. Thus, this dataset can not

be used to train ToF raw to depth map conversion. Fur-

thermore, most existing depth datasets concentrate on im-

ages captured under appropriate illumination or ideal envi-

ronments, they are not suitable for evaluating imaging with

low active illumination power or weak reflected signal. In

this paper, we propose a comprehensive dataset to fill these

gaps and enable the training and validation of our proposed

model.

3. Method and Analysis

3.1. Imaging with Time­of­Flight Sensors

Distance measurement. The distance measurement mode

of Time of Flight uses the on chip driver and the external

LED/LD to provide modulated light on the target. Gen-

erally, the period of the modulation control signal is pro-

grammable. The modulator generates all signals to modu-

late the external LED/LD and simultaneously all demod-

ulation signals to the pixel-field. We can describe the

programmable modulation optical signal with angular fre-

quency ω as

s(t) = cos(ωt), (1)

where the amplitude is normalized. Once the signal is re-

flected by the object, the modulated optical signal goes back

to the sensor with certain amplitude attenuation and certain

phase shift, then the received signal can be expressed as

r(t) = α cos(ωt− ϕ) + δ, (2)

where δ is the offset, α is the amplitude after attenuation,

and ϕ is the phase shift. In order to achieve demodulation,

the original emission signal needs to be used as a correlation

signal and demodulated with the received signal as

ϕsr = r(t)⊗ s(t)

= lim
T→∞

1

T

∫ T/2

−T/2

r(t)s(t+ τ) dt

= lim
T→∞

1

T

∫ T/2

−T/2

[α cos(ωt− ϕ) + δ][cos(ωt+ ωτ)] dt

=
α

2
cos(ωt+ ϕ),

(3)

where the relevant signal is denoted as C(τ) = ϕsg(τ). ToF

cameras need to sample the correlation signal C(τ) four

Figure 2. Sample of received signal per π/4.

times in one cycle. That is, sampling is performed when

ωτ0 = 0◦, ωτ90 = 90◦, ωτ180 = 180◦, ωτ270 = 270◦.

Considering the received signal is mainly superimposed on

the background image, we also need to consider an offset

here. Then the phase shift ϕ and the amplitude α
2

can be

obtained from the four sample values

ϕ = arctan
C(τ3)− C(τ1)

C(τ0)− C(τ2)
, (4)

α =
1

2

√

[C(τ3)− C(τ1)]2 + [C(τ0)− C(τ2)]2, (5)

and we can find the distance value by the phase shift

d =
cϕ

2ω
, (6)

where c is the speed of light.

Quality of the measurement result. Raw ToF measure-

ments contain the distance information, as well as the qual-

ity and the validity (confidence level) of the received opti-

cal signal. A higher amplitude of the measured signal rep-

resents a more accurate distance measurement. The depth

data for each pixel has its own validity and quality in ToF

cameras. The amplitude of the modulated light received by

the ToF sensor is the primary quality indicator for the mea-

sured distance data. It can be calculated as Eq. 5. However,

excessive active illumination will make the amplitude of the

raw measurements very large. This leads to errors in the

depth value due to the problem of over-exposure of the ToF

sensor.

Problems of Traditional Pipeline. In order to recover

high-quality depth maps from imperfect ToF raw measure-

ments, traditional methods of ToF camera imaging often re-

quire a series of specialized processing techniques, such as

denoising, correction of multipath distortion and nonlinear

compensation, etc. However, these components are inde-

pendent to each other and often relies on the assumption

of no cumulative error and information loss in the previous

stages. In practice, this assumption is almost always not

true. It may cause large errors in the final depth map.

