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Abstract

In recent years, Convolutional Neural Networks (CNNs)

have shown superior capability in visual learning tasks.

While accuracy-wise CNNs provide unprecedented perfor-

mance, they are also known to be computationally inten-

sive and energy demanding for modern computer systems.

In this paper, we propose Virtual Pooling (ViP), a model-

level approach to improve speed and energy consumption of

CNN-based image classification and object detection tasks,

with a provable error bound. We show the efficacy of ViP

through experiments on four CNN models, three represen-

tative datasets, both desktop and mobile platforms, and two

visual learning tasks, i.e., image classification and object

detection. For example, ViP delivers 2.1x speedup with less

than 1.5% accuracy degradation in ImageNet classification

on VGG16, and 1.8x speedup with 0.025 mAP degrada-

tion in PASCAL VOC object detection with Faster-RCNN.

ViP also reduces mobile GPU and CPU energy consump-

tion by up to 55% and 70%, respectively. As a comple-

mentary method to existing acceleration approaches, ViP

achieves 1.9x speedup on ThiNet leading to a combined

speedup of 5.23x on VGG16. Furthermore, ViP provides

a knob for machine learning practitioners to generate a

set of CNN models with varying trade-offs between system

speed/energy consumption and accuracy to better accom-

modate the requirements of their tasks. Code is available at

https://github.com/cmu-enyac/VirtualPooling.

1. Introduction

Deep Convolutional Neural Networks (CNNs) have

gained tremendous traction in recent years thanks to their

outstanding performance in visual learning tasks, e.g., im-

age classification and object detection [28, 2, 26]. How-

ever, CNNs are often considered very computationally in-

tensive and energy demanding [20, 13, 1]. With the preva-

Figure 1. Illustration of virtual pooling [22]. By using a larger

stride, we save computation in conv layers and, to recover the out-

put size, we use linear interpolation which is fast to compute.

lence of mobile devices, being able to run CNN-based vi-

sual tasks efficiently, in terms of both speed and energy, be-

comes a critical enabling factor of various important appli-

cations, e.g., augmented reality, self-driving cars, Internet-

of-Things, etc, which all heavily rely on fast and low en-

ergy CNN computation. To alleviate the problem, engineers

and scientists proposed various solutions, including sparsity

regularization, connection pruning, model quantization, low

rank approximation, etc. In this work, we propose an com-

plementary approach, called Virtual Pooling (ViP), which

takes advantage of pixel locality and redundancy to reduce

the computation cost originating from the most computa-

tionally expensive part of CNN: convolution layers (conv

layers). As illustrated in Fig.1, ViP reduces computation

cost by computing convolution with a larger (2x) stride size.

While naturally this operation quickly shrinks the output

feature map, and thus can only be done a few times before

the image vanishes, we overcome this problem by recov-

ering the feature map via linear interpolation with prov-

able error bound. The succeeding layer hence observes the

same size of input with or without ViP, and no architec-

tural change is needed. Our experimental results on differ-

ent CNN models and tasks show that we can achieve 2.1x

speedup with 1.5% accuracy degradation in image classifi-

cation, compared to the 1.9x speedup with 2.5% drop from
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the prior work [9], and 1.8x speedup with 0.025 mAP drop

in object detection.

2. Related Work and Contributions

There are several prior works targeting CNN accelera-

tion [13, 30, 9, 7]. Model compression [13, 30, 15, 16] is

a popular approach of reducing CNN memory requirement

and runtime via weight pruning. [13] proposed to prune

connections and finetune the network progressively which

results in high compression rate. However, due to the non-

structured sparsity generated by this method, it also needs

specialized hardware to realize high speedup [11]. In light

of this, [30] used group lasso to generate structured sparsity

and speed up CNNs on general-purpose processors.

