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Abstract

Skeleton-based action recognition has recently attracted

a lot of attention. Researchers are coming up with new ap-

proaches for extracting spatio-temporal relations and mak-

ing considerable progress on large-scale skeleton-based

datasets. Most of the architectures being proposed are

based upon recurrent neural networks (RNNs), convolu-

tional neural networks (CNNs) and graph-based CNNs.

When it comes to skeleton-based action recognition, the

importance of long term contextual information is central

which is not captured by the current architectures. In order

to come up with a better representation and capturing of

long term spatio-temporal relationships, we propose three

variants of Self-Attention Network (SAN), namely, SAN-V1,

SAN-V2 and SAN-V3. Our SAN variants has the impressive

capability of extracting high-level semantics by capturing

long-range correlations. We have also integrated the Tem-

poral Segment Network (TSN) with our SAN variants which

resulted in improved overall performance. Different config-

urations of Self-Attention Network (SAN) variants and Tem-

poral Segment Network (TSN) are explored with extensive

experiments. Our chosen configuration outperforms state-

of-the-art Top-1 and Top-5 by 4.4% and 7.9% respectively

on Kinetics and shows consistently better performance than

state-of-the-art methods on NTU RGB+D.

1. Introduction

Video-based action recognition has been an active re-

search topic due to its important practical applications in

many areas, such as video surveillance, behavior analysis,

and video retrieval. Human action recognition can also be

applicable to human-computer interaction or human-robot

interaction to help machines understand human behaviors

better [39, 21, 4]. Unlike a single image that contains only

spatial information, a video provides additional motion in-

formation as an important cue for recognition. Although

a video provides more information, it is non-trivial to ex-

tract the information due to a number of difficulties such as

Figure 1: An example of self-attention response from the

last self-attention layer. Eight frames are uniformly sam-

pled from an action with the class ‘put on jacket’ and il-

lustrated as frame 0 to 7. Frame 0 has the strongest cor-

relation with the last frame, frame 7, at the fourth head

, and attends heavily itself at the second head . Note

that with the self-attention network each frame is associated

with other frames so that local and global context informa-

tion can be acquired.

viewpoint changes, camera motions, and scale variations,

to name a few. There has been extensive research in RGB

video-based action recognition and one of the mainstream

methods is to employ both temporal optical flow and spatial

appearance to obtain spatial and temporal information [25]

. The RGB video datasets typically contain an extensive

amount of data to process, hence require large models and

resources to train them properly. On the other hand, skele-

ton based action recognition comprises of only key joint lo-

cations of human bodies. With the advent of cost-effective

depth cameras [42], stereo cameras, and the advanced tech-

niques for human pose estimation [2], the cost to obtain

key points has reduced and skeleton-based human action

recognition has garnered increasing attraction [1, 7, 40]. Al-

though the key joint locations dont include appearance in-

formation, humans are able to recognizing actions from the

motion of a few human skeleton joints according to Johans-

son [11]. In this paper, we focus on human action recogni-

tion based on 3D skeleton sequences.
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To extract information from skeleton sequences, many

works naturally apply recurrent neural networks (RNNs)

to model temporal dynamics [22, 18, 41]. They also uti-

lize CNNs to model spatio-temporal dynamics by treating

the 3D skeleton data as 2D pseudo images with 3 channels

[17, 36]. Another method is to retrieve structure informa-

tion of human body by constructing a graph with human

joints as edges [40], which also based on CNNs. Despite

the significant improvements in performance, there exist a

problem to be solved. Both recurrent and convolutional op-

erations are neighborhood-based local operations [38] ei-

ther in space or time; hence local-range information is re-

peatedly extracted and propagated to capture long-range de-

pendencies. Many works have designed networks with hi-

erarchical structure [7, 16, 3] to obtain longer range and

deeper semantic information but the problem still persists

if there are back and forth semantic dependencies.

