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Abstract

Zero-shot learning, the task of learning to recognize new

classes not seen during training, has received consider-

able attention in the case of 2D image classification. How-

ever despite the increasing ubiquity of 3D sensors, the cor-

responding 3D point cloud classification problem has not

been meaningfully explored and introduces new challenges.

This paper extends, for the first time, transductive Zero-

Shot Learning (ZSL) and Generalized Zero-Shot Learning

(GZSL) approaches to the domain of 3D point cloud clas-

sification. To this end, a novel triplet loss is developed that

takes advantage of unlabeled test data. While designed for

the task of 3D point cloud classification, the method is also

shown to be applicable to the more common use-case of 2D

image classification. An extensive set of experiments is car-

ried out, establishing state-of-the-art for ZSL and GZSL in

the 3D point cloud domain, as well as demonstrating the

applicability of the approach to the image domain.1

1. Introduction

Capturing 3D point cloud data from complex scenes has

been facilitated recently by inexpensive and accessible 3D

depth camera technology. This in turn has increased the in-

terest in, and need for, 3D object classification methods that

can operate on such data. However, much if not most of the

data collected will belong to classes for which a classifica-

tion system may not have been explicitly trained. In order

to recognize such previously “unseen” classes, it is neces-

sary to develop Zero-Shot Learning (ZSL) methods in the

domain of 3D point cloud classification. While such meth-

ods are typically trained on a set of so-called “seen” classes,

they are capable of classifying certain “unseen” classes as

well. Knowledge about unseen classes is introduced to the

network via semantic feature vectors that can be derived

from networks pre-trained on image attributes or on a very

1Code and evaluation protocols available at: https://github.

com/ali-chr/Transductive_ZSL_3D_Point_Cloud
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Figure 1. The challenge of zero-shot learning for 3D point cloud

data. (a) and (b) are pre-trained 2D image and 3D point cloud

feature spaces respectively. (c) The average intra-class distance

between an unseen feature vector and a semantic feature vector of

the corresponding class after inductive learning in the visual and

point cloud domains respectively. The embedding space quality is

much higher in (a) than (b) because image-based pre-trained mod-

els, such as ResNet, use deeper networks trained on millions of

images, whereas point cloud-based models, such as PointNet, use

shallower networks trained on only a few thousand point clouds.

large corpus of texts [29, 2, 63, 55].

Performing ZSL for the purpose of 3D object classifi-

cation is a more challenging task than ZSL applied to 2D

images [35, 2, 4, 29, 21, 55]. ZSL methods in the 2D do-

main commonly take advantage of pre-trained models, like

ResNet [15], that have been trained on millions of labeled

images featuring thousands of classes. As a result, the ex-

tracted 2D features are very well clustered. By contrast,

there is no parallel in the 3D point cloud domain; labeled

3D datasets tend to be small and have only limited sets of

classes. For example, pre-trained models like PointNet [30]

are trained on only a few thousand samples from a small

number of classes. This leads to poor-quality 3D features

with clusters that are not nearly as well separated as their

visual counterparts. This gives rise to the problem of pro-

jection domain shift [14]. In essence, this means that the

function learned from seen samples is biased, and cannot
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generalize well to unseen classes. In the inductive learning

approach, where only seen classes are used during train-

ing, projected semantic vectors tend to move toward the

seen feature vectors, making the intra-class distance be-

tween corresponding unseen semantic and feature vectors

large. This intuition is visualized in Figure 1.

Now, the key question is how far these problems can

be mitigated by adopting a transductive learning approach,

where the model is trained using both labeled and unlabeled

samples. Our goal is to design a strategy that reduces the

bias and encourages the projected semantic vectors to align

with their true feature vector counterparts, minimizing the

average intra-class distance. In 2D ZSL, the transductive

setting has been shown to be effective [14, 64, 48], however

in the case of 3D point cloud data it is a more challenging

task. Pre-trained 3D features are poorly clustered and ex-

hibit large intra-class distances. As a result, state-of-the-art

transductive methods suitable for image data [14, 64, 48]

are unable to reduce the bias problem for 3D data.

In order to take advantage of the transductive learning

approach for 3D point cloud zero-shot learning, we propose

a transductive ZSL method using a novel triplet loss that

is employed in an unsupervised manner. Unlike the tradi-

tional triplet formulation [44, 32], our proposed triplet loss

works on unlabeled (test) data and can operate without the

need of ground-truth supervision. This loss applies to un-

labeled data such that intra-class distances are minimized

while also maximizing inter-class distances, reducing the

bias problem. As a result, a prediction function with greater

generalization ability and effectiveness on unseen classes is

learned. Moreover, our proposed method is also applicable

in the case of 2D ZSL, which demonstrates the generaliza-

tion strength of our method to other sensor modalities.

Our main contributions are: (1) extending and adapt-

ing transductive zero-shot learning and generalized zero-

shot learning to 3D point cloud classification for the first

time; (2) developing a novel triplet loss that takes advan-

tage of unlabeled test data, applicable to both 3D point

cloud data and 2D images; and (3) performing exten-

sive experiments, establishing state-of-the-art on four 3D

datasets, ModelNet10 [54], ModelNet40 [54], McGill [46],

and SHREC2015 [26].

2. Related Work

Zero-Shot Learning: For the ZSL task, there has been sig-

nificant progress, including on image recognition [35, 63, 2,

4, 29, 21, 55], multi-label ZSL [22, 34], and zero-shot de-

tection [36]. Despite this progress, these methods solve the

constrained problem where the test instances are restricted

to only unseen classes, rather than being from either seen

or unseen classes. This setting, where both seen and un-

seen classes are considered at test time, is called General-

ized Zero-Shot Learning (GZSL). To address this problem,

some methods decrease the scores that seen classes produce

by a constant value [5], while others perform a separate

training stage intended to balance the probabilities of the

seen and unseen classes [35]. Schonfeld et al. [43] learned

a shared latent space of image features and semantic repre-

sentation based on a modality-specific VAE model. In our

work, we use a novel unsupervised triplet loss to address the

bias problem, leading to significantly better GZSL results.

