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Abstract

Skeleton-based action recognition has recently attracted
a lot of attention. Researchers are coming up with new ap-
proaches for extracting spatio-temporal relations and mak-
ing considerable progress on large-scale skeleton-based
datasets. Most of the architectures being proposed are
based upon recurrent neural networks (RNNs), convolu-
tional neural networks (CNNs) and graph-based CNNs.
When it comes to skeleton-based action recognition, the
importance of long term contextual information is central
which is not captured by the current architectures. In order
to come up with a better representation and capturing of
long term spatio-temporal relationships, we propose three
variants of Self-Attention Network (SAN), namely, SAN-V1,
SAN-V2 and SAN-V3. Our SAN variants has the impressive
capability of extracting high-level semantics by capturing
long-range correlations. We have also integrated the Tem-
poral Segment Network (TSN) with our SAN variants which
resulted in improved overall performance. Different config-
urations of Self-Attention Network (SAN) variants and Tem-
poral Segment Network (TSN) are explored with extensive
experiments. Our chosen configuration outperforms state-
of-the-art Top-1 and Top-5 by 4.4% and 7.9% respectively
on Kinetics and shows consistently better performance than
state-of-the-art methods on NTU RGB+D.

1. Introduction

Video-based action recognition has been an active re-
search topic due to its important practical applications in
many areas, such as video surveillance, behavior analysis,
and video retrieval. Human action recognition can also be
applicable to human-computer interaction or human-robot
interaction to help machines understand human behaviors
better [39, 21, 4]. Unlike a single image that contains only
spatial information, a video provides additional motion in-
formation as an important cue for recognition. Although
a video provides more information, it is non-trivial to ex-
tract the information due to a number of difficulties such as
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Figure 1: An example of self-attention response from the
last self-attention layer. Eight frames are uniformly sam-
pled from an action with the class ‘put on jacket’ and il-
lustrated as frame O to 7. Frame O has the strongest cor-
relation with the last frame, frame 7, at the fourth head
B, and attends heavily itself at the second head . Note
that with the self-attention network each frame is associated
with other frames so that local and global context informa-
tion can be acquired.

viewpoint changes, camera motions, and scale variations,
to name a few. There has been extensive research in RGB
video-based action recognition and one of the mainstream
methods is to employ both temporal optical flow and spatial
appearance to obtain spatial and temporal information [25]

The RGB video datasets typically contain an extensive
amount of data to process, hence require large models and
resources to train them properly. On the other hand, skele-
ton based action recognition comprises of only key joint lo-
cations of human bodies. With the advent of cost-effective
depth cameras [42], stereo cameras, and the advanced tech-
niques for human pose estimation [2], the cost to obtain
key points has reduced and skeleton-based human action
recognition has garnered increasing attraction [1, 7, 40]. Al-
though the key joint locations dont include appearance in-
formation, humans are able to recognizing actions from the
motion of a few human skeleton joints according to Johans-
son [11]. In this paper, we focus on human action recogni-
tion based on 3D skeleton sequences.
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To extract information from skeleton sequences, many
works naturally apply recurrent neural networks (RNNs)
to model temporal dynamics [22, 18, 41]. They also uti-
lize CNNs to model spatio-temporal dynamics by treating
the 3D skeleton data as 2D pseudo images with 3 channels
[17, 36]. Another method is to retrieve structure informa-
tion of human body by constructing a graph with human
joints as edges [40], which also based on CNNs. Despite
the significant improvements in performance, there exist a
problem to be solved. Both recurrent and convolutional op-
erations are neighborhood-based local operations [38] ei-
ther in space or time; hence local-range information is re-
peatedly extracted and propagated to capture long-range de-
pendencies. Many works have designed networks with hi-
erarchical structure [7, 16, 3] to obtain longer range and
deeper semantic information but the problem still persists
if there are back and forth semantic dependencies.

