
Quadtree Generating Networks:

Efficient Hierarchical Scene Parsing with Sparse Convolutions

Kashyap Chitta1∗ José M. Álvarez2 Martial Hebert3

1 Autonomous Vision Group, MPI for Intelligent Systems and University of Tübingen
2 NVIDIA 3 The Robotics Institute, Carnegie Mellon University

kashyap.chitta@tue.mpg.de josea@nvidia.com hebert@cs.cmu.edu

Abstract

Semantic segmentation with Convolutional Neural Net-

works is a memory-intensive task due to the high spatial

resolution of feature maps and output predictions. In this

paper, we present Quadtree Generating Networks (QGNs),

a novel approach able to drastically reduce the memory

footprint of modern semantic segmentation networks. The

key idea is to use quadtrees to represent the predictions

and target segmentation masks instead of dense pixel grids.

Our quadtree representation enables hierarchical process-

ing of an input image, with the most computationally de-

manding layers only being used at regions in the image

containing boundaries between classes. In addition, given

a trained model, our representation enables flexible infer-

ence schemes to trade-off accuracy and computational cost,

allowing the network to adapt in constrained situations

such as embedded devices. We demonstrate the benefits of

our approach on the Cityscapes, SUN-RGBD and ADE20k

datasets. On Cityscapes, we obtain an relative 3% mIoU

improvement compared to a dilated network with similar

memory consumption; and only receive a 3% relative mIoU

drop compared to a large dilated network, while reducing

memory consumption by over 4×. Our code is available at

https://github.com/kashyap7x/QGN .

1. Introduction

Semantic segmentation is the problem of assigning a

class to every pixel in an image. It is a challenging task

as it requires a combination of coarse contextual reason-

ing and fine pixel-level accuracy [7, 16]. Fully Convolu-

tional Networks (FCNs) [26] and their variants [4,28,34,46]

have become a standard tool for this task, leveraging the

representational power of deep Convolutional Neural Net-

works (CNNs) trained end-to-end with backpropagation. In

contrast to traditional methods using low-level features [1],

∗Work completed while author is at CMU and NVIDIA.

Figure 1. Efficient quadtree representation of a segmentation mask

with three semantic classes (green, blue and yellow). Each node in

the tree has four children, which represent quadrants of the corre-

sponding image region in a clockwise order. The leaf nodes of the

quadtree represent the pixel-level annotation. Some of the nodes

in the quadtree (gray) are composite, and must be further split into

individual classes; whereas others (white), whose parents in the

quadtree structure are not composite, can be removed from the rep-

resentation, achieving lossless compression (best viewed in color).

FCN-based approaches extract information at various scales

using pooling and subsampling layers to perform contex-

tual reasoning and obtain significant accuracy improve-

ments. However, a common limitation of all these FCN-

based methods is that they build upon convolutional layers,

which require dense pixel grids at their input and output.

Compute and memory requirements for dense pixel grids

scale quadratically with the resolution of the input image,

thus increasing the inference time required to process high-

resolution images [33]. In addition, at train time, this large

memory requirement limits the number of samples and spa-

tial resolution used in the training batch. Due to this lim-

itation, most recent architectures can fit just two cropped

images per GPU while training [4, 46]. Existing tricks to

2020



circumvent this such as CPU/GPU activation swapping in-

troduce significant overhead in training times.

In this paper, we propose a novel encoder-decoder based

segmentation approach to reduce memory consumption in

the most computationally demanding layers of a segmen-

tation network. Our key idea is to decompose the target

segmentation mask into a linear quadtree representation, as

shown in Fig. 1. The use of quadtree representations en-

ables us to replace several dense convolutional layers of the

network’s decoder with sparse convolutions [11,30] that are

significantly more efficient than their dense counterparts,

and scale linearly in terms of compute and memory re-

quirements to higher resolutions. In our experiments, the

quadtree representation of the high-resolution labels used

consumes 20× to 30× less memory than the correspond-

ing dense pixel-wise representation. Further, our proposed

efficient and high-performance decoder enables the use of

less computationally demanding backbone networks. Over-

all, our networks are 2× to 4× more efficient than strong

baselines, with similar or better performance.

In short, our contributions are: (i) a novel approach to

use quadtrees to represent semantic segmentation masks for

deep neural networks; (ii) a novel architecture, Quadtree

Generating Networks (QGNs), able to generate quadtrees

from input images efficiently using sparse convolutional

layers; and (iii) a loss function to train QGNs using high-

resolution images. We demonstrate the benefits of our ap-

proach on three public semantic segmentation datasets. Our

results consistently outperform existing networks with sim-

ilar memory requirements and perform similarly to cur-

rent state-of-the-art models while significantly reducing the

memory and computational requirements. Moreover, at in-

ference time, our approach is flexible, and allows a trade-off

to be made between accuracy and computational require-

ments without any modification of a trained network.

2. Related Work

Scene Parsing. Semantic segmentation of complex scenes

has seen considerable progress in recent years through

FCN-based methods. Recent approaches fall under three

broad categories: methods to improve contextual reason-

ing, methods to improve feature resolution, and methods

that allow fast inference while maintaining reasonable per-

formance. The first category of works propose modules,

typically incorporated at the final layers of the encoder, to

augment the feature representation and improve contextual

reasoning. Though the receptive field of deep CNNs is the-

oretically large, studies have shown that their effective re-

ceptive field is small [27]. Atorus Spatial Pyramid Pooling

(ASPP) in DeepLabv3 [4] and the Pyramid Pooling Module

(PPM) in PSPNet [46] are two modules which apply ker-

nels of various large scales to the feature map– ASPP em-

ploys dilated convolutions whereas PPM uses average pool-

ing for capturing global context. Scale Adaptive Convolu-

tions (SAC) [45] achieve a similar effect by modifying the

convolutional operator to build larger receptive fields. More

recently, PSANet [47], DANet [9] and CCNet [20] encode

context using self-attention mechanisms [39, 40].