3.2. Learning from imperfect ToF camera raw

In this section, our approach of depth reconstruction is

presented in detail. We first describe the advantage of our
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Network Architecture

Name D1 D2 D3 D4 U1 Conv1 U2 Conv2 U3 Conv3 U4 Conv4

Layer
conv+

Relu

conv+

Relu+

conv+

Relu

conv+

Relu+

conv+

Relu

conv+

Relu

conv+

Relu+

upsample

conv+

Relu+

conv+

Relu

conv+

Relu+

upsample

conv+

Relu+

conv+

Relu

conv+

Relu+

upsample

conv+

Relu+

conv+

Relu

conv+

Relu+

upsample

conv

Kernel 5×5 3×3 3×3 3×3 3×3
1×1/

3×3
3×3

1×1/

3×3
3×3

1×1/

3×3
3×3 3×3

Stride 2 2/1 2/1 2 1 1 1 1 1 1 1 1

I/O 4/16 16/32 32/64 64/128 128/128 192/128 128/96 128/64 64/32 48/16 16/8 8/4

Input ToF raw D1 D2 D3 D4 D3+U1 Conv1 D2+U2 Conv2 D1+U3 Conv3 U4

Table 1. Architecture of our network. ”conv” represents a convolutional layer. ”upsample” means an up-sampling layer.

method of recovering high-quality depth images from weak

and noisy ToF camera raw measurements compared to tra-

ditional ToF imaging methods. Then, we give a brief de-

scription of our whole pipeline to learn a mapping from

ToF measurements acquired under low power illumination

to corresponding high-quality depth map. We will introduce

our carefully designed ToF loss and the network architec-

ture of our method, as shown in Tab. 1, will be introduced.

Finally, we present how we train the model and implement-

ing details.

Comparison to traditional pipeline. The raw ToF mea-

surements have a very low signal-to-noise ratio (SNR) and

amplitude intensity, when the active illumination signal re-

ceived by the ToF sensor is very low. In this case, con-

ventional edge aware filtering methods such as bilateral

filter tend to fail. Traditional method of ToF measure-

ments denoising is based on arbitrary rules and assump-

tions, but these rules and assumptions often become invalid

with changes in scenes and intensity of the received signals.

This is particularly true for weak input signals. Therefore,

it is very difficult to select the optimal parameters for all the

image processing components to achieve good results for

all scenarios. In contrast, the proposed method adopts the

end-to-end learning and inference approach to translate the

weak and noisy ToF camera raw to high quality depth map

which avoids the highly complex parameter tuning for such

noisy and weak input signals.

Network structure. To build intuition for this end-to-

end approach, we have analyzed several previous work

of image-to-image mapping. Most of them have adopted

an encoder-decoder network with or without skip con-

nections [28], which consists of down-sampling, residual

blocks and up-sampling. The pixel value of ToF depth map

is closely-related to camera settings, scene architecture and

layout, compared with RGB images. Besides, the geometry

and architecture of scene for both depth map and raw mea-

surements are required to be consistent. And these specific

characteristics of ToF raw measurements should be com-

bined with the previous work of image translation, when

designing network architecture. Finally, the depth map can

be calculated with four-frame raw data by Eq. 4 and Eq. 6.

For the above considerations, we devise our network ar-

chitecture based on the encoder-decoder construction with

skip connections. The size of input is progressively decreas-

ing in pace with going through the down-sampling layers

for four times, until it reaches the layer U1. And after pass-

ing through four up-sampling layers, the size of input be-

comes larger and restored to its original size. The strided

convolution layers combined with activation layers serve as

decoder and the strided convolution layers combined with

activation layers and up-sample layers are regarded as en-

coder. Moreover, we added the skip connections to the net-

work between each pair of i D layer and n-i Conv layer fol-

lowing the U-net to enhance the accuracy of results.

ToF Loss. Different from traditional RGB camera imaging,

both of the depth map and ToF raw measurements should be

consistent with the underlying scene structure and geometry

and can be influenced by spatial structures, modulation fre-

quency, materials of target objects and many other factors.