In this paper, we propose a novel model with Self-
Attention Network (SAN) to overcome the above limitation
and retrieve better semantic information (Fig. 1). Fig. 2
shows the overall pipeline of our model. The framework is
motivated by temporal segment network [35] that extracts
short-term information from each video sequence. Our
model extracts semantic information from each video se-
quence by SAN variants. SAN-Variants take a sequence of
features from encoded signals and computes the response at
each position as a weighted sum of features at all positions.
This operation enables SAN-Variants to correlate features
in distance or even in opposite direction. The predicted out-
puts based on each clip are merged with consensus opera-
tions to capture deeper semantic understanding. Therefore,
our model can effectively solve the problem of acquiring
long-term semantic information. Experimental results show
that the learned SAN variants outperforms state of the art
methods on challenging large scale datasets. We also vi-
sualize the attention correlations trying to understand how
the network works and provide some insights. The main
contributions of the paper are summarized as follows:

1. We propose Self Attention Network (SAN) variants
SAN-V1, SAN-V2 and SAN-V3 for effectively captur-
ing deep semantic correlations from action sequences
involving human skeleton.

2. We have integrated the Temporal Segment Network
(TSN) with our SAN variants. We observed improved
performance because of this integration of TSN and
SAN variants.

3. We visualize self-attention probabilities to show how
each frame is correlated with other frames.

4. Our proposed method achieves state-of-the-art re-
sults on two large scale datasets: NTU RGB+D and
Kinetics-skeleton
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Figure 2: The overall pipeline of the proposed model. The
network takes as inputs temporally segmented clips and ex-
tracts contextual information from each snippet by one of
SAN variants described in section 4.3. Predictions of each
snippet are fused to compute the final prediction.

2. Related Work

Handcrafted features are used to represent the skeleton
motion information in early works. [10] computes covari-
ance matrix for joint positions over time. [31] extracts 3D
geometric relationships of body parts in Lie group based on
rotations and translations of joints. With further progress in
deep learning, researchers started using Recurrent Neural
Networks to extract temporal dynamics between joints as
RNNSs use sequential processing. [7] proposes a hierarchi-
cal RNN that splits the human body into five parts with each
part fed into different subnetworks and fuses them hierar-
chically. [22] splits a cell in an LSTM into part based cells
and human body parts are applied to each cell to learn a rep-
resentation of each part over time. [43] proposes a spatio-
temporal LSTM network that learns the co-occurrence fea-
tures of skeleton joints with a group sparse regularization.
[18] introduces trust gate to reduce the influence of noisy
joints and employs a spatio-temporal LSTM network to ex-
plore the spatila and temporal relationships. [26] intro-
duces attention mechanism in the LSTM network to focus
on more important joints at each time instances. In recent
works, CNN based approaches [13, 6, 19, 37] are adopted
to learn skeleton features and achieves significant perfor-
mance. They attempt to convert a skeleton sequence into
pseudo images and utilize CNNs to learn. [6] maps a skele-
ton sequence to a tensor with frames, joints, and xyz co-
ordinates treating it as image and leverages CNNss to train.
[13] proposes a method to use relative positions between the
joints and the reference joints based on CNNs. [37] maps
trajectories of joints to orthogonal planes by using the 2D
projection. CNNs are also employed in our method to ob-
tain more informative features from the raw skeleton joints.
However, while the aforementioned RNNs and CNNs lack
the ability to extract long-term correlation between fea-
tures, our proposed method fills the gap to obtain high-level
semantic information with long-range connections of fea-
tures.
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A self-attention network learns to generate hidden state
representations for a sequence of input symbols using a
multi-layer architecture [30]. The hidden states of the
upper layer are built from the hidden states of the lower
layer using a self-attention mechanism. It learns to aggre-
gate information from lower layer hidden states according
to their similarities to the ¢-th hidden state. The learned
representations are highly effective because they capture
deep contextualized information of the input sequence. The
self-attentive network with multi-head attention has demon-
strated success on a number of tasks including machine
translation [30, 28], language modeling and natural lan-
guage inference [5], semantic role labeling [27], often sur-
passing recurrent neural networks by a substantial mar-
gin. Particularly, [30] describes the Transformer model that
makes the self-attention mechanism an integral part of the
architecture for improved sequence modeling. [5] learns
deep contextualized word representations that have led to
state-of-the-art performance on question answering and nat-
ural language inference without task-specific architecture
modifications. Despite the success, self-attentive networks
have been less investigated for the task of skeleton-based
action recognition. In this paper, we introduce a novel self-
attentive architecture to fill this gap.