The second category of work focuses on the performance

at boundaries between classes and other fine details in im-

ages, which is directly tied to feature resolution. Typ-

ically, pre-trained classification architectures give feature

maps that are 32 times smaller than the input resolution.

Early approaches on improving this aspect of segmentation

include the use of skip connections [26], deconvolutional

architectures [2, 24, 28], or leveraging the features learned

at all layers in the network to make predictions [14, 29, 34].

Since then, dilated convolutions have become the standard

technique to handle the resolution issue, by maintaining a

fairly high feature resolution throughout the network, while

also increasing the receptive field as a subsampling or pool-

ing layer would [43]. State-of-the-art segmentation net-

works based on the ResNet encoder architecture [15] typ-

ically dilate the last two residual blocks, giving output fea-

ture maps that are only 8 times smaller than the input reso-

lution. However, given the design of ResNets, it becomes a

huge computational burden to extract output feature maps at

this scale. For example, with the ResNet-101 architecture,

78 of the 101 layers would now have 4 or 8 times greater

memory consumption.

The third category includes work on designing decoders

and other efficient alternatives to dilation [5, 42]. However,

the quadratic scaling of standard operations used in these

techniques, such as deconvolution and bilinear upsampling,

remains a crucial issue, which has seen little to no study

in recent semantic segmentation literature [41]. In the pro-

posed approach, we focus on this issue. Rather than ar-

chitectural modifications, we aim to achieve better scaling

through a novel representation of the network outputs.

Quadtree and octree representations. A quadtree is a hi-

erarchical data structure with a long history in image pro-

cessing literature [35,37]. Quadtrees were prominently used

in some of the earliest work on semantic segmentation with

graphical models, due to their hierarchical structure and ef-

ficiency [3, 8]. In contrast, quadtrees in the deep learning

era have only recently been applied, in a very limited set-

ting, for tasks involving sparse, binary input images [21].

Our proposed networks, on the other hand, do not make any

sparsity assumptions on their inputs.

The family of octree representations, which are the 3D

analog of quadtrees, has had significant impact on 3D deep

learning. In this domain, sparse convolutions on octrees al-

leviate the burden of cubic scaling [31]. Our work is closely

related to Octree Generating Networks, which perform high

resolution 3D reconstruction from single images using a de-

convolutional architecture [38]. The key differences are:

2021



(i) a novel, flexible loss formulation, that allows the user

to trade-off between accuracy and computational cost; (ii)

deeper decoder architectures and more quadtree levels than

those typically used with octrees; (iii) inclusion of elements

such as encoder-to-decoder skip connections and adaptive

level-wise loss weighting; and (iv) quadtree representations

over semantic labels of complex scenes with a large num-

ber of semantic classes (up to 150); as opposed to work in

the 3D setting, which has largely been restricted to binary

representations (such as voxel occupancy grids).

Anytime inference. Anytime predictors are a class of al-

gorithms that produce a crude initial prediction for each

test sample, and continue to refine it as allowed by a com-

pute budget [12,18]. There are several real-world situations

where inference-time computational costs of scene parsing

are critical, which prompted research into anytime predic-

tors for semantic segmentation in the era of fixed feature ex-

tractors [13, 25]. However, anytime prediction with learned

CNN based feature extractors has been evaluated primar-

ily in the image classification setting [17, 19, 23]. In con-

trast, our work with QGNs involves anytime inference for

semantic segmentation, through the inherent flexibility of

the quadtree representation.

3. Quadtree Generating Networks

In this section, we describe our deep network architec-

ture used to generate an efficient quadtree prediction for

a given input image, the Quadtree Generating Network

(QGN). Its architecture is shown in Fig. 2. We begin by in-

troducing the quadtree and T-pyramid representations, used

in calculating the loss function for training QGNs. We then

describe the three main components of our architecture:

the sparse convolutional decoder, prediction layers and skip

connections. We limit our focus in this study to the setting

where the encoder subsamples inputs by a factor of 32. Cor-

respondingly, we use a sparse convolutional decoder with 5

blocks– each block consists of several sparse convolutions

followed by an upsampling operation.

3.1. Quadtrees and T­Pyramids

A quadtree is a tree data structure in which each internal

node has exactly four children [35], see Fig. 1. Quadtrees

are the two-dimensional analog of octrees and are most of-

ten used to partition a two-dimensional space by recursively

subdividing it into four quadrants or regions. A function

defined on a pixel grid, such as a segmentation map, can be

converted to a quadtree by this kind of recursive subdivi-

sion of cells– if every pixel within a sub-cell has the same

function value, it need not be further divided, and becomes

a leaf of the quadtree assigned that specific function value.

The set of cells at a certain resolution in a quadtree is re-

ferred to as a quadtree level, denoted by l. If a fixed number

of levels is desired, the recursive subdivision process can be

started not from the whole grid, but from some initial coarse

resolution. Then, the maximal quadtree cell size, or size of

the root node, is given by this initial resolution. For exam-

ple, a maximal cell size of 32× 32 can be partitioned into a

quadtree with 6 levels.