Thus, in order to improve the accuracy of depth reconstruc-

tion, we devise a method of mapping from raw ToF mea-

surements captured under short exposure time to ToF raw

measurements captured under long exposure and then cal-

culate the depth value from generation ToF raw according to

the physical meanings of ToF camera imaging. Considering

the above, we propose a new loss named ToF Loss consist-

ing of loss based on raw measurements and depth value for

depth reconstruction.

In order to minimize the mean absolute error between

each frame of raw measurements and its corresponding

frame of ground truth, we introduce the Lraw loss as fol-

low:

Lraw =
1

N

N
∑

i,j

[
∣

∣r
gt0
i,j − r

pre0
i,j

∣

∣+
∣

∣r
gt1
i,j − r

pre1
i,j

∣

∣

+
∣

∣r
gt2
i,j − r

pre2
i,j

∣

∣+
∣

∣r
gt3
i,j − r

pre3
i,j

∣

∣],

(7)

where r
pren
i,j (n=0, 1, 2, 3) represents ToF raw measure-

ments generated by our network and r
gtn
i,j means ToF raw

measurements captured under long exposure settings as

ground truth.
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(a) a group of measurements (b) a group of measurements ToF camera Depth statistics.

Figure 3. We use EPC660 ToF camera from ESPROS to collect a dataset of multiple pairs of short-exposure and corresponding long-

exposure depth measurements. Diverse indoor scenes are collected in the dataset, including office room, restaurant, bedroom and Lab-

oratory. The depth range is reasonable for indoor scenes of our dataset, for depth values range from 0cm to 591cm and has a mean of

236.88cm.

In order to ensure that high-quality depth maps can be

calculated from raw measurements generated and minimize

the mean absolute error between depth value calculated

from ToF raw measurements and target depth value, the

Ldepth loss are introduced in Eq. 8.

Ldepth =
1

N

N
∑

i,j

∣

∣d
gt
i,j − d

pre
i,j

∣

∣ , (8)

d
pre
i,j =

c

2
·

1

2πfLED
· [π + atan2(

r
pre1
i,j − r

pre1
i,j

r
pre2
i,j − r

pre0
i,j

)], (9)

where fLED=6MHz, c=299792458 m/s. In this case, d
pre
i,j

does not represent depth value of the network output and its

meaning has been changed to depth value calculated from

ToF raw measurements produced by network according to

Eq. 9. Thus, in order to applying this new ToF Loss to our

network, we have to change the output of the network from

depth maps to raw measurements and the output of last layer

to four channels.

Thus, the ToF Loss consists of weighted Lraw and

Ldepth,
Ltof = αLdepth + βLraw, (10)

Experiments show that we can achieve better performance

by adopting ToF Loss than just with the supervision of depth

map.

Training details. Our networks are implemented in Py-

torch. During training, inputs of the network are the ToF

raw measurements captured under short exposure and the

ground truth is the corresponding depth map captured under

regular or long exposure. We randomly crop out 128×128

images on the original 320×240 images for data augmen-

tation. This strategy effectively improves the robustness

of the model. We train our network using the Adam op-

timizer [19] with an initial learning rate of 0.0002 for the

first 200 epochs, before linearly decaying it to 0 over an-

other 1800 epochs. In additon, our method can achieve best

peformance with α = 1 and β = 0.1, and more details will be

shown in supplementary materials. Experiments show that

our network can process single-frame image on the GPU of

chip on high-end mobile phones at a speed of 20ms. Be-

sides, the NPU of Qualcomm with higher computing power

can also support all the layers of our network, such that our

algorithm can meet the requirements of frame rate in appli-

cation.

4. Dataset

To enable the learning, we collect a comprehensive

dataset under a variety of scenes and photographic condi-

tions by a specialized ToF camera with raw data access.

Due to the limitations of hardware devices, it is difficult to

change the intensity of received signals by directly chang-

ing the physical size of the pixels on the ToF sensor or the

power of the infrared LED illumination of the development

kit. However, we can modify the intensity of received sig-

nal by changing the exposure time of the ToF camera, since

the exposure time is directly proportional to the intensity of

received signal.