Temporal information can be extracted from a sequence
data or a video. Many research endeavors have introduced
methods for modeling the temporal structure for action
recognition [20, 34, 8]. [20] proposes to employ latent vari-
ables to decompose complex actions in time and [34] intro-
duces a latent hierarchical model that extends the temporal
decomposition of complex actions. [8] utilizes a rank SVM
to model the temporal evolution of BoVW representations.
[35] introduces a method to model a long-range temporal
structure by simply splitting a video into snippets and fusing
CNN outputs from each part. We adopt this method since
it effectively extracts long-range temporal information and
also is applicable to any network with end-to-end training.

3. Self-Attention Network

In this section, we briefly review the Self-attention net-
work. Self-attention network [30] is a powerful method
to compute correlation between arbitrary positions of a se-
quence input. An attention function consists of a query Ag,
keys Ak, and values Ay where query and keys have same
vector dimension dy, and values and outputs have same size
of dimension d,,. The output is computed as a weighted sum
of the values, and the weight assigned to each value is com-
puted by scaled dot-product of query and keys. The vectors
of query Ag, keys Ak and values Ay are packed in a ma-
trix generating Q, K, and V matrices. Then the attention

function is defined as

Attention (Q,K,V) = softmax Q—KT VvV, (@)
Y ? \/(Tk )

where \/% is a scaling factor.The equation computes scaled
k

dot-product attention and the network computes the atten-
tion multiple times in parallel (multi-head) to extract differ-
ent correlation information. The multi-head attention out-
puts are concatenated and transformed to the same vector
dimension the input sequence. A residual connection is
adopted to take the input and output of the multi-head self-
attention layer and a layer normalization is applied to the
summed output. A fully-connected feed-forward network
with a residual connection is applied to the normalized self-
attention output. The entire network is illustrated as a self-
attention layer in Fig. 3a and multiple layers are repeated to
extract better representation.

4. Approach

In this paper, we propose an effective model for skeleton-
based action recognition, which is based on Self-Attention
Network. The overall framework of the model is shown in
Fig. 2. Primarily we have position and motion of joints.
We can use raw position of the joints for figuring out the
motion/velocity of the joints. Our SAN variants operate on
encoded representations of position and motion sequences.
We will be using simple non-linear projection (FCNN) and
CNN based encoders for encoding the raw position and ve-
locity sequences. First we will explain the data transforma-
tion from raw sequences of position and motion of the joints
to encoded features. Once features are encoded, we will
make use of three different SAN based architectures for ef-
fectively capturing the contextual information from the en-
coded features.

4.1. Raw Position and Motion Data

The raw skeleton position x, € RF*7* in a video

clip is defined with the number of frames F', the number
of joints per person J, and the coordinates of each joint C'.
There may be S skeletons in a frame so the total number of
joints is J' = S x J. The position data can be depicted for
each person as XE,S), where s € {1,2,---,S}.

The motion or velocity data, x,, € RF*7'XC can be
explicitly retrieved by taking differences of each joint J ]t €
RC, where j € {1,---,J}andt € {1,---, F}, between
consecutive frames:

xby = {7 = I =T T =T @)

Similarly, the motion data for each person is represented as
(s)
Xm -
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Figure 3: Different designs of Self-Attention Network architecture. (a) self-attention network block (SAN) computing pair-
wise correlated attentions; (b) baseline model with early fused input features; (c) model that learns movements of each person
in a scene; (d) model that learn different modalities for available people in a scene.

4.2. Encoder

Our SAN variant models (Fig. 3) operate upon the en-
coded position X(p, enc) and motion features X(m enc)- In
this section, we describe two methods to encode the raw
position X, and motion data X,.

4.2.1 Non-Linear Encoder

A non-linear encoder simply uses a feed-forward neural
network (FCNN) with a non-linear activation function for
projecting the input vector to higher dimension. For ex-
ample, when encoding for SAN-V1 (Fig. 3b) we perform
early fusion of x,, and Xy, to get x € R¥*27%C and then
use our non-linear encoder to get x(gy € RF*27' X", On
the other hand, encoding for SAN-V2 (Fig. 3c) and SAN-
V3 (Fig. 3d) individual skeletons are incorporated. In this
case non-linear encoding is used to extend the skeleton joint

position and motion tensor to XEIS)) a € R xC" and
ngl)l ) € REXI*C" respectively.