Transductive Zero-shot Learning: The transductive

learning approach takes advantage of unlabeled test sam-

ples, in addition to the labeled seen samples. For exam-

ple, Rohrbach et al. [40] exploited the manifold structure

of unseen classes using a graph-based learning algorithm to

leverage the neighborhood structure within unseen classes.

Yu et al. [61] proposed a transductive approach to predict

class labels via an iterative refining process. More recently,

transductive ZSL methods have started exploring how to

improve the accuracy of both the seen and unseen classes

in generalized ZSL tasks [64, 48]. Zhao et al. [64] pro-

posed a domain invariant projection method that projects

visual features to semantic space and reconstructs the same

feature from the semantic representation in order to narrow

the domain gap. In another approach, Song et al. [48] iden-

tified the model bias problem of inductive learning, that is,

a trained model assigns higher prediction scores for seen

classes than unseen. To address this, they proposed a quasi-

fully supervised learning method to solve the GZSL task.

Xian et al. [57] proposed f-VAEGAN-D2 which takes ad-

vantage of both VAEs and GANs to learn the feature dis-

tribution of unlabeled data. All of these approaches are de-

signed for transductive ZSL tasks on 2D image data. In con-

trast, we explore to what extent a transductive ZSL setting

helps to improve 3D point cloud recognition.

Learning with a Triplet Loss: Triplet losses have been

widely used in computer vision [44, 32, 12, 16, 11]. Schroff

et al. [44] demonstrated how to select positive and nega-

tive anchor points from visual features within a batch. Qiao

et al. [32] introduced using a triplet loss to train an induc-

tive ZSL model. More recently, Do et al. [11] proposed

a tight upper bound of the triplet loss by linearizing it us-

ing class centroids, Zakharov et al. [62] explored the triplet

loss in manifold learning, Srivastava et al. [49] investigated

weighting hard negative samples more than easy negatives,

and Zhaoqun et al. [25] proposed the angular triplet-center

loss, a variant that reduces the similarity distance between

features. Triplet loss related methods typically work under

inductive settings, where the ground-truth label of an an-

chor point remains available during training. In contrast,

we describe a triplet formation technique in the transduc-

tive setting. Our method utilizes test data without knowing

its true label. Moreover, we choose positive and negative

samples of an anchor from word vectors instead of features.

ZSL on 3D Point Clouds: Despite much progress on 3D
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point cloud classification using deep learning [30, 31, 53,

59, 52, 58, 7, 38, 37, 39], only two works have addressed

the ZSL problem for 3D point clouds. Cheraghian et al.

[9, 8] proposed a bilinear compatibility function to asso-

ciate a PointNet [30] feature vector with a semantic feature

vector, and separately proposed an unsupervised skewness

loss to mitigate the hubness problem. Both works use in-

ductive inference and are therefore less able to handle the

bias towards seen classes in the GZSL task than our pro-

posed method.

3. Transductive ZSL for 3D Point Clouds

Zero-shot learning is heavily dependent on good pre-

trained models generating well-clustered features [28, 4, 2,

61] as the performance of established ZSL methods other-

wise degrades rapidly. In the 2D case, pre-trained models

are trained by considering thousands of classes and millions

of images [55]. However, similar quality pre-trained models

are typically unavailable for 3D point cloud objects. There-

fore, 3D point cloud features cluster more poorly than im-

age features. To illustrate this point, in Figure 2 we visualize

3D features of unseen classes from the 3D datasets Model-

Net10 [54], McGill [46] and 2D features of unseen classes

from the 2D datasets AwA2 [55] and CUB [51]. Here, we

use unseen classes to highlight the generalization ability of

the pre-trained model. Because of the use of a large dataset

(like ImageNet) for the 2D case, the cluster structure is more

separable in 2D than in 3D. As 3D features are not as robust

and separable as 2D features, relating those features to their

corresponding semantic vectors is more difficult than for the

corresponding 2D case. Addressing the poor feature qual-

ity of typical 3D datasets, we propose to use a triplet loss

in the transductive setting of ZSL. Our method specifically

addresses the alignment of poor features (like those coming

from 3D feature extractors) with semantic vectors. There-

fore, while our method improves the results for both 2D and

3D modalities, the largest gain is observed in the 3D case.

3.1. Problem Formulation

Let X = {xi}
n
i=1 for xi ∈ R

3 denote a 3D point cloud.

Also let Ys = {ysi }
S
i=1 and Yu = {yui }

U
i=1 denote dis-

joint (Ys ∩ Yu = 0) seen and unseen class label sets with

sizes S and U respectively, and Es = {φ(ys)}Si=1 and

Eu = {φ(yu)}Ui=1 denote the sets of associated semantic

embedding vectors for the embedding function φ(·), with

φ(y) ∈ R
d. Then we define the set of ns seen instances as

Zs = {(X s
i , l

s
i , e

s
i )}

ns

i=1
, where X s

i is the ith point cloud

of the seen set with label lsi ∈ Y
s and semantic vector

e
s
i = φ(lsi ) ∈ E

s. The set of nu unseen instances is de-

fined similarly as Zu = {(X u
i , l

u
i , e

u
i )}

nu

i=1
, where X u

i is

the ith point cloud of the unseen set with label lui ∈ Y
u and

semantic vector eui = φ(lui ) ∈ E
u.

(a) ModelNet10 (b) McGill

(c) AwA2 (d) CUB

Figure 2. tSNE [50] visualizations of unseen 3D point cloud fea-

tures of (a) ModelNet10 [54] (b) McGill [46] and unseen 2D image

features of (c) AwA2 [55] (d) CUB [51] . The cluster structure in

the 2D feature space is much better defined, with tighter and more

separated clusters than those in the 3D point cloud.

We consider two learning problems in this work: zero-

shot learning and its generalized variant. The goal of each

problem is defined as follows.

• Zero-Shot Learning (ZSL): To predict a class label

ŷu ∈ Yu from the unseen label set given an unseen

point cloud X u.