CNN model binarization or quantization methods [3, 4,

7, 31, 32, 33] quantize CNN weights and/or activations into

low-precision fewer-bit representations. Thereafter, they

are able to both reduce memory cost and speedup com-

putation by using efficient hardware units. [3] uses bi-

nary weights rather than continuous-valued weights in CNN

models, which is not only able to save memory space, but

also greatly speedup convolution via replacing multiply-

accumulate operations by simple accumulations. Ding et

al., [7] reduces the number of bits of CNN weights through

its binary representation, which can be sped up by us-

ing shift-add operation rather than expensive multipliers on

hardware. [4, 25] further quantize the CNN intermediate ac-

tivations, resulting in both binary weight and input, which

can be further accelerated via efficient XNOR operation.

Low rank approximation methods [17, 20, 6] speed up

convolution computation by exploiting the redundancies of

the convolutional kernel using low-rank tensor decomposi-

tions. The original conv layer is then replaced by a sequence

of conv layers with low-rank filters, which have a much

lower total computational cost. [17] exploit cross-channel

or filter redundancy to construct rank-one basis of filters in

the spatial domain. [20] use non-linear least squares to com-

pute a low-rank CP-decomposition of the filters into fewer

rank-one tensors and then finetune the entire network.

The closest work to ours is PerforatedCNNs [9] which,

inspired by the idea of loop perforation [27], reduces the

computation cost in conv layers by exploiting the spatial

redundancy. Nevertheless, PerforatedCNNs use a dataset

dependent method to generate an irregular output mask that

determines which neuron should be computed exactly. In

addition, PerforatedCNNs need a mask at runtime (hence

introducing overhead) to determine the value for interpo-

lation. In contrast, ViP only depends on the intermediate

activations of the CNN layer without extra parameters. Fi-

nally, PerforatedCNNs also consider the use of a pooling-

structured mask, but that can only be applied to the layers

immediately preceding a pooling layer; also, the associated

interpolation method is nearest neighbor. In contrast, our

method can be applied to any conv layer in the network.

Furthermore, we show that the ViP method achieves higher

speedup with lower accuracy degradation. To the best of our

knowledge, our work makes the following contributions:

1. We are the first to propose and implement the Virtual

Pooling (ViP) method with provable error bound. ViP

is independent of the dataset and can be applied to ac-

celerate any conv layer.

2. Plug-and-play: ViP is a self-contained custom layer.

Without modifying the deep learning framework, it

works simply by doubling the stride of the conv layer

and inserting the ViP layer after it.

3. ViP can be combined with existing model acceleration

methods, e.g., model compression, quantization, etc.,

to squeeze more performance out of the CNN models.

4. More than providing a single CNN configuration, ViP

generates a set of models with varying speedup/energy

and accuracy trade-offs from which a machine learning

practitioner can select for the task at hand.

5. Most CNN acceleration techniques consider only the

image classification task, while they lack evidence on

how their performance may translate to the object de-

tection task, which has its own unique properties. In

this work, we conduct experiments to show that ViP

also works well under the state-of-the-art faster-rcnn

object detection framework.

The remainder of this paper is organized as follows. Section

3 introduces the details of the virtual pooling method. In

Section 4, we conduct extensive experiments with different

CNN models on both desktop and mobile platforms, and we

apply ViP to speed up both image classification and object

detection tasks. Finally, we conclude our work in Section 5.

3. Methodology

Virtual Pooling (ViP) relies on the idea of reducing CNN

computation cost by taking advantage of pixel spatial local-

ity and redundancy. CNNs are often comprised of multiple

conv layers interleaved with pooling layers. Pooling layers

are considered essential for reducing spatial resolution such

that computation cost is reduced and robustness to small

distortions in images is enhanced. However, the widely-

used stride-two non-overlapping pooling method [28, 14]

reduces image size by half in each of the two dimensions,

and thus quickly shrinks the image. As a result, the max-

imum number of pooling operations that can be done in a

CNN is limited by the size of the input image. For example,

an input image of size 224 ∗ 224 is shrunk to size 7 ∗ 7 after

only five pooling layers in VGG16, while the current state-

of-the-art CNNs usually have several tens to hundreds of

layers [28, 14]. There is an opportunity to reduce computa-

tion further if we can bridge the gap between the number of
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pooling-like operations we can do and the number of layers

in the network.