4.2.2 CNN Based Encoder

A CNN based encoder is employed for encoding low level
features from raw joint position and motion data Xp, Xy, Or
xff) ,and XE,'?;). 2D convolutions can serve the purpose of ex-
tracting features from 3D tensors of raw skeleton data. Our
encoder block consist of 4 convolutional layers as evident
from Fig. 4. We will explain the general encoding scheme
by keeping in view the encoding requirements for SAN-V1
architecture. As we mentioned earlier in 4.2.1, for SAN-
V1, x € RF*27'XC which is the output of early fusion of
Xp and X.,. First layer uses 1 x 1 x 64 filters with stride
1. Output of the first layer are the extended coordinates in
the form of F' x J’ x 64 tensor. Layer two operates with
3 x 1 x 32 filters and stride 1, and outputs a tensor of shape
F'x J’x32. Note that convolution window size for layer two
is 3 x 1 because we are interested in extracting local con-
textual information over frames. Now, we transpose joints

and cooridinates making the tensor of shape F' x 32 x J' in
order to extract features from correlations of all joints over
local frames. Third layer uses 3 x 3 x 32 filters with stride 1
and max pooling with 1 x 2 pooling window is also applied.
Output of third layer is a tensor with shape F' x 16 x 32. Fi-
nal convolution layer applies 3 x 3 x 64 filters with stride 1.
Similar to third layer, max pooling with a pooling window
of 1 x 2 is also applied producing a F' X 8 x 64 tensor. Last
two CNN layers encode correlated local features from all
joints of human body. For SAN-V2 (Fig. 3c) and SAN-V3
(Fig. 3d) we encode XS) and xgﬁ) for individual skeletons
in the frames. Note that F' remains the same so feature rep-
resentations for each frame are acquired with encoders.

4.3. SAN Variant Architecture

We investigate three SAN based network architectures
as shown in Fig. 3 for skeleton based action recognition.
These architectures employ the same SAN architecture as
shown in Fig. 3a but operate upon varying combinations of
encoded features, X(enc)s X(p,enc)> a0d X(m enc)- We first
discuss the SAN block used in the network in detail.

4.3.1 Self-Attention Network

SAN block operates on encoded representations of posi-
tion and motion information. The input to SAN block is
xr € RF*H where H is a feature representation per frame.
The dimension of H relys on the different encoders and
model variants, and H = 512 = 8 x 64 with the CNN
encoder for SAN-V1. The first layer of the SAN block is
a position embedding generating p € R¥ > Position em-
bedding layer is used for providing a sense of order to the
feature vectors. The ordering prior knowledge is helpful for
each feature vector at each time to capture overall contex-
tual cues from the input sequence. The output of the posi-
tion embedding layer y is an element-wise addition of the
input sequence x and the position embedding p.

Output of position embedding layer y is fed to the first
self-attention layer z;. Each SAN layer consumes the out-
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Figure 4: An input sequence of skeleton joints over frames,
F x J' x C, is fed to the convolutional blocks and output
tensor size of I’ x 8 x 64 is generated, which is denoted by

. Each color denotes the following layers: convo-
lutional layer; ReLU activation; and Il max-pooling
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put of the previous SAN layer. Each self-attention layer
computes pairwise attention probabilities and K, () and V
parameters described in Eq. 1 are learned. Each self-
attention layer outputs z;,i € {1,2,---, N} where N is
the number of self-attention layers. We concatenate the out-
puts from each SAN layer in order to gather all the attention
probabilities as shown below

¢ = concat([z1,22, -+ ,ZN]) 3)
0= ReLU(flin(favg(C))) (4)

where concat layer concatenates z; € R* along the
vector axis creating a concatenated sequence ¢ € R *HN
Then, a global average layer f,.q is applied to ¢ along the
frame axis to obtain video-level features and a resulting di-
mension of the feature is R, Finally, a fully connected
layer f;;, with a non-linear activation, ReLU, projects the
feature vector to the same input dimension H.