We use EPC660 ToF camera from ESPROS to collect a

dataset of multiple pairs of short-exposure and correspond-

ing long-exposure depth measurements for training the pro-

posed architecture. ToF raw measurements, amplitude im-

age and depth map at 320×240 resolution are collected for

each scene with an exposure time. We captured 5000 groups

of measurements with 200us and 400us exposure time re-

spectively and 5000 groups of corresponding long-exposure

images from a variety of scenes with varying materials.

During the experiments, we use 4500 groups for training

and 500 groups for testing.

Diverse indoor scenes are collected in the dataset, in-

cluding office room, restaurant, bedroom and laboratory.

We adopt the ideal sinusoidal modulation functions to avoid

the wiggling effect. The images are generally captured at

night in rooms without infrared monitoring to avoid the in-

fluence of solar radiation and infrared light emitted by some

particular machines. Note that a variety of hard cases such

as distant objects, fine structures, irregular shapes and var-
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200us 200us 200us 400us 400us 400us

amplitude traditional pipeline traditional pipeline ours traditional pipeline traditional pipeline ours ground truth

(with mask) (with mask)

Figure 4. Experiment results. In order to verify the effectiveness of our proposed method, we validated our method on our test set for

exposure times of 200us and 400us respectively. The results show that our method is able to robustly process ToF camera raw with the

exposure time of one order of magnitude shorter than that of conventional ToF cameras.

ious materials including fabric, metals with low reflectivity

and dark object with high absorptivity exist in our scenes.

We mount the ToF camera on a sturdy tripod to avoid

camera shaking and other vibration when capturing. Due to

continuous modulation, 6MHz was selected as modulation

frequency for measuring depth in our scenes with range of

0-6 meters to prevent roll-over being observed. Then expo-

sure time is adjusted to obtain high-quality raw data. Af-

ter long-exposure ToF measurements captured, we decrease

the exposure time to 200 us and 400 us respectively via soft-

ware on computers to collect data without touching the cam-

eras.

A mask to evaluate the quality of ToF measurements will

be introduced into our dataset. Actually, the quality and va-

lidity of the received signal exists in raw data collected by

ToF cameras. The signal amplitude as well as the ratio of

ambient-light EBW to the value of modulated light EToF

(AMR) indicates the quality and validity of received sig-

nal. We combine these two features of received signals in

a certain proportion to generate a quantitative criteria for

evaluating the quality of each pixel in measurements. A

threshold for criteria can be defined to produce a mask for

each pixel. This mask can be adopted in network training

and depth map generation. For instance, unconfident pixels

in the labels can be ignored during the computation of error

gradients in training.

Fig. 3 shows quantitative analysis of depth-range distri-

bution of ToF measurements in our dataset. The depth range

is reasonable for indoor scenes of our dataset, for depth val-

ues range from 0cm to 591cm and has a mean of 236.88cm.

There are some regions with no depth value or much noise

when short-exposure, due to few reflected photons detected.

The ToF measurements is sufficient to serve as ground truth,

though some noise still exists.

5. Experiments and Results

5.1. Quantitatively results

We first quantify depth error with the mean absolute er-

ror (MAE) and the structural similarity (SSIM) [36] of pre-

dicted depth map compared to the ground truth. At the same

time, we will quantitatively analyze the variation of the er-

ror of our method at different detection distances. Then we

will discuss the impact of our approach on the power con-

sumption of ToF cameras. Finally, we also compare the

denoise effect with traditonal denoising method.

200us 400us

MAE SSIM MAE SSIM

Traditional

pipeline
56.41 0.2216 32.53 0.5180

BM3D 44.06 0.4658 30.12 0.7475

Ours 10.13 0.9156 7.94 0.9342

Table 2. This table reports the mean absolute error (MAE)(cm)

and the structural similarity (SSIM)(%) of 200us exposure time

and 400us exposure time. Traditional method can recover depth

information only in the local position under the low exposure set-

ting, so the overall error is very large.