3.1. ViP Layer

To this end, we propose ViP, a method that can maintain

the output size of each layer, while using a larger-stride con-

volution. Consequently, we can have as many ViP layers as

possible while not encountering the problem of diminishing

image size in the real pooling operation. While it is possible

to increase the stride of an early layer and remove a later

pooling layer to achieve a similar effect, our experiments

show that ViP is consistently better than pooling removal

with 1.42% higher accuracy on average. Furthermore, this

method can only reduce computation in consecutive conv

layers prior to pooling, while ViP works in any order (as we

will show later, accuracy sensitivity is non-monotonic with

the network layer) which gives a better accuracy-speedup

curve. As shown in Fig.1, ViP saves computation by per-

forming a larger stride convolution in the layer before ViP,

and then recovers the output size by linear interpolation

which is very computationally efficient. For example, we

can double the stride of all conv layers in VGG16 to reduce

computation, while the succeeding layer observes the input

of exactly the same size after linear interpolation. The theo-

retical speedup of this approach is 4x as we halve the num-

ber of convolutions in two dimensions. Though transposed

convolution (Deconv) [23] is also an upsampling method,

to speedup the network, its overhead must be sufficiently

small so it does not offset the reduced latency. In the sup-

plementary material we show that ViP is very efficient and

its computation is only 0.016% of Deconv.

To be more specific, let’s use I to denote the input to

conv layer and O to denote the output. Without loss of

generality, although I and O are often four-dimensional,

we omit the first dimension of batch index because ViP ap-

plies to all images in the batch independently, and there-

fore, Ic,h,w and Oc,h,w both have three dimensions: chan-

nel c ∈ [1, C], height h ∈ [1, H], and width w ∈ [1,W ].
We consider convolution filters, Wc′,c,m,n, with the same

height and width with odd values M as are commonly used

in CNNs [28, 14], and with c′ representing the index of the

filter. For the purpose of simplicity, we further assume H

and W are even numbers, e.g., input image size of Ima-

geNet is usually 224 ∗ 224, and in the case of odd numbers,

we have special cases only on the boundaries of the image

that are easy to deal with. Furthermore, we use OOrig
c′,h,w

to represent the output of the original stride-s convolution

without ViP, and OV iP
c′,h,w to denote the output of using ViP

method, i.e., the output of stride-2s convolution plus linear

interpolation. A smaller ||OOrig
c′,h,w − OV iP

c′,h,w||2 indicates a

smaller perturbation of the truth output and hence, less ac-

curacy degradation for the ViP method. According to the

definition of convolution:

O
Orig
c′,h,w =

C
∑

c=1

⌊M

2
⌋

∑

m,n=−⌊M

2
⌋

Ic,s·h−m,s·w−n ∗Wc′,c,m,n (1)

If we double the stride, we have an output with reduced size:

O
Red
c′,h,w =

C
∑

c=1

⌊M

2
⌋

∑

m,n=−⌊M

2
⌋

Ic,2s·h−m,2s·w−n ∗Wc′,c,m,n (2)

For ease of explanation, we use an auxiliary function

OZero
c′,h,w which is zero-spaced to enlarge ORed

c′,h,w to the same

size of OOrig
c′,h,w in the following way:

OZero
c′,h,w =

{

ORed
c′,h/2,w/2 h, w are even numbers

0 Otherwise
(3)

We approximate the output with the ViP method OV iP
c′,h,w by

using the mean of its immediate non-expanding-zero neigh-

bors (including itself, if computed exactly) in OZero
c′,h,w:

OV iP
c′,h,w =

∑1
m,n=−1 OZero

c′,h+m,w+n
∑1

m,n=−1 1(OZero
c′,h+m,w+n 6= 0)

(4)

This is actually a convolution with 3 ∗ 3 filters, but with

variable weight values depending on the number of non-

expanding-zero neighbors. We can simplify the above com-

putation by considering four cases similar to Eq.3:

O
V iP
c′,h,w =























O
Red
c′,h/2,w/2 h even, w even

1

2
(ORed

c′,⌊h/2⌋,w/2 +O
Red
c′,⌈h/2⌉,w/2) h odd, w even

1

2
(ORed

c′,h/2,⌊w/2⌋ +O
Red
c′,h/2,⌈w/2⌉) h even, w odd

1

4
(
∑

h=⌊h/2⌋ or ⌈h/2⌉
w=⌊w/2⌋ or ⌈w/2⌉

O
Red
c′,h,w) h odd, w odd

(5)

The above equations are embarrassingly parallel and hence

fast to compute on GPU. We implemented our custom ViP

layer based on Eq.5.