• Generalized Zero-Shot Learning (GZSL): To pre-

dict a class label ŷ ∈ Ys ∪Yu from the seen or unseen

label sets given a point cloud X .

3.2. Model Training

Zero-shot learning can be addressed using inductive or

transductive inference. For inductive ZSL, the model is

trained in a fully-supervised manner with seen instances

only from the set Zs.

To learn an inductive model, an objective function

LI =
1

N

N
∑

i=1

‖ϕ(X s
i )−Θ(esi ;W )‖

2

2
+ λ ‖W‖

2

2
(1)

is minimized, where N is the number of instances in the

batch, ϕ(X s
i ) ∈ R

m is the point cloud feature vector asso-

ciated with point cloud X s
i , W are the weights of the non-

linear projection function Θ(·) that maps from the semantic

embedding space E to the point cloud feature space, and the

parameter λ controls the amount of regularization.

In contrast, transductive ZSL additionally uses the set of

unlabeled, unseen instances {X u
i } and the set of unseen se-

mantic embedding vectors Eu during training. To learn a

transductive model in a semi-supervised manner, an objec-
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Figure 3. 2D tSNE [50] visualization of unseen point cloud feature

vectors (circles) and projected semantic feature vectors (squares)

based on (a) inductive and (b) transductive learning on Model-

Net10. The projected semantic feature vectors are much closer

to the cluster centres of the point cloud feature vectors for trans-

ductive ZSL than for inductive ZSL, showing that the transductive

approach is able to narrow the domain gap between seen and un-

seen classes.

tive function

LT =
1

N

N
∑

i=1

‖ϕ(X s
i )−Θ(esi ;W )‖

2

2
+ αLu + λ ‖W‖

2

2

(2)

is minimized, where N is the batch size of seen instances,

Lu is the unsupervised loss, α controls the influence of the

unsupervised loss, and λ controls the amount of regulariza-

tion. For the Lu term, a triplet loss is proposed, which will

be outlined in the next section.

Transductive ZSL addresses the problem of the pro-

jection domain shift [14] inherent in inductive ZSL ap-

proaches. In ZSL, the seen and unseen classes are disjoint

and often only very weakly related. Since the underlying

distributions of the seen and unseen classes may be quite

different, the ideal projection function between the semantic

embedding space and point cloud feature space is also likely

to be different for seen and unseen classes. As a result,

using the projection function learned from only the seen

classes without considering the unseen classes will cause

an unknown bias. Transductive ZSL reduces the domain

gap and the resulting bias by using unlabeled unseen class

instances during training, improving the generalization per-

formance. The effect of the domain shift in ZSL is shown

in Figure 3. When inductive learning is used (a), the pro-

jected unseen semantic embedding vectors are far from the

cluster centres of the associated point cloud feature vectors,

however when transductive learning is used (b), the vectors

are much closer to the cluster centres.

3.3. Unsupervised Triplet Loss

In this work, we propose an unsupervised triplet loss

for Lu (2). It is unsupervised because the computation of

Lu operates on test data, which remains unlabeled, and re-

ceives no ground-truth supervision throughout transductive

training. To compute a triplet loss, a positive and negative

sample need to be found for each anchor sample [44]. In

the fully-supervised setting, selecting positive and negative

samples is not difficult, because all training samples have

ground-truth labels. However, it is much more challenging

in the unsupervised setting, where ground-truth labels are

not available. For transductive ZSL, we define a positive

sample using a pseudo-labeling approach [23]. For each an-

chor X u, we assign a pseudo-label that chooses a positive

sample e+ among the semantic embedding vectors which is

the closest to the anchor feature vector ϕ(X u) after projec-

tion Θ(·), as follows

e
+ = argmin

e∈Eu

‖ϕ(X u)−Θ(e;W )‖2. (3)

Such pseudo-labeling is different from the usual practice

[23] because it chooses a semantic vector as a positive sam-

ple in the triplet formation instead of a plausible ground-

truth label. For GZSL, the unlabeled data X c for c ∈ {s, u}
can be from the seen or unseen classes during training. As a

result, a pseudo-label must be found for both unlabeled seen

and unlabeled unseen samples. Importantly, if the pseudo-

label indicates that an unlabeled sample is from a seen class,

then that sample is discarded. This reduces the impact of in-

correct, noisy pseudo-labels on the model for seen classes.

Samples from seen classes (with ground-truth labels) will

instead influence the supervised loss function. Hence, we

use true supervision where possible (seen classes), and only

use pseudo-supervision where there is no alternative (un-

seen classes). The positive sample for GZSL is therefore

chosen as follows

e
+ = argmin

e∈Es∪Eu

‖ϕ(X c)−Θ(e;W )‖2. (4)

The negative sample is selected from the seen semantic

embedding set Es for both ZSL and GZSL, since all ele-

ments of this set will have a different label from the unseen

anchor. We choose the negative sample as the seen semantic

embedding vector whose projection is closest to the anchor

vector ϕ(X u),

e
− = argmin

e∈Es

‖ϕ(X s)−Θ(e;W )‖2 (5)

Finally, the unsupervised loss function Lu associated

with the unlabeled instances for both ZSL and GZSL tasks

is defined as follows:

Lu =
1

N ′

N ′

∑

i=1

max

{

0,
∥

∥ϕ(X u
i )−Θ(e+;W )

∥

∥

2

2

+m−
∥

∥ϕ(X u
i )−Θ(e−;W )

∥

∥

2

2

}

(6)
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Algorithm 1 Transductive ZSL for 3D point cloud objects

Input: X s, Ys, Es, ns, X u, Eu, nu

Output: A trained model Wtns to find ŷ for all X u

Inductive training stage

1: Wind ← train an inductive model using Eq 1 with only

seen data: X s, Ys, Es, ns

Transductive training stage

2: Wtns ←Wind, initialize transductive model

3: repeat

4: if GZSL then

5: ŷ ← use Wtns to assign positive and negative

anchors to X u using Eq 4 and Eq 5 for triple formation

6: else

7: ŷ ← use Wtns to assign positive and negative

anchors to X u using Eq 3 and Eq 5 for triple formation

8: for ∀I ∈ X s ∪ X u do

9: Calculate overall transductive loss using Eq 2

10: Backpropagate and update Wtns

11: until convergence

Return Class decision ŷ with Wtns using Eq 7 for ZSL

or Eq 8 for GZSL

where m is a margin that encourages separation between the

clusters, and N ′ is the batch size of the unlabeled instances.