An efficient way of storing a quadtree is using hash ta-

bles: each node in the quadtree is indexed by its key, which

is a tuple of the level and spatial location (l, x, y), and stores

a value v, which may be discrete or continuous. In the case

of semantic segmentation, the value v comes from the set

{1, ..., k} where k is the number of classes. The quadtree Q

is the set of all key-value pairs,

Q = {(l, x, y, v)}. (1)

To train networks using quadtree representations, we

would need to be able to compute the distance between two

different quadtrees, the prediction Q̂ and ground truth Q.

To this end, we would need to be able to query, for any cell

(l, x, y) in Q̂, the corresponding value in Q. This is not

trivial, as the two quadtrees may have a different structure.

The ground truth value corresponding to a prediction with

the wrong structure would be undefined. To resolve this

discrepancy, we store the ground truth Q in the a more gen-

eralized form, called a tree-pyramid (T-pyramid), denoted

as T . A T-pyramid is a ’complete’ quadtree; every node of

the T-pyramid has four children except leaf nodes; and all

leaves are on the same level, which corresponds to individ-

ual pixels in the image [37]. To efficiently construct this

kind of representation for a segmentation mask with classes

(1, ..., k), we propose the use of a merging operator M that

is applied to patches of size 2× 2,

M

([

a b

c d

])

=

{

a, if a = b = c = d

0, otherwise,
(2)

where 0 is the value assigned to a newly introduced class

that represents a mixture of multiple classes. We refer to

this as the ’composite’ class (gray cells in Fig. 1). This class

helps to encode information about the quadtree structure in

the T-pyramid representation, as any cell belonging to this

class has children at a lower level in the original quadtree.

Cells with any value other than the composite class have no

children, or are not present in the original quadtree.

Let T0 represent the level 0, or leaf nodes, of the T-

pyramid. T1 = M(T0) is obtained by applying M to all

the 2 × 2 patches in T0. Similarly, we can continue build-

ing the pyramid to as many levels as desired, by recursively

applying M,

Tl+1 = M(Tl). (3)

Loss function. We now formulate the loss function between

a quadtree prediction Q̂, and the corresponding ground truth

T-pyramid label T . At each level l in Q̂, the level loss Ll is

computed as:

2022



Block0
(1/2)

Block1
(1/4)

Block2
(1/8)

Block3
(1/16)

Block4
(1/32)

Q̂5

Trans4

+

Q̂4

Trans3

+

Q̂3

Trans2

+

Q̂2

Trans1

+

Q̂1

Trans0

Q̂0

Figure 2. QGN network architecture, consisting of an encoder, decoder, skip connections and prediction layers. Subsampling layers in the

encoder are shown in red, and upsampling layers in the decoder in blue. Prediction layers with the softmax activation are shown below

the main architecture in purple. The first such prediction layer is placed immediately after the encoder, for which the output Q̂5 is of

resolution 1

32
compared to the input, and forms the root node of the quadtree. Prediction layers after each skip connection the decoder

produce additional quadtree levels Q̂4, ..., Q̂0 (best viewed in color).

Ll =
1

N

N
∑

i=1

H(vi, T (l, xi, yi)), (4)

where H is the cross-entropy loss function over the k +
1 classes that may be taken by vi (composite + k actual

classes). T is a query function on the T-pyramid that returns

the value of the corresponding hash table key,

T (l, x, y) = v. (5)

The overall loss is a weighted sum of the loss at each

level, given by:

L =
∑

l∈Q

βlLl. (6)

Loss weighting. We experiment with two approaches for

weighting the loss at different levels of the quadtree (Eq. 6):

(i) Fixed, where we scale the weight assigned to each layer

by a multiplicative hyper-parameter γ with respect to the

preceding layer’s weight (with β0 = 1),

βl+1 = γβl; (7)

and (ii) Adaptive, where we use a running average value of

the loss at that scale as a weight, as in [17]:

βi+1

l = δβi
l + (1− δ)Li

l, (8)

where i is the training iteration index, each βl is initialized

to 1, and δ = 0.99 in our experiments.

Sparse activations. To compute Ll as defined in Eq. 4, the

desired output from our network architecture is a quadtree

prediction Q̂. Our decoder generates the entries of Q̂ in a

level-by-level manner.

Let the network activation Al have a resolution corre-

sponding to the quadtree level Q̂l. For example, after pass-

ing through a typical state-of-the-art deep encoder, which

subsamples the input by a factor of 32, the activations A5

would correspond to the quadtree level Q̂5.

Al is typically stored as a tensor of dimensions Wl ×
Hl × Cl. However, in our decoder, we store the activations

as hash tables,

Al = {(x, y, v)}, (9)

where x ∈ {1, ...,Wl}, y ∈ {1, ..., Hl}, and v ∈ R
Cl . Note

that, the T-pyramid labels (Eq. 3) are quadtrees, whose val-

ues v are class indices. On the other hand, sparse activations

(Eq. 9) are hash tables, whose values v are float numbers

identical to those used in the tensor representation.

3.2. Architecture Components

Sparse convolutions. Sparse convolutions are the funda-

mental building blocks of our decoder. For any sparse ac-

tivation Al (Eq. 9), we define a to be a set of active sites,

2023



which can be any subset of all spatial locations in Al. A

sparse convolutional layer with kernel W , bias b and active

sites a operates on only the set of values at these active sites,

generating an new activation map A′

l = (x, y, v′) with the

same active sites as the input, through a transformation to

its values:

v′ =

{

Wv + b, if (x, y) ∈ a

0, otherwise.
(10)

Using this procedure, multiple sparse convolutional lay-

ers can be used to propagate activations through the network

in hash table form, without changing the active sites [10].