We can further provide an error bound, considering the

case where we apply ViP to layer ls.

Proposition 1. Assume the output of layer ls (hence input to

layer ls+1), O(ls), is L-Lipschitz continuous [21] on height

and width dimensions (h,w), i.e.,

|O(ls)
c,h1,w1

− O(ls)
c,h2,w2

| ≤ L||(h1, w1) − (h2, w2)||2, for

∀h1, h2 ∈ [1, H], w1, w2 ∈ [1,W ].
Assume that ∀c′, l, the c′-th convolutional filter of the l-th

layer, denoted as W(l)
c′ , has a bounded l2-norm: ||W(l)

c′ ||2 =
√

mean2(W(l)
c′ ) + std2(W(l)

c′ ) ≤ B(l). Then, the l2-norm

of the output error is bounded by:

||O(le)V iP −O(le)Orig||2

≤
√
2L

√

C ′(le)H(le)W (le)

le
∏

l=ls+1

√

C(l)M (l)B(l),
(6)

where C(l) and M (l) are the number of input channels and

kernel size of the l-th layer, respectively, and C ′(le) is the

number of output channels of the le-th layer.
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Algorithm 1 Virtual Pooling (ViP)

1: Input: model Net

2: Output: ViP model V iPNET , Accuracy V iPA, Runtime

V iPR

3: // Sensitivity analysis

4: i = 0
5: V iPLayers =[]

6: for c in Net.ConvLayers do

7: Ac = evaluate(Net.V iP (c))
8: V iPLayers.append((c, Ac))
9: end for

10: V iPLayers.sorted(key = Ac,
′ descending′)

11: //Progressively interpolate and finetune

12: V iPA = [], V iPR = []

13: for j = 0 : len(V iPLayers) do

14: Net = Finetune(Net.V iP (0 : j))
15: V iPA.append(evaluate(Net))
16: V iPR.append(time(Net))
17: end for

18: Return V iPNET = Net, V iPA, V iPR

Proof. Deferred to Appendix.

If ∀l > ls,
√
C(l)M (l)B(l) > 1, the upper-bound will

keep increasing when the output goes through multiple lay-

ers. This indicates that earlier ViP layers with more suc-

ceeding layers may have a bigger impact on the final output

of the network and hence higher accuracy drop without fine-

tuning. This actually reflects the intuition that perturbations

from early layers will lead to higher error on the output as

they propagate through the network. We will see this effect

in both VGG16 (Fig.2) and ResNet-50 (Fig.5).

3.2. ViP Algorithm

While speeding up CNNs can be achieved with ViP, it

may also lead to some accuracy drop since interpolation is

a method of approximation. Therefore, we propose the fol-

lowing procedure, as shown in Algorithm 1, as part of the

ViP method to reduce the accuracy degradation while max-

imizing the speedup we can achieve. We first do sensitivity

analysis to detect which layers are less sensitive, in terms

of the accuracy of the network, to ViP (Line 6-9). For each

conv layer c, we insert ViP after it, and evaluate the network

accuracy Ac without finetuning. The sensitivity is measured

as the accuracy drop with respect to the original accuracy.

Lower Ac leading to a larger accuracy drop means that the

layer is more sensitive to ViP, so we sort Ac in descending

order as shown in Line 10. We insert ViP layer after ReLU

which follows the conv layer, as both our experiments and

prior work [9] show that inserting after ReLU gives better

results. Our intuition is that by applying ViP before ReLU,

we obtain less activations than the original without ViP and

the network becomes less likely to identify smaller activa-

tion regions. Therefore, throughout the paper, whenever we

mention inserting ViP after conv layer, we mean inserting it

after the ReLU layer that follows immediately.