In this paper, we propose a novel model with Self-

Attention Network (SAN) to overcome the above limitation

and retrieve better semantic information (Fig. 1). Fig. 2

shows the overall pipeline of our model. The framework is

motivated by temporal segment network [35] that extracts

short-term information from each video sequence. Our

model extracts semantic information from each video se-

quence by SAN variants. SAN-Variants take a sequence of

features from encoded signals and computes the response at

each position as a weighted sum of features at all positions.

This operation enables SAN-Variants to correlate features

in distance or even in opposite direction. The predicted out-

puts based on each clip are merged with consensus opera-

tions to capture deeper semantic understanding. Therefore,

our model can effectively solve the problem of acquiring

long-term semantic information. Experimental results show

that the learned SAN variants outperforms state of the art

methods on challenging large scale datasets. We also vi-

sualize the attention correlations trying to understand how

the network works and provide some insights. The main

contributions of the paper are summarized as follows:

1. We propose Self Attention Network (SAN) variants

SAN-V1, SAN-V2 and SAN-V3 for effectively captur-

ing deep semantic correlations from action sequences

involving human skeleton.

2. We have integrated the Temporal Segment Network

(TSN) with our SAN variants. We observed improved

performance because of this integration of TSN and

SAN variants.

3. We visualize self-attention probabilities to show how

each frame is correlated with other frames.

4. Our proposed method achieves state-of-the-art re-

sults on two large scale datasets: NTU RGB+D and

Kinetics-skeleton

Figure 2: The overall pipeline of the proposed model. The

network takes as inputs temporally segmented clips and ex-

tracts contextual information from each snippet by one of

SAN variants described in section 4.3. Predictions of each

snippet are fused to compute the final prediction.

2. Related Work

Handcrafted features are used to represent the skeleton

motion information in early works. [10] computes covari-

ance matrix for joint positions over time. [31] extracts 3D

geometric relationships of body parts in Lie group based on

rotations and translations of joints. With further progress in

deep learning, researchers started using Recurrent Neural

Networks to extract temporal dynamics between joints as

RNNs use sequential processing. [7] proposes a hierarchi-

cal RNN that splits the human body into five parts with each

part fed into different subnetworks and fuses them hierar-

chically. [22] splits a cell in an LSTM into part based cells

and human body parts are applied to each cell to learn a rep-

resentation of each part over time. [43] proposes a spatio-

temporal LSTM network that learns the co-occurrence fea-

tures of skeleton joints with a group sparse regularization.

[18] introduces trust gate to reduce the influence of noisy

joints and employs a spatio-temporal LSTM network to ex-

plore the spatila and temporal relationships. [26] intro-

duces attention mechanism in the LSTM network to focus

on more important joints at each time instances. In recent

works, CNN based approaches [13, 6, 19, 37] are adopted

to learn skeleton features and achieves significant perfor-

mance. They attempt to convert a skeleton sequence into

pseudo images and utilize CNNs to learn. [6] maps a skele-

ton sequence to a tensor with frames, joints, and xyz co-

ordinates treating it as image and leverages CNNs to train.

[13] proposes a method to use relative positions between the

joints and the reference joints based on CNNs. [37] maps

trajectories of joints to orthogonal planes by using the 2D

projection. CNNs are also employed in our method to ob-

tain more informative features from the raw skeleton joints.

However, while the aforementioned RNNs and CNNs lack

the ability to extract long-term correlation between fea-

tures, our proposed method fills the gap to obtain high-level

semantic information with long-range connections of fea-

tures.
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A self-attention network learns to generate hidden state

representations for a sequence of input symbols using a

multi-layer architecture [30]. The hidden states of the

upper layer are built from the hidden states of the lower

layer using a self-attention mechanism. It learns to aggre-

gate information from lower layer hidden states according

to their similarities to the t-th hidden state. The learned

representations are highly effective because they capture

deep contextualized information of the input sequence. The

self-attentive network with multi-head attention has demon-

strated success on a number of tasks including machine

translation [30, 28], language modeling and natural lan-

guage inference [5], semantic role labeling [27], often sur-

passing recurrent neural networks by a substantial mar-

gin. Particularly, [30] describes the Transformer model that

makes the self-attention mechanism an integral part of the

architecture for improved sequence modeling. [5] learns

deep contextualized word representations that have led to

state-of-the-art performance on question answering and nat-

ural language inference without task-specific architecture

modifications. Despite the success, self-attentive networks

have been less investigated for the task of skeleton-based

action recognition. In this paper, we introduce a novel self-

attentive architecture to fill this gap.