We describe the overall training process in Algorithm 1.

In the proposed algorithm, in the first stage, an inductive

model Wind is learned. Then the transductive model Wtns

is initialized with the inductive model. Finally the transduc-

tive model is learned.

This proposed triplet loss is distinct from recent litera-

ture [44, 32] in two ways. (1) Popular methods of triplet

formation select a similar feature to the input feature as a

positive sample, whereas we choose a semantic word vec-

tor for this purpose. This helps to better align the 3D point

cloud features with the semantic vectors. (2) We employ

a triplet loss in a transductive setting to utilize unlabeled

(test) data, whereas established methods consider the triplet

loss for inductive training only. This extends the role of the

triplet loss beyond inductive learning.

3.4. Model Architecture

The proposed model architecture is shown in Figure 4,

consisting of two branches: the point cloud network that

extracts a feature vector ϕ(X ) ∈ R
m from a point cloud X ,

and the semantic projection network that projects a seman-

tic feature vector e ∈ R
d into point cloud feature space.

Any network that learns a feature space from 3D point

sets and is invariant to permutations of points in the point

cloud can be used in our method as the point cloud network

[30, 31, 53, 24, 59, 52, 58]. The projection network Θ(·)
with trainable weights W consists of two fully-connected

layers, with 512 and 1024 dimensions respectively, each fol-

loss

fc1
tanh
fc2

tanh

point cloud 
architecture

semantic
representation

�(y) ∈ ℝ

�



y

�() ∈ ℝ

�

Θ(�;� ) ∈ ℝ

�

Figure 4. The proposed architecture for ZSL and GZSL. For in-

ductive learning, the input point cloud and semantic representa-

tion are X = X
s and e = φ(y) ∈ E

s, respectively. For transduc-

tive learning, the input point cloud and semantic representation are

X = X
s

∪ X
u and e ∈ E

s

∪ E
u respectively.

lowed by a tanh nonlinearity.

3.5. Inference

For the zero-shot learning task, given the learned optimal

weights W from training with labeled seen instances X s

and unlabeled unseen instances X u, the label of the input

point cloud X u is predicted as

ŷ = argmin
y∈Yu

‖ϕ(X u)−Θ(φ(y);W )‖
2

. (7)

For the generalized zero-shot learning task, the label of the

input point cloud X c for c ∈ {s, u} is predicted as

ŷ = argmin
y∈Ys∪Yu

‖ϕ(X c)−Θ(φ(y);W )‖
2

. (8)

4. Results

4.1. Experimental Setup

Datasets: We evaluate our approach on four well-

known 3D datasets, ModelNet10 [54], ModelNet40 [54],

McGill [46], and SHREC2015 [26], and two 2D datasets,

AwA2 [55] and CUB [51]. The dataset statistics as used in

this work are given in Table 1. For the 3D datasets, we fol-

low the seen/unseen splits proposed by Cheraghian et al.

[9], where the seen classes are those 30 in ModelNet40

that do not occur in ModelNet10, and the unseen classes

are those from the test sets of ModelNet10, McGill and

SHREC2015 that are not in the set of seen classes. These

splits allow us to test unseen classes from different distribu-

tions than that of the seen classes. For the 2D datasets, we

follow the Standard Splits (SS) and Proposed Splits (PS) of

Xian et al. [55].
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Semantic features: We use the 300-dimensional

word2vec [27] semantic feature vectors for the 3D

dataset experiments, the 85-dimensional attribute vectors

from Xian et al. [55] for the AwA2 experiments, and the

312-dimensional attribute vectors from Wah et al. [51] for

the CUB experiments.

Evaluation: We report the top-1 accuracy as a measure

of recognition performance, where the predicted label (the

class with minimum distance from the test sample) must

match the ground-truth label to be considered a successful

prediction. For generalized ZSL, we also report the Har-

monic Mean (HM) [55] of the accuracy of the seen and un-

seen classes, computed as

HM =
2×Accs×Accu
Accs +Accu

(9)

where Accs and Accu are seen and unseen class top-1 ac-

curacies respectively.

Cross-validation: We used Monte Carlo cross-validation

to find the best hyper-parameters, averaging over 10 repe-

titions. For ModelNet40, 17% (5) of the 30 seen classes

were randomly selected as an unseen validation set, while

20% were used for the AwA2 and CUB datasets. The hyper-

parameters α and λ were 0.15 and 0.0001 for ModelNet40,

0.1 and 0.001 for AwA2, and 0.25 and 0.001 for CUB.

Implementation details: For the 3D data experiments,

we used PointNet [30] as the point cloud feature ex-

traction network, with five multi-layer perceptron layers

(64,64,64,128,1024) followed by max-pooling layers and

two fully-connected layers (512,1024). Batch normaliza-

tion (BN) [17] and ReLU activations were used for each

layer. The 1024-dimensional input feature embedding was

extracted from the last fully-connected layer. The network

was pre-trained on the 30 seen classes of ModelNet40. For

the 2D data experiments, we used a 101-layered ResNet ar-

chitecture [15], where the 2048-dimensional input feature

embedding was obtained from the top-layer pooling unit.

The network was pre-trained on ImageNet 1K [10] with-

out fine-tuning. We fixed the pre-trained weights for both

the 3D and 2D networks. For semantic projection layers,

we used two fully-connected (512,1024) with tanh non-

linearities. These parameters are fully-learnable. To train

the network, we used the Adam optimizer [20] with an ini-

tial learning rate of 0.0001, and batch sizes of 32 and 128

for 3D and 2D experiments respectively. We implemented

the architecture using TensorFlow [1] and trained and tested

it on a NVIDIA GTX Titan V GPU.