43.2 SAN-V1

SAN-V1 (Fig. 3b) is a baseline network to understand how
well the SAN block works for this task. It takes a concate-
nated input of position (Xxp) and motion (X.,) data gener-
ating an input sequence x € R¥*27'C_ The concatenation
is to achieve feature-level early fusion. x requires encod-
ing which is achieved using CNN encoder and non-linear
encoder. The shape of the input sequence to the encoders is
RE*H where H = 2x J' x C. SAN block extracts latent lo-
cal and global context information out of the input encoded
sequences Xconv and xg. Note that J is the number of
joints for one person, hence J’ represent the joints belong-
ing to all the poeple in the frame. Zero paddings are applied
in case that the number of valid people in a frame is less
than a pre-defined maximum number of people. The out-
put of the SAN block is fed to a classification layer which
consists of a ReLU activation layer, a dropout layer, and a
linear layer with softmax activation to predict probabilities
for each class. The network is trained with cross-entropy
loss.

4.3.3 SAN-V2

SAN-V2 (Fig. 3c) is designed to extract contextual features
with the SAN blocks for each subject (skeleton) in a scene.
This network computes actions for each skeleton and takes
the strongest signal from all available people in a video.
Similar to SAN-V1, the encoded position and motion skele-
ton data for each person is concatenated respectively and the
concatenated input sequences are fed to the corresponding
SAN blocks. The input dimension for each SAN block is
RE*27C" gnd RF*2%512 with the non-linear and CNN en-
coder, respectively. SAN blocks share weights to learn a va-
riety of movements from different people. SAN outputs can
be merged with different operations such as element-wise
max, mean or concatenation. According to our preliminary
experiments, element-wise max works the best as it cap-
tures the strongest action signal among people who may not
be available. The final classification layer is identical to the
one in SAN-V1. Note that SAN-V2 leverages late fusion
strategy and is scalable to arbitrary number of people.

434 SAN-V3

Lastly, SAN-V3 (Fig. 3d) is designed to deal with differ-
ent data modalities: position and velocity (or motion). The
most prominent signals from all people are chosen by an
element-wise max operation for each modality. The input
dimension for the SAN block is R¥*7C" and RF*512 for
the non-linear and CNN encoder, respectively. The output
of each SAN block is fed to separate classifiers and the con-
catenated signal from the SAN blocks is consumed by an-
other classifier. This network is also scalable to any num-
ber of people in a scene. The training losses of the model
are calculated by adding all cross entropy losses from each
classifier.

4.4. Temporal Segment Self-Attention Network
(TS-SAN)

The self-attention network can associate features in dis-
tance making it possible to capture long range informa-
tion. However, as the feature representations for same ac-
tion can vary with many constraints (viewpoint change, dif-
ferent speed of action by different subjects, etc), the pro-
posed network may not learn well. Thus, we leverage the
temporal segment network [35] to train the network more
effectively. As shown in Fig. 2, a video is divided into K
clips and one of the SAN variants in Fig. 3 is employed to
learn temporal dynamics on each clip. Note that all lay-
ers share weights for different clips. Formally, given K
segments S, Ss, -+ , Sk of a video, the proposed network
models a sequence of clips as follows:

TS—SAN(Sy, Sy, - ,Sk) = C(F(S1; W), F(Sa; W),
o F(Sk; W), (5)
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Methods CS CvV

H-RNN [7] (2015) 59.1 | 64.0
PA-LSTM [22] (2016) 629 | 70.3
TG ST-LSTM [18] (2016) 69.2 | 77.7
Two-stream RNN [33] (2017) 71.3 | 79.5

STA-LSTM [26] (2017) 734 | 812
Ensemble TS-LSTM [16] (2017) | 74.6 | 81.3
VA-LSTM [41] (2017) 79.4 | 87.6
ST-GCN [40] (2018) 81.5 | 88.3
DPRL [29] (2018) 83.5 | 89.8

HCN [17] (2018) 86.5 | 91.9
SR-TSL [24] (2018) 84.8 | 92.4
TS-SAN (Ours) 872 | 92.7

Table 1: Results of our method in comparison with state-of-
the-art methods on NTU RGB+D with Cross-Subject(CS)
and Cross-View(CV) benchmarks.

where F denotes one of SAN-Variant models and W is
its parameters. The predictions of each SAN model from
each snippet are aggregated based on different function C:
element-wise max, and average.