Temporal information can be extracted from a sequence

data or a video. Many research endeavors have introduced

methods for modeling the temporal structure for action

recognition [20, 34, 8]. [20] proposes to employ latent vari-

ables to decompose complex actions in time and [34] intro-

duces a latent hierarchical model that extends the temporal

decomposition of complex actions. [8] utilizes a rank SVM

to model the temporal evolution of BoVW representations.

[35] introduces a method to model a long-range temporal

structure by simply splitting a video into snippets and fusing

CNN outputs from each part. We adopt this method since

it effectively extracts long-range temporal information and

also is applicable to any network with end-to-end training.

3. Self-Attention Network

In this section, we briefly review the Self-attention net-

work. Self-attention network [30] is a powerful method

to compute correlation between arbitrary positions of a se-

quence input. An attention function consists of a query AQ,

keys AK , and values AV where query and keys have same

vector dimension dk, and values and outputs have same size

of dimension dv . The output is computed as a weighted sum

of the values, and the weight assigned to each value is com-

puted by scaled dot-product of query and keys. The vectors

of query AQ, keys AK and values AV are packed in a ma-

trix generating Q, K, and V matrices. Then the attention

function is defined as

Attention (Q,K,V) = softmax

(

QK
T

√
dk

)

V, (1)

where 1√
dk

is a scaling factor.The equation computes scaled

dot-product attention and the network computes the atten-

tion multiple times in parallel (multi-head) to extract differ-

ent correlation information. The multi-head attention out-

puts are concatenated and transformed to the same vector

dimension the input sequence. A residual connection is

adopted to take the input and output of the multi-head self-

attention layer and a layer normalization is applied to the

summed output. A fully-connected feed-forward network

with a residual connection is applied to the normalized self-

attention output. The entire network is illustrated as a self-

attention layer in Fig. 3a and multiple layers are repeated to

extract better representation.

4. Approach

In this paper, we propose an effective model for skeleton-

based action recognition, which is based on Self-Attention

Network. The overall framework of the model is shown in

Fig. 2. Primarily we have position and motion of joints.

We can use raw position of the joints for figuring out the

motion/velocity of the joints. Our SAN variants operate on

encoded representations of position and motion sequences.

We will be using simple non-linear projection (FCNN) and

CNN based encoders for encoding the raw position and ve-

locity sequences. First we will explain the data transforma-

tion from raw sequences of position and motion of the joints

to encoded features. Once features are encoded, we will

make use of three different SAN based architectures for ef-

fectively capturing the contextual information from the en-

coded features.

4.1. Raw Position and Motion Data

The raw skeleton position xp ∈ R
F×J ′×C in a video

clip is defined with the number of frames F , the number

of joints per person J , and the coordinates of each joint C.

There may be S skeletons in a frame so the total number of

joints is J ′ = S × J . The position data can be depicted for

each person as x
(s)
p , where s ∈ {1, 2, · · · , S}.

The motion or velocity data, xm ∈ R
F×J ′×C , can be

explicitly retrieved by taking differences of each joint J t
j ∈

R
C , where j ∈ {1, · · · , J} and t ∈ {1, · · · , F}, between

consecutive frames:

x
t
m =

{

J t+1
1 − J t

1, J
t+1
2 − J t

2, · · · , J t+1
J

− J t
J

}

(2)

Similarly, the motion data for each person is represented as

x
(s)
m .
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(a) SAN-Block (b) SAN-V1 (c) SAN-V2 (d) SAN-V3

Figure 3: Different designs of Self-Attention Network architecture. (a) self-attention network block (SAN) computing pair-

wise correlated attentions; (b) baseline model with early fused input features; (c) model that learns movements of each person

in a scene; (d) model that learn different modalities for available people in a scene.