4.2. 3D Point Cloud Experiments

For the experiments on 3D data, we compare with two

3D ZSL methods, ZSLPC [9] and MHPC [8], and three

2D ZSL methods, f-CLSWGAN [56], CADA-VAE [43],

and QFSL [48]. These state-of-the-art image-based meth-

ods were re-implemented and adapted to point cloud data to

Dataset
Total Seen/ Train/

classes Unseen Valid/Test

3D

ModelNet40 [54] 40 30/– 5852/1560/–

ModelNet10 [54] 10 –/10 –/–/908

McGill [46] 19 –/14 –/–/115

SHREC2015 [26] 50 –/30 –/–/192

2D

AwA2 SS [55] 50 40/10 30337/–/6985

AwA2 PS [55] 50 40/10 23527/5882/7913

CUB SS [51] 200 150/50 8855/–/2933

CUB PS [51] 200 150/50 7057/1764/2967

Table 1. Statistics of the 3D and 2D datasets. The total number

of classes in the datasets are reported, alongside the actual splits

used in this paper dividing the classes into seen or unseen and the

elements into those used for training or testing. The 3D splits are

from [9] and the 2D Standard Splits (SS) and Proposed Splits (PS)

are from Xian et al. [55].

facilitate comparison. We also report results for a baseline

inductive method, which uses the inductive loss function

LI (1) and is trained only on labeled seen classes, and for

a transductive baseline method, which replaces our triplet

unlabeled loss Lu with a standard Euclidean loss.

The results on the ModelNet10, McGill, and

SHREC2015 datasets are shown in Table 2. Our method

significantly outperforms the other approaches on these

datasets. Several observations can be made from the

results. (1) Transductive learning is much more effective

than inductive learning for point cloud ZSL. This is likely

due to inductive approaches being more biased towards

seen classes, while transductive approaches alleviate the

bias problem by using unlabeled, unseen instances during

training. (2) Although generative methods [56, 43] have

shown successful results on 2D ZSL, they fail to generalize

to 3D ZSL. We hypothesize that they rely more strongly on

high quality pre-trained models and attribute embeddings,

both of which are not available for 3D data. (3) Our

proposed method performs better than QFSL, which is

likely due to our triplet loss formulation. While noisy, the

positive and negative samples of unlabeled data provide

useful supervision, unlike the unsupervised approach for

only unlabeled data in QFSL. (4) The triplet loss performs

much better than the Euclidean loss for this problem, since

it maximizes the inter-class distance as well as minimizing

the intra-class distance. (5) Our proposed method does not

perform as well on the McGill and SHREC2015 datasets

when compared to the ModelNet10 results, because the

distributions of semantic feature vectors in the unseen

McGill and SHREC2015 datasets are significantly different

from the distribution in the seen ModelNet40 dataset, much

more so than that of ModelNet10 [9].

Generalized ZSL, which is more realistic than standard

ZSL, is more challenging than ZSL as there are both seen
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Method ModelNet10 McGill SHREC2015

I

ZSLPC [9] 28.0 10.7 5.2

MHPC [8] 33.9 12.5 6.2

f-CLSWGAN [56] 20.7 10.2 5.2

CADA-VAE [43] 23.0 10.7 6.2

Baseline 23.5 13.0 5.2

T

QFSL [48] 38.8 18.8 9.5

Baseline 37.8 21.7 5.2

Ours 46.9 21.7 13.0

Table 2. ZSL results on the 3D ModelNet10 [54], McGill [46],

and SHREC2015 [26] datasets. We report the top-1 accuracy (%)

for each method. “I” and “T” denote inductive and transductive

learning respectively.

Figure 5. Individual performance on unseen classes from Mod-

elNet10. Our transductive method consistently outperforms both

ZSLPC [9] and the inductive baseline.

and unseen classes during inference. As a result, methods

proposed for ZSL do not usually report results for GZSL.

The results are shown in Table 3. Our method obtained the

best performance with respect to the harmonic mean (HM)

on all datasets, and the best performance with respect to

the unseen class accuracy Accu on most datasets, which

demonstrates the utility of our method for GZSL as well

as ZSL for 3D point cloud recognition.

We also show, in Figure 5, the performance of individual

classes from ModelNet10. Our method achieves the best

accuracy on most classes, while the inductive baseline and

ZSLPC [9] have close to zero accuracy on many classes

(e.g., desk, night stand, toilet, and bed). This is likely due

to the hubness problem, which inductive methods are more

sensitive to than transductive methods.

4.3. 2D Image Experiments

While our method was designed to address ZSL and

GZSL tasks for 3D point cloud recognition, we also adapt

and evaluate our method for the case of 2D image recogni-

tion. The results for ZSL and GZSL are shown in Tables 4

and 5 respectively.

For ZSL, our proposed method is evaluated on the

AwA2 [55] and CUB [51] datasets using the SS and PS

splits [55]. Our method achieves very competitive results

on these datasets, indicating that the method can general-

ize to image data. Note that we do not fine-tune the image

feature extraction network in our model, unlike the mod-

els listed with asterisks, for fair comparison with existing

work. However, the literature demonstrates that fine-tuning

can improve performance considerably, particularly on the

CUB dataset.

For GZSL, we evaluate our method on the same datasets

and compare with state-of-the-art GZSL methods [47, 5, 64,

48]. As shown in Table 5, our method is again competitive

with the other methods on the AwA2 dataset with respect

to both unseen class accuracy and harmonic mean accuracy.

Our results lag state-of-the-art on the CUB dataset, although

fine-tuning the feature extraction network may go some way

to closing this gap.