Based on the sorted sensitivity V iPLayers, we in-

sert ViP layers progressively, and finetune the network to

achieve a set of models with different speedup-accuracy

trade-offs (Line 13-17). For example, we add ViP af-

ter V iPLayers[0], finetune the model and obtain the first

model, and then we add ViP after both V iPLayers[0] and

V iPLayers[1], finetune the model and obtain the second

model, and so on so forth. In this fashion, we will gener-

ate len(V iPLayers) models (len(V iPLayers) is the to-

tal number of conv layers that we apply ViP to), all with

different accuracy and runtime. However, repetitively fine-

tuning the model len(V iPLayers) times can be quite time-

consuming, especially for large CNN models. To alleviate

this problem, we conduct grouped finetuning, in which we

insert several ViP layers at a time (still based on sensitivity

values). This results in fewer rounds, and hence less time, of

finetuning, and both per-layer and grouped finetuning meth-

ods can generate different accuracy-speedup trade-offs for

the baseline model. An example of applying ViP to appli-

cations, such as a face detector in a mobile camera system

is given in the supplementary material.

4. Experimental Results

In this section, we first describe the hardware and soft-

ware setup of our experiments, and then present results to

show the effectiveness of ViP method under:

1. Four CNN models: VGG16 [28], ResNet-50 [14], All-

CNN [29], Faster-RCNN with VGG16 backbone [26].

2. Three datasets: ImageNet [5], CIFAR-10 [19],

PASCAL-VOC [8].

3. Two hardware platforms: Desktop and Mobile.

4. Two visual learning tasks: Image classification and ob-

ject detection.

4.1. Experimental Setup

Throughout the experiments, we use Caffe [18] as our

deep learning platform since its correctness has been val-

idated by numerous research works. For fast training and

inference, we implement a self-contained custom ViP layer

in CUDA and integrate it into Caffe. The ViP layer in-

serts interpolated points between both columns and rows.

The row and column size is doubled after interpolation and

the resultant image size is enlarged four times. Interpola-

tion is performed independently on points. This process is

therefore embarrassingly parallel and can be easily accel-

erated by GPU. Each thread launched by the CUDA ker-

nel processes one interpolated element. The thread block

dimension order from fastest- to slowest-changing are col-

umn, row, channel, and batch to match the data layout in

Caffe. Based on their position in the interpolated image, the
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Table 1. System Configurations for desktop and mobile platforms.

DESKTOP

CPU/MAIN MEMORY INTEL CORE-I7 / 32GB
GPU/MEMORY NVIDIA TITAN X / 12GB
DL PLATFORM CAFFE ON UBUNTU 14

MOBILE (NVIDIA JETSON TX1)

CPU/MAIN MEMORY QUAD ARM A57 / 4GB
GPU NVIDIA MAXWELL ARCH

DL PLATFORM CAFFE ON UBUNTU 14

points to be interpolated are classified into four types and

estimated using Eq.5.

CNNs are now widely deployed and used in both cloud

services and mobile phones, therefore we experiment with

both a high-end desktop machine and a mobile platform

with low power and energy profile. The detailed config-

urations are shown in Table 1. The desktop computer is

equipped with high-end Intel Core-i7 CPU and Nvidia Titan

X GPU, while the mobile platform is the Jetson TX1 com-

prised of efficient Quad-core ARM A57 CPU and Nvidia

GPU with Maxwell architecture and 256 CUDA cores.

4.2. Image Classification

We first apply the ViP method to speedup and reduce the

energy consumption of the image classification task.