Upsampling. After a set sparse convolutions, each block in

our decoder is differentiated from the next block through an

upsampling operation. Upsampling changes the resolution,

and hence the quadtree level of the activation, from l to l−1.

We perform this operation through 2 × 2 nearest neighbor

interpolation, an operation that doubles the resolution of the

activation (i.e., Wl−1 = 2Wl and Hl−1 = 2Hl). Al−1 is

obtained as follows:

Al−1 = {(2x, 2y, v), (2x+ 1, 2y, v), (2x, 2y + 1, v),

(2x+ 1, 2y + 1, v)} ∀ (x, y, v) ∈ Al. (11)

Skip connections. To allow the deeper layers in the decoder

to access high-frequency information from early in the en-

coder, otherwise lost due to subsampling, we incorporate

additional 1 × 1 convolutional skip connections from the

encoder to its corresponding block in the decoder, as shown

at the top of Fig. 2. Skip connections are essential for a

decoder with our choice of upsampling operation, since the

upsample described in Eq. 11 produces outputs Al−1 that

have identical values in local 2 × 2 blocks at the finer res-

olution. By adding non-identical features from the encoder

to the identical features coming from the previous block in

the decoder, we obtain a unique feature value at each spatial

resolution in Al−1.

Prediction layers. A 1 × 1 convolutional prediction layer

is used to generate Q̂l from the activation Al (downward ar-

rows in Fig. 2). Prediction layers use a softmax activation

over k + 1 channels, corresponding to the k-way classifi-

cation problem in the dataset, and the additional composite

class. At train time, the level-wise loss from Eq. 4 is com-

puted at each of these prediction layers. Inference at test-

time is conducted by accumulating the predictions made at

the leaf nodes of Q̂. In case the composite class has the

highest confidence at any leaf node, the class with second-

highest confidence is assigned as the prediction at that pixel

instead.

3.3. Propagation Schemes

An important component of the optimization is the

choice of active sites a that are propagated at each level

of the decoder, which we call the propagation scheme. The

choice of propagation scheme is extremely flexible– for ex-

ample, certain high-priority classes could be propagated,

while efficiency is maintained by not propagating entries as-

signed to other classes. As another use case, an entire block

of the decoder could be left unpropagated by choosing no

active sites, when fine detailed segmentation is not neces-

sary. In this work, we focus our attention on three different

propagation schemes: (i) All; (ii) GT Composite; and (iii)

Predicted Composite.

All. All pixels are propagated through the complete decoder

till the leaf nodes. Serves as a baseline with the maximum

possible memory consumption, and can be used during both

training and inference, given sufficient resources.

Ground Truth Composite (GTC). The quadtree represen-

tation of the ground truth segmentation mask is used to de-

cide which pixels to propagate. Only pixels of the composite

class in the ground truth are selected as active sites at any

given layer in the network. Due to the sparsity in ground

truth, this leads to significantly reduced memory consump-

tion. In practice, this mode of operation is useful when there

is access to the ground truth (during training) but cannot

be used for inference. However, in our experiments, we

include results for inference with this propagation scheme,

as an upper bound on the performance of QGNs in a low-

memory consumption setting. Similar upper bounds have

been used previously to identify the gaps in performance

and improve an algorithm (eg. [32]).

Predicted Composite (PC). Only pixels predicted by the

network to be of the composite class are propagated. This

can lead to high sparsity, and also does not require access to

ground truth, and is therefore suitable for inference. How-

ever, it relies heavily on the network’s performance on the

composite class, and, in practice, we found this scheme to

be unreliable for training from scratch. Gains in perfor-

mance could be obtained by fine-tuning a model obtained

with GTC by using PC, and other variations on the propa-

gation scheme that combine different aspects of All, GTC

and PC; but we leave this investigation to future work.

4. Experiments

In this section, we demonstrate the benefits of Quadtree

Generating Networks on three publicly available semantic

segmentation datasets: Cityscapes [6], SUN-RGBD [36]

and ADE20K [49]. We also include ablation studies where

we first analyze sparsity of each dataset and then, the mem-

ory consumption of our approach compared to typical di-

lated ResNet based architectures.

Implementation. Our QGN encoder and decoder architec-

tures are based on ResNets [15]. We use the ResNet-50

architecture as our encoder unless otherwise specified. For

our decoder, we use a transposed ResNet, similar to the net-

work proposed in [22]. To implement sparse convolutions

2024



Table 1. Cityscapes: Pixel accuracy (%) and mean IoU (%) of

the proposed approach with different propagation schemes and

loss weighting mechanisms. Adaptive loss weighting, and fixed

weighting with γ = 1, give the best results.

Eval Mode

Train Mode Loss All GTC PC

Acc mIoU Acc mIoU Acc mIoU

All

γ = 0.75 96.25 77.49 95.84 72.17 95.38 71.13

γ = 1 96.24 77.95 95.94 72.97 95.42 71.53

γ = 1.25 96.17 77.25 95.95 73.02 95.35 71.52

Adaptive 96.33 78.20 95.76 72.89 95.20 71.33

GTC

γ = 0.75 15.88 13.58 97.76 80.13 95.16 72.16

γ = 1 32.59 17.25 97.69 80.67 95.42 72.44

γ = 1.25 19.98 14.39 97.66 80.31 95.41 72.56

Adaptive 31.00 18.25 97.81 81.50 95.33 73.00

in the decoder, we use the SparseConvNet framework for

PyTorch, introduced with submanifold sparse convolutional

networks [11]. Please refer to the supplementary material

for more details regarding the experimental setup and de-

coder architecture.