4.4. Discussion

Challenges with 3D data: Recent deep learning meth-

ods for classifying point cloud objects have achieved over

90% accuracy on several standard datasets, including Mod-

elNet40 and ModelNet10. Moreover, due to significant

progress in depth camera technology [6, 18], it is now

possible to capture 3D point cloud objects at scale much

more easily. It is therefore likely that many classes of 3D

objects will not be present in the labeled training set. As

a result, zero-shot classification systems will be needed to

leverage other more easily-obtainable sources of informa-

tion in order to classify unseen objects. However, we ob-

serve that the difference in accuracy between ZSL and su-

pervised learning is still very large for 3D point cloud clas-

sification, e.g. 46.9% as compared to 95.7% [24] for Mod-

elNet10. As such, there is significant potential for improve-

ment for zero-shot 3D point cloud classification. While the

performance is still quite low, this is also the case for 2D

ZSL, with state-of-the-art being 31.1% top-5 accuracy on

the ImageNet2010/12 [42] datasets, reflecting the challeng-

ing nature of the problem.

Hubness: ZSL methods either (a) map the input feature

space to semantic space using a hinge loss or least mean

squares loss [13, 47], (b) map both spaces to an intermediate

space using a binary cross entropy or a hinge loss [19, 60],

or (c) map the semantic space to the input feature space

[63]. We use the last approach, projecting semantic vectors

to input feature space, since it has been shown that this alle-

viates the hubness problem [45, 63]. We validate this claim

by measuring the skewness of the distribution Nk [45, 33]

when projected in each direction, and the associated accu-

racy. We report these values in Table 6 for the ModelNet10

dataset. The degree of skewness is much lower when pro-
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Method
ModelNet10 McGill SHREC2015

Accs Accu HM Accs Accu HM Accs Accu HM

I

MHPC [8] 53.8 26.2 35.2 - - - - - -

f-CLSWGAN [56] 76.3 3.7 7.0 75.3 2.3 4.5 74.2 0.8 1.6

CADA-VAE [43] 84.7 1.3 2.6 83.3 1.6 3.1 80.0 1.7 3.3

Baseline 83.7 0.4 0.8 80.0 0.9 1.8 82.1 0.9 1.8

T

QFSL [48] 58.1 21.8 31.7 65.3 13.0 21.6 72.3 7.8 14.1

Baseline 77.7 21.0 33.1 75.5 12.2 21.0 83.4 4.2 8.0

Ours 74.6 23.4 35.6 74.4 13.9 23.4 78.6 10.6 18.4

Table 3. GZSL results on the 3D ModelNet10 [54], McGill [46], and SHREC2015 [26] datasets. We report the top-1 accuracy (%) on seen

classes (Accs) and unseen classes (Accu) for each method, as well as the harmonic mean (HM) of both measures. “I” and “T” denote

inductive and transductive learning respectively.

Method
AwA2 CUB

SS PS SS PS

I

SJE [3] 69.5 61.9 55.3 53.9

ESZSL [41] 75.6 58.6 55.1 53.9

SYNC [4] 71.2 46.6 54.1 55.6

f-CLSWGAN [56] - - - 57.3

f-VAEGAN-D2 [57] - 71.1 - 61.0

f-VAEGAN-D2* [57] - 70.3 - 72.9

Baseline 71.2 69.0 59.3 54.2

T

DIPL [64] - - 68.2 65.4

QFSL* [48] 84.8 79.7 69.7 72.1

f-VAEGAN-D2 [57] - 89.8 - 71.1

f-VAEGAN-D2* [57] - 89.3 - 82.6

Baseline 83.3 75.6 70.6 58.3

Ours 88.1 87.3 72.0 62.2

Table 4. ZSL results on the Standard Splits (SS) and Proposed

Splits (PS) of the 2D AwA2 and CUB datasets. We report the

top-1 accuracy (%) for each method. “I” and “T” denote inductive

and transductive learning respectively. ∗Image feature extraction

model fine-tuned (we do not fine-tune our model).

jecting the semantic feature space to the point cloud feature

space, and achieves a significantly higher accuracy. This

provides additional evidence that this projection direction is

preferable for mitigating the problem of hubs and the con-

sequent bias.

5. Conclusion

In this paper, we identified and addressed issues that

arise in the inductive and transductive settings of zero-shot

learning and its generalized variant when applied to the do-

main of 3D point cloud classification. We observed that in

the 2D domain the embedding quality generated by the pre-

trained feature space is of a significantly higher quality than

that produced by its 3D counterpart, due to the vast differ-

ence in the amount of labeled training data they have been

exposed to. To mitigate this, a novel triplet loss was devel-

Method
AwA2 CUB

Accs Accu HM Accs Accu HM

I

CMT[47] 89.0 8.7 15.9 60.1 4.7 8.7

CS[5] 77.6 45.3 57.2 49.4 48.1 48.7

f-CLSWGAN [56] - - - 43.7 57.7 49.7

CADA-VAE [43] 75.0 55.8 63.9 53.5 51.6 52.6

f-VAEGAN-D2 [57] 57.6 70.6 63.5 48.4 60.1 53.6

f-VAEGAN-D2* [57] 57.1 76.1 65.2 63.2 75.6 68.9

Baseline 88.9 22.1 35.4 69.4 8.4 14.9

T

DIPL[64] - - - 44.8 41.7 43.2

QFSL*[48] 93.1 66.2 77.4 74.9 71.5 73.2

f-VAEGAN-D2 [57] 84.8 88.6 86.7 61.4 65.4 63.2

f-VAEGAN-D2* [57] 86.3 88.7 87.5 73.8 81.4 77.3

Baseline 88.0 67.2 76.2 51.4 40.2 45.1

Ours 81.8 83.1 82.4 50.5 50.2 50.3

Table 5. GZSL results on the 2D AwA2 and CUB datasets. We

report the top-1 accuracy (%) on seen classes (Accs) and unseen

classes (Accu) for each method, as well as the harmonic mean

(HM) of both measures. “I” and “T” denote inductive and trans-

ductive learning respectively. ∗Image feature extraction model

fine-tuned (we do not fine-tune our model).