Effect of exposure time. Our dataset contains raw data

acquired under 200us and 400us exposure time and their

corresponding depth maps collected under regular exposure
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200us 200us 200us

amplitude traditional pipeline difference map BM3D difference map ours difference map ground truth

Figure 5. The performance of BM3D is compared to that of our method and our results are better in terms of details and precision in

the depth map. We also provide a difference map that visually compares the difference between two processed results and ground truth

respectively. Blue color indicates a small error in the difference map.

time. We have trained two models on the ToF raw mea-

surements under 200us and 400us exposure respectively,

and tested the accuracy of the two models with the corre-

sponding test set. Then we calculate the mean absolute error

(MAE) and the structural similarity (SSIM) [36] and com-

pare the results of the traditional ToF camera pipeline with

that of our proposed method on the test set. Note that the

result is calculated over the whole test database in which

the object distance varies between 0 to 591cm as indicated

in the previous section.

As shown in Tab. 2, our results meet an overall 7.94cm

depth error with raw captured under 400us exposure time

and 10.13cm with raw captured under 200us exposure time.

Although the accuracy of depth map produced by our

method decreases with the reduction of exposure time, the

experimental results of the two models both greatly exceed

that of traditional pipeline method.

Effect of power consumption. It is necessary to analyze

the power trade-offs of running a deep network vs. brighter

illumination. We refer to the datasheet of the ToF cam-

era EPC660 to learn that the power of eight Infrared LED

- SFH4715s is 27200mw [2], thus reducing the exposure

time by 20 times lowers the power to five percent of origi-

nal power, which is about 1360mw. In addition, a mature AI

chip Movidius has a power of less than 500mw [1]. There-

fore, the total power consumption of chip and short expo-

sure settings is less than 1860 mW, much smaller than that

of long exposure settings, 272000 mw.

Comparison to denoising processing. In order to improve

the accuracy of the depth map, a natural idea is to pro-

cess the depth map with the existing denoising algorithm.

The denoising performance of the BM3D algorithm out-

performs most recent denoising models in natural images.

Thus, we use the BM3D algorithm to denoise the depth

map under short exposure. After that, we compare the re-

sults processed by BM3D with the depth map that we re-

covered from the corresponding raw data. As shown in

Fig. 5, the depth map processed by BM3D loses more de-

tails and leaves perceptually significant noise compared to

our results. Our results are also significantly better than that

of the BM3D processing on difference map. As shown in

Tab. 2, our results have better performance on both SSIM

and MAE indicators, compared with BM3D.

5.2. Qualitative results on our dataset

Then, we present the results of our method and the tradi-

tional ToF camera imaging pipeline in extreme cases on our

test dataset. In this section, we verify that our proposed end-

to-end solution can still reconstruct accurate depth value

in extreme case. Moreover, compared with the traditional

method, if the exposure time is set to regular, our method

is more robust to scenes with objects of high absorptivity

or regions in distance. In addition, we also verify that our

network is able to generate excellent results with ToF raw

inputs collected under short exposure in the presence of in-

frared background light.

Qualitative results with different exposure time. We have

shown that the amplitude value is an important indicator for

evaluating the raw data quality of the ToF camera. Con-

sidering that the effect of the power level of the ToF cam-

era active illumination system on the amplitude value in the

amplitude map is equivalent to the effect of the length of

exposure time, we simulate the power level of active illumi-

nation by controlling the length of the exposure time. In or-

der to verify the effectiveness of our proposed method, we

used the ToF raw measurements acquired under exposure

time of 200us and 400us as the input of the network to pre-

dict the corresponding depth map. As shown in Fig. 4, our

results have better performance, compared with the depth

map generated by the traditional ToF pipeline. Experiments

show that our method is able to robustly process ToF cam-

era raw with the exposure time of one order of magnitude

shorter than that used in conventional ToF cameras. How-

ever, though our method can still generate depth informa-

tion when the confidence of reflected signal is too low, the

accuracy will be influenced and this should be taken into

account in application.
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(a) Amplitude (b) ToF depth map with (c) Our results from

suitable exposure time ToF raw of (b)