4.1. Results on Cityscapes

Cityscapes [6] is a street scene segmentation dataset,

consisting of 2048× 1024 fine pixel-annotated images col-

lected from streets in various European cities. There are

2,975 images in the training set and 500 images for vali-

dation. The segmentation task is over 19 commonly ob-

served classes in these street scenes, such as road, car,

pedestrian, traffic sign, etc. The high-resolution images in

this dataset make existing segmentation networks consume

large amounts of memory. QGNs are an ideal solution to

address this challenge.

In our first experiment, we evaluate the three propagation

schemes (All, GTC and PC as detailed in Section 3.3), when

QGNs are trained using All and GTC. While GTC evalua-

tion is not practically applicable, the gap in performance

between GTC and PC evaluation helps us to better under-

stand the strengths and weaknesses of the proposed algo-

rithm. We also compare the two loss weighting approaches

from Eq. 7 and Eq. 8 in this experiment. Our results are

summarized in Table 1.

As shown, when training with the All propagation

scheme (that has higher memory consumption), best results

are observed for adaptive loss weighting, when the network

is also evaluated with the All propagation scheme, achiev-

ing 78.20 mIoU. When evaluated with GTC or PC, the dif-

ferent loss weighting approaches do not significantly im-

pact performance, and the network obtains 73.02 and 71.53

mIoU respectively. Importantly, this shows that the same

networks that obtain 78.20 mIoU when evaluated with All,

can be modified at inference with a different propagation

scheme such as PC, and still achieve competitive mIoU.

In comparison, networks trained with GTC perform

poorly in the All evaluation mode. This is likely due to

Table 2. Cityscapes: Activation memory consumption (GB),

FLOPs (×10
12), and mean IoU (%) of the proposed approach in

comparison to state-of-the-art dilation-based methods on the vali-

dation set, for input resolution 2048×1024. QGN results are with

adaptive loss weighting. Our approach significantly outperforms

dilated networks with similar memory consumption, and provides

competitive results to state-of-the-art models that are computation-

ally more intensive.

Method Model Memory TFLOPs mIoU

Dilation

DRN-C-42 [43] 3.77 1.07 70.9

DRN-D-105 [43] 15.15 1.91 75.6

DeepLabv3 [4] 14.27* 1.97* 79.3

CCNet [20] 14.33* 1.55* 79.8

QGN (Ours)
Train-All-Eval-All 5.85 0.48 78.2

Train-GTC-Eval-PC 3.66 0.25 73.0
* indicates an estimate based on architecture details

the fact that the training distribution observed by the deeper

layers in the GTC decoder is very different from the train-

ing distribution for All, and the final prediction layer is not

suitable for assigning labels to all the pixels in an image.

When evaluating with the GTC propagation scheme for this

model, we observe the best results for adaptive loss weight-

ing. The obtained 81.50 mIoU is an upper bound on perfor-

mance with QGNs in the low-memory consumption regime.

Interestingly, this performance exceeds that of state-of-the-

art architectures such as DeepLabv3 and CCNet, which rely

on deeper networks and additional context modules. Fi-

nally, while evaluating with PC, both γ = 1 and adaptive

loss weighting perform well. The gap in performance be-

tween GTC and PC evaluation helps us isolate the impact

of the quadtree ’structure prediction’ and final ’label assign-

ment’ tasks performed by the QGN on performance. Based

on the observed gap (8.5 points), we see that ’structure pre-

diction’ is the main challenge for improving our approach.

Comparison to dilated convolutions. We focus now on

comparing our best results with PC evaluation to exist-

ing semantic segmentation networks that use dilated con-

volutions in the encoder. Table 2 summarizes our re-

sults in terms of memory consumption, FLOPs and mIoU.

As shown, QGNs with Train-GTC-Eval-PC provide a 3%

relative mIoU improvement over the DRN-C-42 network,

which consumes a similar amount of memory. Further,

they only have a 3% less relative mIoU compared to the

DRN-D-105 network, which consumes 4× more memory

and 6× more compute. DeepLabv3 and CCNet provide

slightly better results than our proposal. However, they re-

quire deeper backbone networks, specialized context mod-

ules, and at least 2.5× more memory and 3× more compute

than QGNs.

From these results, we can conclude that adaptive loss

weighting, and fixed weighting with γ = 1, give the best

performance. Further, training with GTC leads to maxi-

mum performance when evaluating with PC, but training

with All gives networks that can be adaptively modified at

2025



Table 3. SUN-RGBD: Pixel accuracy (%) and mean IoU (%) of

the proposed approach on the 13-way and 37-way validation sets.