4.2. Encoder

Our SAN variant models (Fig. 3) operate upon the en-

coded position x(p,enc) and motion features x(m,enc). In

this section, we describe two methods to encode the raw

position xp and motion data xm.

4.2.1 Non-Linear Encoder

A non-linear encoder simply uses a feed-forward neural

network (FCNN) with a non-linear activation function for

projecting the input vector to higher dimension. For ex-

ample, when encoding for SAN-V1 (Fig. 3b) we perform

early fusion of xp and xm to get x ∈ R
F×2J ′×C and then

use our non-linear encoder to get x(ff) ∈ R
F×2J ′×C′

. On

the other hand, encoding for SAN-V2 (Fig. 3c) and SAN-

V3 (Fig. 3d) individual skeletons are incorporated. In this

case non-linear encoding is used to extend the skeleton joint

position and motion tensor to x
(s)
(p,ff) ∈ R

F×J×C′

, and

x
(s)
(m,ff) ∈ R

F×J×C′

, respectively.

4.2.2 CNN Based Encoder

A CNN based encoder is employed for encoding low level

features from raw joint position and motion data xp, xm, or

x
(s)
p , and x

(s)
m . 2D convolutions can serve the purpose of ex-

tracting features from 3D tensors of raw skeleton data. Our

encoder block consist of 4 convolutional layers as evident

from Fig. 4. We will explain the general encoding scheme

by keeping in view the encoding requirements for SAN-V1

architecture. As we mentioned earlier in 4.2.1, for SAN-

V1, x ∈ R
F×2J ′×C which is the output of early fusion of

xp and xm. First layer uses 1 × 1 × 64 filters with stride

1. Output of the first layer are the extended coordinates in

the form of F × J ′ × 64 tensor. Layer two operates with

3× 1× 32 filters and stride 1, and outputs a tensor of shape

F×J ′×32. Note that convolution window size for layer two

is 3 × 1 because we are interested in extracting local con-

textual information over frames. Now, we transpose joints

and cooridinates making the tensor of shape F × 32× J ′ in

order to extract features from correlations of all joints over

local frames. Third layer uses 3×3×32 filters with stride 1

and max pooling with 1×2 pooling window is also applied.

Output of third layer is a tensor with shape F ×16×32. Fi-

nal convolution layer applies 3×3×64 filters with stride 1.

Similar to third layer, max pooling with a pooling window

of 1× 2 is also applied producing a F × 8× 64 tensor. Last

two CNN layers encode correlated local features from all

joints of human body. For SAN-V2 (Fig. 3c) and SAN-V3

(Fig. 3d) we encode x
(s)
p and x

(s)
m for individual skeletons

in the frames. Note that F remains the same so feature rep-

resentations for each frame are acquired with encoders.

4.3. SAN Variant Architecture

We investigate three SAN based network architectures

as shown in Fig. 3 for skeleton based action recognition.

These architectures employ the same SAN architecture as

shown in Fig. 3a but operate upon varying combinations of

encoded features, x(enc), x(p,enc), and x(m,enc). We first

discuss the SAN block used in the network in detail.

4.3.1 Self-Attention Network

SAN block operates on encoded representations of posi-

tion and motion information. The input to SAN block is

x ∈ R
F×H , where H is a feature representation per frame.

The dimension of H relys on the different encoders and

model variants, and H = 512 = 8 × 64 with the CNN

encoder for SAN-V1. The first layer of the SAN block is

a position embedding generating p ∈ R
F×H . Position em-

bedding layer is used for providing a sense of order to the

feature vectors. The ordering prior knowledge is helpful for

each feature vector at each time to capture overall contex-

tual cues from the input sequence. The output of the posi-

tion embedding layer y is an element-wise addition of the

input sequence x and the position embedding p.