5. Experiments

We perform extensive experiments to evaluate the effec-
tiveness of our proposed Self-Attention frameworks on two
large scale benchmark datasets: NTU RGB+D dataset [23],
and Kinetics-skeleton dataset [12]. We analyze the per-
formance of our variant models and visualize self-attention
probabilities to understand its mechanism.

5.1. Datasets
5.1.1 NTURGB+D

NTU RGB+D is the current largest action recognition
dataset with joints annotations that are collected by Mi-
crosoft Kinect v2. It has 56,880 video samples and con-
tains 60 action classes in total. These actions are per-
formed by 40 distinct subjects. It is recorded with three
cameras simultaneously in different horizontal views. The
joints annotations consist of 3D locations of 25 major body
joints. [23] defines two standard evaluation protocols for
this dataset: Cross-Subject (CS) and Cross-View (CV). For
Cross-Subject evaluation, the 40 subjects are split into train-
ing and testing groups. Each group consists of 20 subjects.
The numbers of training and testing samples are 40,320 and
16,560, respectively. For Cross-View evaluation, all the
samples of cameras 2 and 3 are used for training while the
samples of camera 1 are used for testing. The numbers of
training and testing samples are 37,920 and 18,960, respec-
tively.

Methods Top-1 | Top-5

Feature Enc. [9] (2015) 14.9 25.8
Deep LSTM [22] (2016) 16.4 353
Temporal Conv [14] (2017) | 20.3 40.0
ST-GCN [40] (2018) 30.7 52.8
TS-SAN (Ours) 351 55.7

Table 2: Results of our method in comparison with state-of-
the-art methods on Kinetics.

5.1.2 Kinetics

Kinetics [12] contains about 266,000 video clips retrieved
from YouTube and covers 400 classes. Since no skele-
ton annotation is provided, the skeleton is estimated by an
OpenPose toolbox [2] from the resized videos of 340x256
resolution. The toolbox estimates 2D coordinates (x,y)
of 18 human joints and confidence scores c for each joint.
Each joint is represented as (z,y, c) and 2 people are se-
lected at most for each frame based on the highest average
joint confidence score. The total number of frames for all
clips is fixed to 300 by repeating the sequence from the start.
We employ the released skeleton dataset to train our model
and report the performance of top-1 and top-5 accuracies as
introduced in [40]. The numbers of training and validation
samples are around 246,000 and 20,000, respectively.

5.2. Implementation Details

We resize the sequence length to a fixed number of
F=32/64 (NTU/Kinetics) with bilinear interpolation along
the frame dimension. We use K=3 of temporal segments
and 32 frames are sampled from each clip. The numbers of
self-attention layers and multi-heads used for NTU RGB+D
and Kinetics datasets are 4, 8 and 8, 8, respectively.

To alleviate the problem of overfitting, we append
dropout with a probability of 0.5 before the last predic-
tion layer and after the last convolution layer. For the self-
attention network, a 0.2 ratio of dropout is utilized. We em-
ploy a data augmentation scheme by randomly cropping se-
quences with a ratio of uniform distribution between [0.5,
1] for training. We center crop sequence with a ratio of 0.9
when testing. The learning rate is initialized with 1e~* and
reduced by half in case no improvement of accuracy is ob-
served for 5 epochs. Adam optimizer [15] is applied with
weight decay of 5¢=5. The model is trained for 200/100
(NTU/Kinetics) epochs with a batch size of 64.