All methods use γ = 1. Relative performance of the 3 propagation

schemes is similar across both datasets.
Eval Mode

Train Mode All GTC PC

Acc mIoU Acc mIoU Acc mIoU

SUN-RGBD-13

All 85.32 62.70 81.92 55.76 82.59 56.65

GTC 66.91 36.03 87.12 64.57 84.08 59.19

SUN-RGBD-37

All 80.69 44.11 77.26 37.88 78.05 39.13

GTC 65.24 28.10 82.36 45.36 79.26 41.10

inference time with competitive results when evaluated with

all 3 propagation schemes. Of special interest is the low

memory requirement of our approach (see Table 2): con-

trary to methods such as DeepLabv3 or CCNet which need

to process full resolution images in parts on a standard GPU

with 12GB of memory, our proposal can process 2 or 3

frames in parallel on the same GPU at full resolution. As

a result, our architecture could be used to process consec-

utive frames in batches allowing for improved throughput,

or perform multi-scale fusion during inference to improve

performance.

4.2. Results on SUN­RGBD

The focus of our next experiment is to analyze the impact

of increasing the number of classes on different propagation

schemes. To this end, we use the SUN-RGBD dataset [36],

an indoor scene segmentation benchmark that consists of

two segmentation tasks (13 and 37 categories) with 5,285

RGB-D training images and 5,050 test images. We use

the same experimental setting as the one used for the first

Cityscapes experiment.

Table 3 summarizes our results. As shown, with respect

to the propagation scheme, the trend remains similar to

Cityscapes: the GTC upper bound provides the best perfor-

mance, followed by All, and then PC. On SUN-RGBD-37,

our QGN based on a ResNet-50 encoder evaluated using All

provides competitive results (44.11 mIoU) to the 45.90 of

RefineNet [24] which builds upon a ResNet-152 backbone,

and is the state-of-the-art for this task. Regarding the influ-

ence of the number of classes, our results show no signifi-

cant difference in terms of relative mIoU of the best GTC

and PC results with respect to All (1.03 and 094 for SUN-

RGBD-13; and 1.03 and 0.93 on SUN-RGBD-37). These

results suggest that the number of classes has no significant

impact on the performance of our approach.

4.3. Results on ADE20k

ADE20k [48, 49] is a recent scene parsing benchmark

with a large number of classes (150 total classes, with 35

stuff classes, i.e., road, sky, wall... which occupy 61% of

the pixels in the dataset, and 115 thing classes, i.e., table,

Table 4. ADE20k: State-of-the-art performance comparisons in

terms of pixel accuracy (%) and mean IoU (%) on the validation

set. All QGN results are with the Train-All-Eval-All models, and

γ = 1. All Dilation based numbers are obtained from the re-

spective papers. With PSPNet, QGNs outperform Dilation, and

provide competitive results to other recent context modules in lit-

erature.
Context Encoder Method Acc mIoU

PSPNet [46]

ResNet-50
Dilation 80.76 42.78

QGN (Ours) 80.43 41.42

ResNet-101
Dilation 81.39 43.29

QGN (Ours) 81.67 43.91

SAC [45]

ResNet-101 Dilation

81.86 44.30

EncNet [44] 81.69 44.65

PSANet [47] 81.51 43.77

CCNet [20] - 45.22

Table 5. Percentage of pixels in the three datasets (at original reso-

lutions) assigned to each level in a 6-level quadtree representation.

The final column indicates the average ratio of memory occupied

by the efficient quadtree representation in comparison to dense

pixel grid segmentation masks for that dataset (in %). We observe

that a large fraction of the pixels belong to larger cells, with less

than 3% at the leaf (Q0) nodes, leading to compression ratios of

95% or more. See supplemental for a further visual comparison of

quadtree representations and dense pixel grids.

Dataset Split Q5 Q4 Q3 Q2 Q1 Q0 Ratio

Cityscapes
train 66.34 14.21 9.18 5.52 3.02 1.70 3.07 %

val 65.12 14.44 9.53 5.85 3.22 1.81 3.25 %

SUN-RGBD

train-13 56.26 18.22 11.78 7.09 4.20 2.43 4.24 %

val-13 55.57 18.50 11.98 7.22 4.27 2.46 4.29 %

train-37 56.11 18.27 11.82 7.12 4.22 2.44 4.25 %

val-37 55.40 18.54 12.03 7.25 4.29 2.47 4.31 %

ADE20k
train 47.48 21.40 14.44 8.68 5.05 2.93 5.09 %

val 47.25 21.44 14.49 8.74 5.10 2.96 5.14 %

person, car... which occupy 32% of the pixels). The dataset

consists of natural images of a variety of indoor and out-

door scenes, with 20,210 training images and 2,000 valida-

tion images. The large proportion of thing classes makes

ADE20k a challenging task that requires a lot of contextual

reasoning. In order to counter these challenges, existing re-

sults involve the use of dilated convolutions, in combination

with a specialized module after the encoder that improves

contextual reasoning [20, 44–47].

For our experiments on this task, we use a modified ver-

sion of QGNs, inserting a PSPNet [46] module in between

our encoder and decoder. This allows us to check the com-

patibility of QGNs with specialized context modules. We

compare our approach to state-of-the-art results with both

ResNet-50 and ResNet-101 backbones.

Our results are shown in Table 4. With PSPNet, QGNs

outperform dilation on ResNet-101, showing the potential

of QGNs as a generic approach that can be paired with exist-

ing context modules in literature. The achieved 43.91 mIoU

is also competitive to the state-of-the-art obtained with more

2026



Table 6. Average forward pass activation memory consumption with different model architectures (in GB) for segmentation of an image

from the validation datasets used in our experiments. R50 denotes ResNet-50 and R101 denotes ResNet101. All and GTC correspond to

the propagation schemes detailed in Section 3. Dil denotes dilation in the encoder, and the corresponding ’Decoder Only’ memory refers

to a single 1 × 1 convolution as a decoder. The architectures with the lowest and highest memory consumption for each backbone are

marked in bold and italic respectively. QGNs consume significantly less memory than dilation based networks.