Output of position embedding layer y is fed to the first

self-attention layer z1. Each SAN layer consumes the out-
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Figure 4: An input sequence of skeleton joints over frames,

F × J ′ × C, is fed to the convolutional blocks and output

tensor size of F × 8× 64 is generated, which is denoted by

. Each color denotes the following layers: convo-

lutional layer; ReLU activation; and max-pooling

layer.

put of the previous SAN layer. Each self-attention layer

computes pairwise attention probabilities and K,Q and V

parameters described in Eq. 1 are learned. Each self-

attention layer outputs zi, i ∈ {1, 2, · · · , N} where N is

the number of self-attention layers. We concatenate the out-

puts from each SAN layer in order to gather all the attention

probabilities as shown below

c = concat([z1, z2, · · · , zN ]) (3)

o = ReLU(flin(favg(c))) (4)

where concat layer concatenates zi ∈ R
F×H along the

vector axis creating a concatenated sequence c ∈ R
F×HN .

Then, a global average layer favg is applied to c along the

frame axis to obtain video-level features and a resulting di-

mension of the feature is R
HN . Finally, a fully connected

layer flin with a non-linear activation, ReLU, projects the

feature vector to the same input dimension H .

4.3.2 SAN-V1

SAN-V1 (Fig. 3b) is a baseline network to understand how

well the SAN block works for this task. It takes a concate-

nated input of position (xp) and motion (xm) data gener-

ating an input sequence x ∈ R
F×2J ′C . The concatenation

is to achieve feature-level early fusion. x requires encod-

ing which is achieved using CNN encoder and non-linear

encoder. The shape of the input sequence to the encoders is

R
F×H where H = 2×J ′×C. SAN block extracts latent lo-

cal and global context information out of the input encoded

sequences xconv and xff . Note that J is the number of

joints for one person, hence J ′ represent the joints belong-

ing to all the poeple in the frame. Zero paddings are applied

in case that the number of valid people in a frame is less

than a pre-defined maximum number of people. The out-

put of the SAN block is fed to a classification layer which

consists of a ReLU activation layer, a dropout layer, and a

linear layer with softmax activation to predict probabilities

for each class. The network is trained with cross-entropy

loss.

4.3.3 SAN-V2

SAN-V2 (Fig. 3c) is designed to extract contextual features

with the SAN blocks for each subject (skeleton) in a scene.

This network computes actions for each skeleton and takes

the strongest signal from all available people in a video.

Similar to SAN-V1, the encoded position and motion skele-

ton data for each person is concatenated respectively and the

concatenated input sequences are fed to the corresponding

SAN blocks. The input dimension for each SAN block is

R
F×2JC′

and R
F×2×512 with the non-linear and CNN en-

coder, respectively. SAN blocks share weights to learn a va-

riety of movements from different people. SAN outputs can

be merged with different operations such as element-wise

max, mean or concatenation. According to our preliminary

experiments, element-wise max works the best as it cap-

tures the strongest action signal among people who may not

be available. The final classification layer is identical to the

one in SAN-V1. Note that SAN-V2 leverages late fusion

strategy and is scalable to arbitrary number of people.

4.3.4 SAN-V3

Lastly, SAN-V3 (Fig. 3d) is designed to deal with differ-

ent data modalities: position and velocity (or motion). The

most prominent signals from all people are chosen by an

element-wise max operation for each modality. The input

dimension for the SAN block is R
F×JC′

and R
F×512 for

the non-linear and CNN encoder, respectively. The output

of each SAN block is fed to separate classifiers and the con-

catenated signal from the SAN blocks is consumed by an-

other classifier. This network is also scalable to any num-

ber of people in a scene. The training losses of the model

are calculated by adding all cross entropy losses from each

classifier.