Figure 6. Traditional pipeline fails to recover the depth value of

the regions marked out of the first group, since the black chair in

the scene strongly absorbed signal emitted by ToF camera. For the

regions marked out of the second group, too large distance results

in few photons received by the ToF sensor. In contrast, our method

is able to obtain high-quality depth maps for these two regions.

Robustness under regular exposure. Since there may ex-

ist some objects with low reflectivity or too large distance

in the scene, choosing the appropriate exposure time or a

strong power active illumination does not guarantee that the

depth map of the entire scene is of high quality. However,

our proposed method has better performance in the depth

estimation of these objects, compared with traditional ToF

process, due to the ability of translating the weak and noisy

ToF camera raw to depth map directly. As shown in Fig. 6,

we deliberately collected some scenes with dark objects and

scenes with large distances(such as black stools and com-

puter screens, glass doors with specular reflections, as well

as objects with particularly large depth differences in the

scene) to prove the robustness of our method in this case.

Robustness in the presence of ambient light. To verify

the robustness of this method in the presence of infrared

background light, we collected 500 groups of ToF mea-

infrared device 200us 200us

sunlight

scene traditional pipeline ours ground truth

Figure 7. To verify the robustness of this method in the presence

of infrared background light, we selected some scenes containing

a monitoring device with infrared illumination and sunlight. The

results show that even with some infrared signal interference, our

method can still recover high-quality depth maps robustly.

surements in an environment containing sunlight or infrared

equipment to fine-tune our network. We discovered that if

the camera uses the long exposure settings (e.g. 4000us) for

ground truth collection, the influence of other infrared light

is very small. This is the case for both outdoor and indoor

scenes with sunlight. As shown in Fig. 7, by using such la-

bels in training, the network is able to generate high-quality

depth map with ToF raw inputs captured under short expo-

sure settings.

6. Discussion and Conclusion

6.1. Implication to ToF camera design

Using neural network to robustly process ToF camera

raw with very short exposure time (raw data with low SNR)

is a novel alternative to optimize the power efficiency of

the whole ToF system. Despite the involvement of neu-

ral network computation, the inception of many recent low

power neural network hardware makes it a practical solu-

tion. Thus, our method can be very power efficent with high

speed of neural network compution and low exposure set-

tings for hardware. In addition to lowering the power con-

sumption of ToF system, the results of this paper also pro-

vide a few extra design choices. First, higher depth frame

rate may be achievable because the exposure time can be

significantly reduced. Second, with the proposed method

much smaller pixel size may be considered despite the SNR

of the sensor raw could be low. Thus, higher depth resolu-

tion can thus be obtained with a reasonable power consump-

tion. Such possibilities pave the way for new innovation in

the ToF camera design.

6.2. Concluding remarks

In this paper, we discover that it is possible to devise a

deep learning model to recover high quality depth informa-

tion from very weak and noisy ToF raw measurements using

deep learning. To realize the learning process, we collected

a comprehensive dataset using a real-world ToF camera. We

show in the experiments that our proposed method is able

to robustly process ToF camera raw with the exposure time

of one order of magnitude shorter than that used in conven-

tional ToF cameras. While this neural network approach

forms a key building block of a very power efficient ToF

camera, it also shed new light on new innovations of the

ToF camera design.

For future research, we will continue to improve the

quality of our datasets. Specifically, we would adopt HDR

imaging to improve the quality and precision of the ground

truth depth map. Another opportunity for future work is to

explicitly model the correction of the MPI error in an end-

to-end trainable model to further enhance the accuracy of

the results.
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