Nk-skewness Semantic space Input space→

(Accuracy) → input space semantic space

Inductive 2.67 (23.5%) 3.07 (19.5%)

Transductive -0.19 (46.9%) 2.03 (31.2%)

Table 6. The skewness (and accuracy) on ModelNet10 with dif-

ferent projection directions in both inductive and transductive set-

tings. The skewness is lower when projecting the semantic space

to the input point cloud feature space, mitigating the hubness prob-

lem and leading to more accurate transductive ZSL.

oped that makes use of unlabeled test data in a transductive

setting. The utility of this method was demonstrated via an

extensive set of experiments that showed significant benefit

in the 2D domain and established state-of-the-art results in

the 3D domain for ZSL and GZSL tasks.

930



References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-

flow: a system for large-scale machine learning. In OSDI,

volume 16, pages 265–283, 2016. 6

[2] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid.

Label-Embedding for Image Classification. IEEE TPAMI,

38(7):1425–1438, July 2016. 1, 2, 3

[3] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evalu-

ation of output embeddings for fine-grained image classifica-

tion. In CVPR, volume 07-12-June-2015, pages 2927–2936,

2015. 8

[4] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthe-

sized classifiers for zero-shot learning. In CVPR, volume

2016-January, pages 5327–5336, 2016. 1, 2, 3, 8

[5] W.-L. Chao, B. Changpinyo, Soravitand Gong, and F. Sha.

An Empirical Study and Analysis of Generalized Zero-Shot

Learning for Object Recognition in the Wild, pages 52–68.

Springer International Publishing, Cham, 2016. 2, 7, 8

[6] C. Chen, B. Yang, S. Song, M. Tian, J. Li, W. Dai, and

L. Fang. Calibrate multiple consumer rgb-d cameras for low-

cost and efficient 3d indoor mapping. Remote Sensing, 10(2),

2018. 7

[7] A. Cheraghian and L. Petersson. 3dcapsule: Extending the

capsule architecture to classify 3d point clouds. In 2019

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 1194–1202, Jan 2019. 3

[8] A. Cheraghian, S. Rahman, D. Campbell, and L. Petersson.

Mitigating the hubness problem for zero-shot learning of 3d

objects. In British Machine Vision Conference (BMVC’19),

2019. 3, 6, 7, 8

[9] A. Cheraghian, S. Rahman, and L. Petersson. Zero-shot

learning of 3d point cloud objects. In International Con-

ference on Machine Vision Applications (MVA), 2019. 3, 5,

6, 7

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009. 6

[11] T.-T. Do, T. Tran, I. Reid, V. Kumar, T. Hoang, and

G. Carneiro. A theoretically sound upper bound on the triplet

loss for improving the efficiency of deep distance metric

learning. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019. 2

[12] X. Dong and J. Shen. Triplet loss in siamese network for

object tracking. In The European Conference on Computer

Vision (ECCV), September 2018. 2

[13] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,

M. Ranzato, and T. Mikolov. Devise: A deep visual-semantic

embedding model. In NIPS, 2013. 7

[14] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Trans-

ductive multi-view zero-shot learning. IEEE Trans. Pattern

Anal. Mach. Intell., 37(11):2332–2345, Nov. 2015. 1, 2, 4

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–

778, 2016. 1, 6

[16] X. He, Y. Zhou, Z. Zhou, S. Bai, and X. Bai. Triplet-center

loss for multi-view 3d object retrieval. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018. 2

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 6

[18] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,

P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and

A. Fitzgibbon. Kinectfusion: Real-time 3d reconstruction

and interaction using a moving depth camera. In Proceed-

ings of the 24th Annual ACM Symposium on User Interface

Software and Technology, UIST ’11, pages 559–568, New

York, NY, USA, 2011. ACM. 7

[19] M. Jaderberg, K. Simonyan, A. Zisserman, and

k. kavukcuoglu. Spatial transformer networks. In C. Cortes,

N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,

editors, Advances in Neural Information Processing Systems

28, pages 2017–2025. Curran Associates, Inc., 2015. 7

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 6

[21] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-

based classification for zero-shot visual object categoriza-

tion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(3):453–465, March 2014. 1, 2

[22] C.-W. Lee, W. Fang, C.-K. Yeh, and Y.-C. Frank Wang.

Multi-label zero-shot learning with structured knowledge

graphs. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018. 2

[23] D.-H. Lee. Pseudo-label : The simple and efficient semi-

supervised learning method for deep neural networks. ICML

2013 Workshop : Challenges in Representation Learning

(WREPL), 07 2013. 4

[24] J. Li, B. M. Chen, and G. H. Lee. So-net: Self-organizing

network for point cloud analysis. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 9397–9406, 2018. 5, 7

[25] Z. Li, C. Xu, and B. Leng. Angular triplet-center loss for

multi-view 3d shape retrieval. In AAAI, 2019. 2

[26] Z. Lian, J. Zhang, S. Choi, H. ElNaghy, J. El-Sana, T. Fu-

ruya, A. Giachetti, R. A. Guler, L. Lai, C. Li, H. Li,

F. A. Limberger, R. Martin, R. U. Nakanishi, A. P. Neto,

L. G. Nonato, R. Ohbuchi, K. Pevzner, D. Pickup, P. Rosin,

A. Sharf, L. Sun, X. Sun, S. Tari, G. Unal, and R. C. Wilson.

Non-rigid 3D Shape Retrieval. In I. Pratikakis, M. Spag-

nuolo, T. Theoharis, L. V. Gool, and R. Veltkamp, editors,

Eurographics Workshop on 3D Object Retrieval. The Euro-

graphics Association, 2015. 2, 5, 6, 7, 8

[27] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and

J. Dean. Distributed representations of words and phrases

and their compositionality. In NIPS, pages 3111–3119. 2013.

6

[28] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens,

A. Frome, G. S. Corrado, and J. Dean. Zero-shot learning

by convex combination of semantic embeddings. In ICLR,

2014. 3

[29] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M.

Mitchell. Zero-shot learning with semantic output codes. In

931



Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams,

and A. Culotta, editors, NIPS, pages 1410–1418. 2009. 1, 2

[30] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

Proc. Computer Vision and Pattern Recognition (CVPR),

IEEE, 1(2):4, 2017. 1, 3, 5, 6

[31] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hi-

erarchical feature learning on point sets in a metric space. In

Advances in Neural Information Processing Systems, pages

5099–5108, 2017. 3, 5

[32] R. Qiao, L. Liu, C. Shen, and A. van den Hengel. Visually

aligned word embeddings for improving zero-shot learning.