4.4. Temporal Segment Self­Attention Network
(TS­SAN)

The self-attention network can associate features in dis-

tance making it possible to capture long range informa-

tion. However, as the feature representations for same ac-

tion can vary with many constraints (viewpoint change, dif-

ferent speed of action by different subjects, etc), the pro-

posed network may not learn well. Thus, we leverage the

temporal segment network [35] to train the network more

effectively. As shown in Fig. 2, a video is divided into K

clips and one of the SAN variants in Fig. 3 is employed to

learn temporal dynamics on each clip. Note that all lay-

ers share weights for different clips. Formally, given K

segments S1, S2, · · · , SK of a video, the proposed network

models a sequence of clips as follows:

TS−SAN(S1, S2, · · · , SK) = C(F(S1;W),F(S2;W),

· · · ,F(SK ;W)). (5)
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Methods CS CV

H-RNN [7] (2015) 59.1 64.0

PA-LSTM [22] (2016) 62.9 70.3

TG ST-LSTM [18] (2016) 69.2 77.7

Two-stream RNN [33] (2017) 71.3 79.5

STA-LSTM [26] (2017) 73.4 81.2

Ensemble TS-LSTM [16] (2017) 74.6 81.3

VA-LSTM [41] (2017) 79.4 87.6

ST-GCN [40] (2018) 81.5 88.3

DPRL [29] (2018) 83.5 89.8

HCN [17] (2018) 86.5 91.9

SR-TSL [24] (2018) 84.8 92.4

TS-SAN (Ours) 87.2 92.7

Table 1: Results of our method in comparison with state-of-

the-art methods on NTU RGB+D with Cross-Subject(CS)

and Cross-View(CV) benchmarks.

where F denotes one of SAN-Variant models and W is

its parameters. The predictions of each SAN model from

each snippet are aggregated based on different function C:

element-wise max, and average.

5. Experiments

We perform extensive experiments to evaluate the effec-

tiveness of our proposed Self-Attention frameworks on two

large scale benchmark datasets: NTU RGB+D dataset [23],

and Kinetics-skeleton dataset [12]. We analyze the per-

formance of our variant models and visualize self-attention

probabilities to understand its mechanism.

5.1. Datasets

5.1.1 NTU RGB+D

NTU RGB+D is the current largest action recognition

dataset with joints annotations that are collected by Mi-

crosoft Kinect v2. It has 56,880 video samples and con-

tains 60 action classes in total. These actions are per-

formed by 40 distinct subjects. It is recorded with three

cameras simultaneously in different horizontal views. The

joints annotations consist of 3D locations of 25 major body

joints. [23] defines two standard evaluation protocols for

this dataset: Cross-Subject (CS) and Cross-View (CV). For

Cross-Subject evaluation, the 40 subjects are split into train-

ing and testing groups. Each group consists of 20 subjects.

The numbers of training and testing samples are 40,320 and

16,560, respectively. For Cross-View evaluation, all the

samples of cameras 2 and 3 are used for training while the

samples of camera 1 are used for testing. The numbers of

training and testing samples are 37,920 and 18,960, respec-

tively.

Methods Top-1 Top-5

Feature Enc. [9] (2015) 14.9 25.8

Deep LSTM [22] (2016) 16.4 35.3

Temporal Conv [14] (2017) 20.3 40.0

ST-GCN [40] (2018) 30.7 52.8

TS-SAN (Ours) 35.1 55.7

Table 2: Results of our method in comparison with state-of-

the-art methods on Kinetics.

5.1.2 Kinetics

Kinetics [12] contains about 266,000 video clips retrieved

from YouTube and covers 400 classes. Since no skele-

ton annotation is provided, the skeleton is estimated by an

OpenPose toolbox [2] from the resized videos of 340×256

resolution. The toolbox estimates 2D coordinates (x, y)
of 18 human joints and confidence scores c for each joint.

Each joint is represented as (x, y, c) and 2 people are se-

lected at most for each frame based on the highest average

joint confidence score. The total number of frames for all

clips is fixed to 300 by repeating the sequence from the start.

We employ the released skeleton dataset to train our model

and report the performance of top-1 and top-5 accuracies as

introduced in [40]. The numbers of training and validation

samples are around 246,000 and 20,000, respectively.