4.2.1 Accuracy and Speed

We experiment with state-of-the-art VGG16 and ResNet-50

models using the ImageNet dataset. The pre-trained models

have single-crop top-5 accuracy of 88.5% and 91.2%, re-

spectively. We run each of the models 50 times and report

the Noise-to-Signal Ratio (NSR) defined as the standard de-

viation of the measurement divided by mean. NSR mea-

sures the relative variance of the experiments and demon-

strates the statistical significance of our results. We first

apply the ViP method on VGG16 as described in Algorithm

1 in Section 3. We conduct sensitivity analysis to deter-

mine the per-layer sensitivity as shown in Fig.2. The x-axis

labels provide the names of the layers being interpolated

and we explicitly append “pool” in the name of the layers

that are immediately preceding a pooling layer. As we can

see, (1) after ViP insertion, different accuracy degradations

without finetuning are obtained (shown on y-axis in Fig.2),

(2) all layers immediately preceding a pooling layer exhibit

the least sensitivity to ViP operation, which was also discov-

ered by [9]. The reason for this is that, although ViP loses

information due to interpolation, many of those interpolated

values are discarded by the pooling layer, and as a result,

ViP has less impact on the final output of the network. And

(3) besides the pooling layers, we can see a general trend of

decreasing sensitivity when we insert ViP in later-stage lay-

ers. This follows the intuition that early perturbations lead

to high error on the output when propagating through mul-

tiple layers, which is mathematically shown in Eq.6. The

next step is to do model finetuning with progressively in-

serted ViP layers. We use grouped finetuning in the case

of VGG16 to save training time. Specifically, we have four

rounds of finetuning according to the sensitivity of the lay-

ers: (1) in round one, we insert ViP after conv layers 13, 12,

10, 7, 2 and 4; (2) in round two, we further insert ViP after

conv layers 11, 9 and 8; (3) in round three, we further in-

sert ViP after conv layer 1; (4) in the final round, we insert

ViP layers after the remaining conv layers. Each round is

initialized with the trained model from the previous round,

because this (1) gives slightly higher accuracy than using

the baseline model and (2) saves training time.

Furthermore, we plot the training curve to illustrate how

test accuracy recovers during grouped finetuning across

four rounds, as shown in Fig.3. The zero line indicates the

accuracy of the baseline network, and the y-axis is the ac-

curacy improvement (degradation if negative) during fine-

tuning. For fair comparison, we use top-5 accuracy for Im-

ageNet throughout the paper as also reported in [9]. The

x-axis is the number of training iterations. We can see that

after the initial insertion of ViP layers, there is a huge drop

in accuracy. However, this gradually recovers during the

finetuning step and even surpasses the original accuracy in

round one. We conjecture that this is similar to the effect

observed in [12], where linear interpolation serves as a type

of regularization that improves network generalization.

After four rounds of grouped finetuning, we obtain four

models of different speedup-accuracy trade-offs. A posi-

tive value for accuracy change means improvement, while a

negative value means accuracy drop. Speedup is measured

as the ratio of the inference time of the original model over

the inference time of the model with ViP. We finetune the

model with ViP on the desktop machine, because (1) stor-

age of the mobile platform is insufficient for holding the

entire ImageNet dataset, (2) training on desktop machine is

significantly faster and the trained model can be evaluated

on both desktop and mobile platforms for runtime analy-

sis, and (3) model accuracy is platform-independent, which

means once a model is obtained, its test accuracy remains

the same on any platform. Accordingly, we can report ac-

curacy and speedup on both desktop and mobile platforms,

while we only train the model on the desktop machine once.

We plot the results in Fig.4 along with the result of

the previous state-of-the-art PerforatedCNNs [9]. Our

method achieves 2.1x speedup with less than 1.5% accuracy

drop, while PerforatedCNNs can theoretically achieve 1.9x

speedup with 2.5% accuracy degradation. The measured

speedup of PerforatedCNNs is 2x when considering the re-

duced memory cost through implicit interpolation in Matlab

[9]. In the same way, ViP can also reduce memory transfer

cost between layers thanks to the smaller-sized intermediate

outputs by using larger-stride convolution. Unfortunately,
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Figure 2. ViP sensitivity analysis of VGG16 model under ImageNet dataset. For each of the conv layers, we insert ViP immediately after

it, and evaluate the network accuracy without finetuning. The sensitivity is measured as the accuracy degradation.

Figure 3. Four rounds of grouped finetuning of VGG16 network

using ImageNet dataset.

Figure 4. Speedup-Accuracy trade-off obtained by applying ViP

on VGG16 model with ImageNet dataset.