Architecture Decoder Only Encoder-Decoder Encoder-Decoder

Dataset Dil All GTC R50-Dil R50-All R50-GTC R101-Dil R101-All R101-GTC

Cityscapes 0.15 2.28 0.09 7.52 5.85 3.66 13.89 7.44 5.26

SUN-RGBD-13 0.01 0.27 0.02 0.98 0.71 0.46 1.72 0.91 0.66

SUN-RGBD-37 0.04 0.31 0.03 1.01 0.75 0.47 1.75 0.95 0.67

ADE20k 0.17 0.53 0.08 1.31 1.05 0.60 2.18 1.29 0.84

recent context modules. Our results indicate that there may

be further gains by using QGNs as a drop-in replacement

for dilation in these newer segmentation approaches.

4.4. Memory footprint analysis

Dataset sparsity. To evaluate the efficiency of quadtree

representations, we convert the provided ground truth seg-

mentation masks in each dataset into 6-level quadtrees and

analyze the sparsity of the representation in Table 5. We ob-

serve that there is significant redundancy across all datasets,

with less than 3% of the pixels in the dataset being as-

signed to the leaf nodes of the quadtree. The proposed

representation eventually occupies orders of magnitude less

memory than the typical dense pixel grid. The compres-

sion ratio is maximum (around 97%, or 33×) for higher-

resolution images with few classes (Cityscapes) and mini-

mum (around 95%, or 20×) for lower-resolutions with more

classes (ADE20k). Further analysis of the dataset spar-

sity, in terms of visualizations of the quadtree representa-

tion for validation images from the Cityscapes and ADE20k

datasets, is provided in the supplemental material.

Activation memory footprint. The actual reduction in

memory footprint achieved through QGNs depends on a

number of factors besides the dataset sparsity, including

the input resolution, network architecture and propagation

scheme. It is important to note that the reduction in memory

footprint with our approach comes only with respect to the

feature activations (which form a majority of the occupied

memory during training) and not the model parameters.

To evaluate the actual memory reduction, we compare

the forward pass memory consumption of QGNs with the

All and GTC propagation schemes, using ResNet-50 and

ResNet101 backbones, to networks based on dilated convo-

lutions. When using dilated convolutions, dilate the last 2

residual blocks of the encoder (Block3 and Block4) so that

the feature maps produced are 8 times smaller than the in-

put resolution along each dimension. We remove the QGN

decoder, and use a single 1× 1 convolutional layer as a de-

coder with these dilated encoders to obtain the logits. We

use bilinear interpolation on the logits to recover a predic-

tion at the same resolution as the input. The QGN decoder

has a parameter overhead of around 0.12GB as opposed to a

single 1× 1 convolutional layer, but this overhead is negli-

gible compared to the memory gains for QGNs through the

activations, as summarized in Table 6.

For the same backbone network, a QGN encoder-

decoder is more memory efficient than a dilated network,

even when operating with the All propagation scheme (R50-

All and R101-All). Furthermore, when using the GTC

propagation scheme, the decoder activations consume sig-

nificantly less memory (<0.1GB), sometimes less than the

memory consumed by a single 1 × 1 convolution used as

a decoder with dilation. Overall, our GTC approach con-

sumes up to 2.6× less memory than a dilation based net-

work using the same backbone architecture, while maintain-

ing similar performance (see Tables 2 and 4).

While QGNs are designed to reduce decoder memory, a

key advantage is that the QGN decoder enables us to use a

stride 32 backbone without losing performance. As a result,

our decoder is implicitly responsible for the memory reduc-

tions observed in the encoder. Existing methods perform

poorly when the encoder is replaced with a higher stride

network. For example, when compared to a DeepLabv3 de-

coder + ResNet-50 stride 32 encoder (from [4]), which only

obtains 70.0 mIoU on Cityscapes, our method achieves a

4.3% better relative mIoU of 73.0 (see Table 2).

5. Conclusion

In this paper, we presented Quadtree Generating Net-

works (QGNs) for semantic segmentation. The key idea

is to make predictions as a hierarchical quadtree instead of

a dense rectangular grid, using a sparse convolutional de-

coder. Our results on three public benchmarks demonstrate

that QGNs can process high-resolution images and outper-

form those approaches that have similar memory consump-

tion. In addition, our results are competitive when com-

pared to state-of-the-art methods while consuming 2× to

4× less memory. Moreover, our approach is flexible and

can be adapted at inference time to trade-off between per-

formance and memory consumption.

Acknowledgements. We would like to thank Yash Patel for

several insightful comments and discussions.

2027



References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. PAMI, 2012. 1

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. PAMI, 2017. 2

[3] C. A. Bouman and M. Shapiro. A multiscale random field

model for bayesian image segmentation. IEEE Trans. Img.

Proc., 1994. 2

[4] L. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking atrous convolution for semantic image segmenta-

tion. arXiv e-prints, 2017. 1, 2, 6, 8

[5] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-Decoder with Atrous Separable Convolution for Se-

mantic Image Segmentation. ECCV, 2018. 2

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In CVPR, 2016. 5, 6

[7] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning

hierarchical features for scene labeling. PAMI, 2013. 1

[8] X. Feng and C. K. I. Williams. Training bayesian networks

for image segmentation. Proc. SPIE, 1998. 2

[9] J. Fu, J. Liu, H. Tian, Z. Fang, and H. Lu. Dual attention

network for scene segmentation. arXiv e-prints, 2018. 2

[10] B. Graham. Sparse 3D convolutional neural networks.