5.2. Implementation Details

We resize the sequence length to a fixed number of

F=32/64 (NTU/Kinetics) with bilinear interpolation along

the frame dimension. We use K=3 of temporal segments

and 32 frames are sampled from each clip. The numbers of

self-attention layers and multi-heads used for NTU RGB+D

and Kinetics datasets are 4, 8 and 8, 8, respectively.

To alleviate the problem of overfitting, we append

dropout with a probability of 0.5 before the last predic-

tion layer and after the last convolution layer. For the self-

attention network, a 0.2 ratio of dropout is utilized. We em-

ploy a data augmentation scheme by randomly cropping se-

quences with a ratio of uniform distribution between [0.5,

1] for training. We center crop sequence with a ratio of 0.9

when testing. The learning rate is initialized with 1e−4 and

reduced by half in case no improvement of accuracy is ob-

served for 5 epochs. Adam optimizer [15] is applied with

weight decay of 5e−5. The model is trained for 200/100

(NTU/Kinetics) epochs with a batch size of 64.

5.3. Comparison to State of the Art

We compare the performance of the proposed method to

the state-of-the-art methods on NTU RGB+D and Kinetics

datasets as shown in Table 1 and Table 2. The compared

methods are based on CNN, RNN (or LSTM), and graph

structure and our method consistently outperform state-of-

the-art approaches. This demonstrates the effectiveness of

640



Methods CS CV

SAN-V1 + FF 75.4 79.8

SAN-V1 + CNN 80.1 86.2

SAN-V2 + FF 80.3 85.2

SAN-V2 + CNN 85.9 91.7

SAN-V3 + FF 78.6 84.1

SAN-V3 + CNN 85.5 91.4

Table 3: The comparison results of SAN variants shown in

Fig. 3 with different encoder inputs on NTU dataset (%).

Methods CS CV

SAN-V2 (seq=96) 86.1 92.0

SAN-V3 (seq=96) 85.9 91.7

TS (seg=3) + SAN-V2 (seq=32) 87.2 92.7

TS (seg=3) + SAN-V3 (seq=32) 86.8 92.4

Table 4: The comparison results of effectiveness of tempo-

ral segment on NTU dataset (%).

our proposed model for the skeleton-based action recogni-

tion task.

As shown in Table 1, our proposed model achieves the

best performance with 87.2% with CS and 92.7% with CV.

Our model and [26] have common in a sense that attention

mechanism is used. By comparing with STA-LSTM [26],

our model performs 13.8% with CS and 11.5% with CV.

Our model encodes the raw skeleton data with CNNs simi-

lar to HCN [17] but outperforms by 0.7% with CS and 0.8%
with CV. Comparing our model with SR-TSL [24] which is

one of the best-performed methods, the performance gaps

are 2.4% with CS and 0.3% with CV.

On the Kinetics dataset, we compare with four meth-

ods which are based on handcraft features, LSTM, temporal

convolution, and graph-based convolution. As shown in Ta-

ble 2, our method attains the best performance with a signif-

icant margin. The proposed method outperforms by 4.4%
on top-1 and 2.9% on top-5 accuracies. We observe that

CNN based methods [17, 24, 40, 14] are superior to LSTM

based methods [41, 16, 22] based on both Table 1 and Table

2, and our model outperforms the CNN based methods.

5.4. Ablation Study

We analyze the proposed network by comparing it with

baseline models. We compare SAN variants with hyper-

parameter options for encoders, self-attention network, and

temporal segment network. Each experiment is evaluated

on the NTU RGB+D dataset.

5.4.1 Effect of SAN Variants with Different Encoders

Table 3 shows the results with different SAN variants and

different inputs to them. The SAN-V2 model performs the

best and the SAN-V1 model the worst. The gap between

Methods CS CV

TS(Avg) + SAN-V2 87.2 92.7

TS(Max) + SAN-V2 86.1 91.9

TS(Avg) + SAN-V3 86.8 92.4

TS(Max) + SAN-V3 85.9 91.1

Table 5: The comparison results of different aggregation

methods for TS network on NTU dataset (%).