Caffe does not support implicit interpolation and hence no

memory saving of intermediate outputs as pointed out by

PerforatedCNNs [10]. For fair comparison, we eliminate

the effect of memory saving in both implementations and

use the theoretical upper-limit for PerforatedCNNs speedup

since they did not report speedup on Caffe. We expect

ViP method to achieve even higher speedup in implementa-

tions that support implicit interpolation which saves mem-

ory transfer cost. Comparing ViP and PerforatedCNNs on

desktop CPU, we can see that ViP (blue curve) is better than

PerforatedCNNs (orange line) in terms of Pareto optimality,

because models closer to upper-right corner deliver better

trade-off between low accuracy drop and high speedup. In

the case of mobile CPU, ViP is able to speed up the CNN by

3.16x with less than 1.5% accuracy drop. NSR of VGG16

latency on CPU and GPU is 0.6% and 0.1%, respectively,

which is negligible and shows that our speedup results are

reliable. Besides, what ViP can obtain is a set of mod-

els with different speedup-accuracy trade-offs rather than

a single configuration, CNN practitioners can pick any of

the models in Fig.4 that meets their need. Similarly, we

apply ViP on ResNet-50 under ImageNet dataset. Fig.5

shows the results on sensitivity analysis and again we see

the trend of decreasing sensitivity in later-stage layers. We

have in total 53 conv layers because there are 49 conv lay-

ers on the primary branch and four on the bypass branches.

Initially, we apply three rounds of grouped finetuning on

ResNet-50. However, the final round, consisting of layers

with the highest sensitivity, results in a steep accuracy drop,

from −0.7% to −3.94%, we decide to use per-layer fine-

tuning for the 12 layers in the last round to demonstrate the

fine-grained progressive change in both accuracy and speed.

Fig.6 shows the results. As expected, there is a clear trend

of increasing speedup with higher accuracy drop when we

insert more ViP layers. The speedup of mobile GPU and

desktop GPU almost overlaps, and they both achieve 1.53x

speedup with less than 4% accuracy degradation. Mean-

while, mobile CPU obtains 2.3x speedup at same level of

accuracy. NSR of Resnet-50 latency on CPU and GPU is

0.5% and 0.05%, respectively, which is again negligible and

shows that our speedup results are reliable.

Our results on the All-CNN network [29] show a 1.77x

speedup on the desktop GPU and up to 3.03x speedup on

the mobile CPU, while the top-1 accuracy drop is within

4%. Details are provided in the supplementary material.

4.2.2 Power and Energy

More and more mobile apps start to utilize CNNs to im-

prove their image classification and object detection func-
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Figure 5. ViP sensitivity analysis of ResNet-50 model under ImageNet dataset. For each of the conv layers, we insert ViP immediately

after it, and evaluate the network accuracy without finetuning. The sensitivity is measured as the accuracy degradation.

Figure 6. Speedup-Accuracy trade-off obtained by applying ViP

on ResNet-50 model with ImageNet dataset.

Figure 7. Power/Energy-Accuracy trade-off obtained by applying

ViP on VGG16 model with ImageNet dataset.

tions. Other than speed, power and energy are the most crit-

ical constraints on mobile platforms. Therefore, we further

conduct experiments to show how ViP improves the power

and energy profile on mobile platforms running CNN.

We first port both Caffe and our custom ViP layer to

Jetson TX1. We use the on-board sensor to measure the

power consumption of CNNs with and without ViP, and

obtain the energy consumption by multiplying power by

CNN latency. We test on all CNNs used previously, i.e.,

All-CNN, VGG16 and ResNet-50 (Detailed results on All-

Figure 8. Power/Energy-Accuracy trade-off obtained by applying

ViP on ResNet-50 model with ImageNet dataset.

CNN are included in the supplementary material). Each

test is run 50 times and we report the mean power/energy-

accuracy trade-off curves in Figures 7 and 8, respectively.

In each of the figures, we show four curves for power and

energy consumption of either running on mobile CPU or

mobile GPU. With ViP applied, both models show power

reduction on mobile GPU, with VGG16 saving up to 21%.