5.3. Comparison to State of the Art

We compare the performance of the proposed method to
the state-of-the-art methods on NTU RGB+D and Kinetics
datasets as shown in Table 1 and Table 2. The compared
methods are based on CNN, RNN (or LSTM), and graph
structure and our method consistently outperform state-of-
the-art approaches. This demonstrates the effectiveness of
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Methods CS Cv
SAN-V1 + FF 754 | 79.8
SAN-V1 + CNN | 80.1 | 86.2
SAN-V2 + FF 80.3 | 85.2
SAN-V2 +CNN | 859 | 91.7
SAN-V3 + FF 78.6 | 84.1
SAN-V3+CNN | 855 | 914

Table 3: The comparison results of SAN variants shown in
Fig. 3 with different encoder inputs on NTU dataset (%).

Methods CS CvV
SAN-V2 (seq=96) 86.1 | 92.0
SAN-V3 (seq=96) 859 | 91.7

TS (seg=3) + SAN-V2 (seq=32) | 87.2 | 92.7
TS (seg=3) + SAN-V3 (seq=32) | 86.8 | 924

Table 4: The comparison results of effectiveness of tempo-
ral segment on NTU dataset (%).

our proposed model for the skeleton-based action recogni-
tion task.

As shown in Table 1, our proposed model achieves the
best performance with 87.2% with CS and 92.7% with CV.
Our model and [26] have common in a sense that attention
mechanism is used. By comparing with STA-LSTM [26],
our model performs 13.8% with CS and 11.5% with CV.
Our model encodes the raw skeleton data with CNNs simi-
lar to HCN [17] but outperforms by 0.7% with CS and 0.8%
with CV. Comparing our model with SR-TSL [24] which is
one of the best-performed methods, the performance gaps
are 2.4% with CS and 0.3% with CV.

On the Kinetics dataset, we compare with four meth-
ods which are based on handcraft features, LSTM, temporal
convolution, and graph-based convolution. As shown in Ta-
ble 2, our method attains the best performance with a signif-
icant margin. The proposed method outperforms by 4.4%
on top-1 and 2.9% on top-5 accuracies. We observe that
CNN based methods [17, 24, 40, 14] are superior to LSTM
based methods [41, 16, 22] based on both Table 1 and Table
2, and our model outperforms the CNN based methods.

5.4. Ablation Study

We analyze the proposed network by comparing it with
baseline models. We compare SAN variants with hyper-
parameter options for encoders, self-attention network, and
temporal segment network. Each experiment is evaluated
on the NTU RGB+D dataset.

5.4.1 Effect of SAN Variants with Different Encoders

Table 3 shows the results with different SAN variants and
different inputs to them. The SAN-V2 model performs the
best and the SAN-V1 model the worst. The gap between

Methods CS CvV
TS(Avg) + SAN-V2 | 87.2 | 92.7
TS(Max) + SAN-V2 | 86.1 | 91.9
TS(Avg) + SAN-V3 | 86.8 | 924
TS(Max) + SAN-V3 | 85.9 | 91.1

Table 5: The comparison results of different aggregation
methods for TS network on NTU dataset (%).

Methods CS Ccv
TS + SAN-V2 (L2H2) | 86.7 | 92.1
TS + SAN-V2 (L4H4) | 86.9 | 92.5
TS + SAN-V2 (L4HS8) | 87.2 | 92.7
TS + SAN-V2 (L8HS8) | 87.0 | 924

Table 6: The comparison results of the number of attention
layers and multi-heads on NTU dataset (%).

the SAN-V2 model and the SAN-V3 model is minimal.
We observe that the CNN encoder boosts the performance
accuracy by up to 7.3% for SAN-V3. It shows that the
CNN encoder effectively generates rich feature represen-
tations for the SAN models and plays a significant role in
the network. From the observation that SAN-V2 slightly
outperforms SAN-V3, we conclude two facts: late fusion
performs better than early fusion; and sharing weights of
SAN blocks resulting in better trained models.

5.4.2 Effect of Temporal Segment

The self-attention network is suitable for connecting both
short and long-range features and is capable of capturing
higher-level context from all correlations. We compare the
TS-SAN and SAN variants to see how they perform differ-
ently if two networks have the same sequence length. As
shown in Table 4, TS-SAN outperforms. This proves that
our design goal to make use of the temporal segment is cor-
rect. However, the SAN variants without the temporal seg-
ment network have an advantage of having less parameters
with a small sacrifice of performance. Although TS-SAN
models outperform, we observe that the SAN variants per-
form well for long-range input sequences, F'=96.