BMVC, 2015. 5

[11] B. Graham, M. Engelcke, and L. van der Maaten. 3d se-

mantic segmentation with submanifold sparse convolutional

networks. CVPR, 2018. 2, 6

[12] J. Grass and S. Zilberstein. Anytime algorithm development

tools. SIGART Bull., 1996. 3

[13] A. Grubb, D. Munoz, J. A. Bagnell, and M. Hebert. Speed-

Machines: Anytime Structured Prediction. arXiv e-prints,

2013. 3

[14] B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik.

Hypercolumns for object segmentation and fine-grained lo-

calization. CVPR, 2015. 2

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2, 5

[16] X. He, R. S. Zemel, and M. A. Carreira-Perpinan. Multi-

scale conditional random fields for image labeling. In CVPR,

2004. 1

[17] H. Hu, D. Dey, M. Hebert, and J. A. Bagnell. Learning Any-

time Predictions in Neural Networks via Adaptive Loss Bal-

ancing. AAAI, 2018. 3, 4

[18] H. Hu, A. Grubb, J. A. Bagnell, and M. Hebert. Efficient

Feature Group Sequencing for Anytime Linear Prediction.

UAI, 2016. 3

[19] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and

K. Q. Weinberger. Multi-Scale Dense Networks for Resource

Efficient Image Classification. ICLR, 2018. 3

[20] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu.

CCNet: Criss-Cross Attention for Semantic Segmentation.

arXiv e-prints, 2018. 2, 6, 7

[21] P. K. Jayaraman, J. Mei, J. Cai, and J. Zheng. Quadtree con-

volutional neural networks. In ECCV, 2018. 2

[22] J. Jiang, L. Zheng, F. Luo, and Z. Zhang. Rednet: Residual

encoder-decoder network for indoor rgb-d semantic segmen-

tation. arXiv e-prints, 2018. 5

[23] H. Lee and J. Shin. Anytime Neural Prediction via Slicing

Networks Vertically. arXiv e-prints, 2018. 3

[24] G. Lin, A. Milan, C. Shen, and I. Reid. RefineNet: Multi-

path refinement networks for high-resolution semantic seg-

mentation. In CVPR, 2017. 2, 7

[25] B. Liu and X. He. Learning Dynamic Hierarchical Models

for Anytime Scene Labeling. ECCV, 2016. 3

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 1, 2

[27] W. Luo, Y. Li, R. Urtasun, and R. Zemel. Understanding

the effective receptive field in deep convolutional neural net-

works. In NIPS. 2016. 2

[28] H. Noh, S. Hong, and B. Han. Learning Deconvolution Net-

work for Semantic Segmentation. ICCV, 2015. 1, 2

[29] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learn-

ing to refine object segments. In ECCV, 2016. 2

[30] M. Ren, A. Pokrovsky, B. Yang, and R. Urtasun. Sbnet:

Sparse blocks network for fast inference. CVPR, 2018. 2

[31] G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learning

deep 3d representations at high resolutions. In CVPR, 2017.

2

[32] G. Roig, X. Boix, R. D. Nijs, S. Ramos, K. Kuhnlenz, and

L. V. Gool. Active map inference in crfs for efficient seman-

tic segmentation. In ICCV, 2013. 5

[33] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Ar-

royo. Erfnet: Efficient residual factorized convnet for real-

time semantic segmentation. IEEE Trans. Int. Transp. Sys.,

19(1):263–272, Jan 2018. 1

[34] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. MIC-

CAI, 2015. 1, 2

[35] H. Samet. The quadtree and related hierarchical data struc-

tures. ACM Comput. Surv., 16(2):187–260, June 1984. 2,

3

[36] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d

scene understanding benchmark suite. In CVPR, 2015. 5, 7

[37] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Anal-

ysis, and Machine Vision. Thomson-Engineering, 2007. 2,

3

[38] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree gen-

erating networks: Efficient convolutional architectures for

high-resolution 3d outputs. ICCV, 2017. 2

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention Is All

You Need. NIPS, 2017. 2

[40] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local Neu-

ral Networks. CVPR, 2017. 2

[41] Z. Wojna, V. Ferrari, S. Guadarrama, N. Silberman, L.-C.

Chen, A. Fathi, and J. Uijlings. The Devil is in the Decoder.

BMVC, 2018. 2

[42] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun. Unified Per-

ceptual Parsing for Scene Understanding. ECCV, 2018. 2

2028



[43] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. In ICLR, 2016. 2, 6

[44] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and

A. Agrawal. Context encoding for semantic segmentation.

In CVPR, 2018. 7

[45] R. Zhang, S. Tang, Y. Zhang, J. Li, and S. Yan. Scale-

adaptive convolutions for scene parsing. In ICCV, 2017. 2,

7

[46] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene

parsing network. In CVPR, 2017. 1, 2, 7

[47] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and

J. Jia. PSANet: Point-wise spatial attention network for

scene parsing. In ECCV, 2018. 2, 7

[48] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Tor-

ralba. Scene parsing through ade20k dataset. In CVPR, 2017.

7

[49] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso,

and A. Torralba. Semantic understanding of scenes through

the ade20k dataset. IJCV, 2018. 5, 7

2029