VGG16 and ResNet-50 achieve up to 55% and 38% mobile

GPU energy reduction, respectively. Furthermore, VGG16

achieves up to 70% CPU energy reduction while ResNet-

50 tops at around 60%. In terms of measurement variance,

NSR of ResNet-50 power/energy on mobile CPU and GPU

is 3.2% and 9.8%, respectively, while the NSR of VGG16

power/energy on mobile CPU and GPU is 2.9% and 12.1%

respectively. As the variance on CPU is negligible, and

also small enough on GPU, with high confidence, ViP saves

power and energy on both platforms.

4.2.3 ViP for Compressed CNNs

To demonstrate that ViP is complementary to other ac-

celeration approaches, we apply ViP to ThiNet [24], a

compressed VGG16 via state-of-the-art filter level pruning

method, and show greater speedup and energy saving can
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be achieved when applying both ViP and network compres-

sion. ThiNet is only 6% the size of the original VGG16

[24] and our measured latency on desktop GPU shows a

2.75x speedup over VGG16 with minor accuracy drop. We

apply ViP on top of ThiNet, and three rounds of finetuning

are carried out after the sensitivity analysis. Fig.9 shows the

results of speedup and accuracy drop on desktop GPU, rel-

ative to ThiNet, after each round of finetuning. We can see

that ViP achieves 30% speedup with 1.3% accuracy drop

and can reach up to 1.9x speedup on top of the already

heavily compressed ThiNet. By combining both ViP and

compression, we can drastically speedup CNN by a factor

of 5.23x. Fig.10 shows the normalized power and energy

consumption on both mobile CPU and GPU after applying

ViP on ThiNet. ViP further reduces the energy consump-

tion of ThiNet by up to 60% when running on mobile GPU.

These results demonstrate that ViP is indeed a complemen-

tary method to the existing acceleration approaches, and

when we apply both compression and ViP, we can achieve

greater speedup and energy saving.

Figure 9. Speedup-Accuracy trade-off obtained by applying ViP

on ThiNet (compressed VGG16) model with ImageNet dataset.

Figure 10. Power/Energy-Accuracy trade-off obtained by applying

ViP on ThiNet (compressed VGG16) with ImageNet dataset.

4.3. Object Detection

Much of the prior work on CNN acceleration only stud-

ies image classification [30, 7, 20], while object detection

is often a more practical and interesting application. Al-

though the two tasks share some common features, object

detection has its unique components and challenges, e.g.,

region proposal, bounding box regression, etc. Thus, with-

out experimental results, it is hardly convincing to infer that

methods excel on classification can also work well on de-

tection tasks. Accordingly, in this section, we further test

ViP on object detection and show that it works across both

important tasks.

Figure 11. Speedup-Accuracy trade-off obtained by applying ViP

on faster-rcnn with VGG16 backbone under PASCAL VOC 2007.

We use the Caffe implementation of the state-of-the-art

object detection framework faster-rcnn [26] with PASCAL

VOC 2007 dataset, and integrate it with our custom ViP

layer. The pre-trained faster-rcnn, with VGG16 as back-

bone, has an accuracy of 69.5% mAP. We conduct four

rounds of grouped finetuning after sensitivity analysis (de-

tailed in supplementary material), and as expected, with

more layers followed by ViP operation, we are able to

achieve higher speedup but with higher mAP degradation

as shown in Fig.11. In the end, we apply ViP to all conv

layers and achieve 1.8x speedup with 0.025 mAP drop.

5. Conclusion

In this work, we propose the Virtual Pooling (ViP)

method that combines downsampling, efficient upsampling

and sensitivity-based grouped finetuning, with a provable

bound for speeding up CNNs with low accuracy drop.

We validate our method extensively on four CNN models,

three representative datasets, both desktop and mobile

platforms, and on both image classification and object

detection tasks. ViP is able to speedup VGG16 by 2.1x

with less than 1.5% accuracy drop, and speedup faster-rcnn

by 1.8x with 0.025 mAP degradation. Combining ViP and

model compression leads to a 5.23x speedup on VGG16.

Furthermore, ViP generates a set of models with different

speedup-accuracy trade-offs. This provides CNN prac-

titioners a tool for finding the model best suiting their needs.
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