5.4.3 Effect of Consensus Function

We consider element-wise operations for the consensus
function to compute the final prediction. Two operations are
valid: element-wise average, element-wise maximum. Ta-
ble 5 shows the performances of TS-SAN-V2 and TS-SAN-
V3 with the above operations. The element-wise average
consensus function outperforms the element-wise max op-
eration in both SAN variants. The TS-SAN model with the
element-wise max operation is outperformed by the SAN
model without the temporal segment as shown in Table 4.
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We conjecture that since the self-attention output signals
are based on weighted average computation, it makes more
sense to use the element-wise average aggregation function
for the collected outputs from each snippet. By doing so, the
video level self-attention can be computed properly leading
to the best performance.

5.4.4 Effect of Number of Layers and Mutli-heads in
SAN Block

We compare TS-SAN-V2 model with different number of
layers and multi-heads. The results are shown in Table 6.
By comparing the row 2 and 3, we observe that the num-
ber of heads affect the performance marginally. From the
results of the row 3 and 4, we also observe that the network
underperform if it contains too many paramerters. On the
contrary, the network also underperforms when the number
of parameters are not enough (row 1). According to the re-
sults, we argue that the proposed model requires a proper
number of layers and heads for a cetrain dataset to perform
the best.

5.5. Visualization of Self-Attention Layer Response

The self-attention network determines where each frame
correlates to other frames. We visualize the self-attention
response from the last self-attention layer with a visualiza-
tion tool [32] to understand how each frame is correlated for
a certain action video. As shown in Fig. 5, the vertical axis
shows the sampled 32 frames. Self-attention responses for
eight multi-heads are displayed and each column shows the
coarse shape of the attention pattern between two frames.

The model used for this visualization attains four layers
and eight heads, and takes 32 sampled frames as the input
sequence. No temporal segment network is used to train the
network. The self-attention probabilities are calculated by
the equ. 1 in the self-attention layer described in Fig. 3a.
For example, from Fig. 5a, one of the strongest correla-
tion in the third head can be found from a connection be-
tween frame 31 to frame O (a line across from bottom left
to top right). From the above example, we can check the
long range correlation is achieved and the proposed method
captures a variety of correlations in both short and long dis-
tance.

We observe that the overall self-attention response pat-
terns of the same action class (‘put on jacket’) resembles
each other as shown in Fig. 5a and Fig. 5b. The repsonses
of head 1 and head 6 from two videos especially shows sim-
ilar pattern. Although two videos are taken by different sub-
jects, duration, and views, we can see that the self-attention
catches a certain latent similarity. Comparing Fig. 5a and
Fig. 5b with Fig. Sc, there is not much similar response
pattern between them due to different action classes (‘put
on jacket’ vs ‘reading’). We also learn that the proposed

Head 0 Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7

Frame 31

(a) ‘Put on jacket’ action with subject 1

Frame 31

(b) ‘Put on jacket’ action with subject 2

Frame 31

(c) ‘Reading’ action with subject 1

Figure 5: Self-attention probabilities from the last self-
attention layer for three test videos on NTU RGB+D are
visualized. The brighter color denotes the higher probabil-
ity or the stronger connection.

model is robust to subtle motion or speed of action changes
from difference subjects or even views.

6. Conclusion

In this paper, we propose three novel SAN variations
in order to extract high-level context from short and long-
range self-attentions. Our proposed architectures signifi-
cantly outperform state-of-the-art methods. CNN employed
in our model is effective to extract feature representations
for the input sequence of the self-attention network. SAN
can capture the temporal correlations regardless of distance,
making it possible to obtain high-level context information
from both short and long-range self-attentions. We also pro-
pose an effective integration of SAN and TSN which re-
sults in observable performance boost. We perform exten-
sive experiments on two large scale datasets, NTU RGB+D
and Kinetics-skeleton, and verify the effectiveness of our
proposed models for the skeleton-based action recognition
task. In the future, we will apply our model to video-based
recognition tasks with key point annotations, such as facial
expression recognition. We will also explore different meth-
ods to extract effective feature representations for the input
sequence of SAN.
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