In British Machine Vision Conference (BMVC’17), 2017. 2,

5

[33] M. Radovanovic, A. Nanopoulos, and M. Ivanovic. Hubs

in space: Popular nearest neighbors in high-dimensional

data. Journal of Machine Learning Research, 11:2487–2531,

2010. 7

[34] S. Rahman and S. Khan. Deep multiple instance learning for

zero-shot image tagging. In Asian Conference on Computer

Vision (ACCV), December 2018. 2

[35] S. Rahman, S. Khan, and F. Porikli. A unified approach

for conventional zero-shot, generalized zero-shot, and few-

shot learning. IEEE Transactions on Image Processing,

27(11):5652–5667, Nov 2018. 1, 2

[36] S. Rahman, S. Khan, and F. Porikli. Zero-shot object de-

tection: Learning to simultaneously recognize and localize

novel concepts. In Asian Conference on Computer Vision

(ACCV), December 2018. 2

[37] S. Ramasinghe, S. Khan, N. Barnes, and S. Gould. Blended

convolution and synthesis for efficient discrimination of 3d

shapes. arXiv preprint arXiv:1908.10209, 2019. 3

[38] S. Ramasinghe, S. Khan, N. Barnes, and S. Gould. Represen-

tation learning on unit ball with 3d roto-translational equiv-

ariance. International Journal of Computer Vision, pages

1–23, 2019. 3

[39] S. Ramasinghe, S. Khan, N. Barnes, and S. Gould. Spectral-

gans for high-resolution 3d point-cloud generation. arXiv

preprint arXiv:1912.01800, 2019. 3

[40] M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning

in a transductive setting. In C. J. C. Burges, L. Bottou,

M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,

NIPS, pages 46–54. Curran Associates, Inc., 2013. 2

[41] B. Romera-Paredes and P. Torr. An embarrassingly simple

approach to zero-shot learning. In ICML, pages 2152–2161,

2015. 8

[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, 115(3):211–252, 2015. 7

[43] E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, and Z. Akata.

Generalized zero- and few-shot learning via aligned varia-

tional autoencoders. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019. 2, 6, 7,

8

[44] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In 2015

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 815–823, June 2015. 2, 4, 5

[45] Y. Shigeto, I. Suzuki, K. Hara, M. Shimbo, and Y. Mat-

sumoto. Ridge regression, hubness, and zero-shot learn-

ing. In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, pages 135–151.

Springer, 2015. 7

[46] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh,

S. Bouix, and S. Dickinson. Retrieving articulated 3-d mod-

els using medial surfaces. Mach. Vision Appl., 19(4):261–

275, May 2008. 2, 3, 5, 6, 7, 8

[47] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot

learning through cross-modal transfer. In C. J. C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-

berger, editors, NIPS, pages 935–943. Curran Associates,

Inc., 2013. 7, 8

[48] J. Song, C. Shen, Y. Yang, Y. P. Liu, and M. Song. Trans-

ductive unbiased embedding for zero-shot learning. 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1024–1033, 2018. 2, 6, 7, 8

[49] S. Srivastava and B. Lall. Deeppoint3d: Learning discrim-

inative local descriptors using deep metric learning on 3d

point clouds. Pattern Recognition Letters, 02 2019. 2

[50] L. Van Der Maaten. Accelerating t-sne using tree-based algo-

rithms. Journal of machine learning research, 15(1):3221–

3245, 2014. 3, 4

[51] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-

port CNS-TR-2011-001, California Institute of Technology,

2011. 3, 5, 6, 7

[52] C. Wang, B. Samari, and K. Siddiqi. Local spectral graph

convolution for point set feature learning. arXiv preprint

arXiv:1803.05827, 2018. 3, 5

[53] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and

J. M. Solomon. Dynamic graph cnn for learning on point

clouds. arXiv preprint arXiv:1801.07829, 2018. 3, 5

[54] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1912–1920, 2015. 2,

3, 5, 6, 7, 8

[55] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-shot

learning - a comprehensive evaluation of the good, the bad

and the ugly. IEEE Transactions on Pattern Analysis and

Machine Intelligence, pages 1–1, 2018. 1, 2, 3, 5, 6, 7

[56] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata. Feature gener-

ating networks for zero-shot learning. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018. 6, 7, 8

[57] Y. Xian, S. Sharma, B. Schiele, and Z. Akata. F-vaegan-

d2: A feature generating framework for any-shot learning.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019. 2, 8

[58] S. Xie, S. Liu, Z. Chen, and Z. Tu. Attentional shapecon-

textnet for point cloud recognition. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018. 3, 5

932



[59] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao. Spidercnn: Deep

learning on point sets with parameterized convolutional fil-

ters. arXiv preprint arXiv:1803.11527, 2018. 3, 5

[60] Y. Yang and T. Hospedales. A unified perspective on multi-

domain and multi-task learning. In 3rd International Con-

ference on Learning Representations (ICLR), 2015. 7

[61] Y. Yu, Z. Ji, X. Li, J. Guo, Z. Zhang, H. Ling, and

F. Wu. Transductive zero-shot learning with a self-training

dictionary approach. IEEE Transactions on Cybernetics,

48(10):2908–2919, Oct 2018. 2, 3

[62] S. Zakharov, W. Kehl, B. Planche, A. Hutter, and S. Ilic. 3d

object instance recognition and pose estimation using triplet

loss with dynamic margin. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages

552–559, Sep. 2017. 2

[63] L. Zhang, T. Xiang, and S. Gong. Learning a deep embed-

ding model for zero-shot learning. In CVPR, July 2017. 1,

2, 7

[64] A. Zhao, M. Ding, J. Guan, Z. Lu, T. Xiang, and J.-R. Wen.

Domain-invariant projection learning for zero-shot recogni-

tion. In Advances in neural information processing systems

(NIPS), 2018. 2, 7, 8

933