Methods CS CV

TS + SAN-V2 (L2H2) 86.7 92.1

TS + SAN-V2 (L4H4) 86.9 92.5

TS + SAN-V2 (L4H8) 87.2 92.7

TS + SAN-V2 (L8H8) 87.0 92.4

Table 6: The comparison results of the number of attention

layers and multi-heads on NTU dataset (%).

the SAN-V2 model and the SAN-V3 model is minimal.

We observe that the CNN encoder boosts the performance

accuracy by up to 7.3% for SAN-V3. It shows that the

CNN encoder effectively generates rich feature represen-

tations for the SAN models and plays a significant role in

the network. From the observation that SAN-V2 slightly

outperforms SAN-V3, we conclude two facts: late fusion

performs better than early fusion; and sharing weights of

SAN blocks resulting in better trained models.

5.4.2 Effect of Temporal Segment

The self-attention network is suitable for connecting both

short and long-range features and is capable of capturing

higher-level context from all correlations. We compare the

TS-SAN and SAN variants to see how they perform differ-

ently if two networks have the same sequence length. As

shown in Table 4, TS-SAN outperforms. This proves that

our design goal to make use of the temporal segment is cor-

rect. However, the SAN variants without the temporal seg-

ment network have an advantage of having less parameters

with a small sacrifice of performance. Although TS-SAN

models outperform, we observe that the SAN variants per-

form well for long-range input sequences, F=96.

5.4.3 Effect of Consensus Function

We consider element-wise operations for the consensus

function to compute the final prediction. Two operations are

valid: element-wise average, element-wise maximum. Ta-

ble 5 shows the performances of TS-SAN-V2 and TS-SAN-

V3 with the above operations. The element-wise average

consensus function outperforms the element-wise max op-

eration in both SAN variants. The TS-SAN model with the

element-wise max operation is outperformed by the SAN

model without the temporal segment as shown in Table 4.
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We conjecture that since the self-attention output signals

are based on weighted average computation, it makes more

sense to use the element-wise average aggregation function

for the collected outputs from each snippet. By doing so, the

video level self-attention can be computed properly leading

to the best performance.

5.4.4 Effect of Number of Layers and Mutli-heads in

SAN Block

We compare TS-SAN-V2 model with different number of

layers and multi-heads. The results are shown in Table 6.

By comparing the row 2 and 3, we observe that the num-

ber of heads affect the performance marginally. From the

results of the row 3 and 4, we also observe that the network

underperform if it contains too many paramerters. On the

contrary, the network also underperforms when the number

of parameters are not enough (row 1). According to the re-

sults, we argue that the proposed model requires a proper

number of layers and heads for a cetrain dataset to perform

the best.

5.5. Visualization of Self­Attention Layer Response

The self-attention network determines where each frame

correlates to other frames. We visualize the self-attention

response from the last self-attention layer with a visualiza-

tion tool [32] to understand how each frame is correlated for

a certain action video. As shown in Fig. 5, the vertical axis

shows the sampled 32 frames. Self-attention responses for

eight multi-heads are displayed and each column shows the

coarse shape of the attention pattern between two frames.

The model used for this visualization attains four layers

and eight heads, and takes 32 sampled frames as the input

sequence. No temporal segment network is used to train the

network. The self-attention probabilities are calculated by

the equ. 1 in the self-attention layer described in Fig. 3a.

For example, from Fig. 5a, one of the strongest correla-

tion in the third head can be found from a connection be-

tween frame 31 to frame 0 (a line across from bottom left

to top right). From the above example, we can check the

long range correlation is achieved and the proposed method

captures a variety of correlations in both short and long dis-

tance.

We observe that the overall self-attention response pat-

terns of the same action class (‘put on jacket’) resembles

each other as shown in Fig. 5a and Fig. 5b. The repsonses

of head 1 and head 6 from two videos especially shows sim-

ilar pattern. Although two videos are taken by different sub-

jects, duration, and views, we can see that the self-attention

catches a certain latent similarity. Comparing Fig. 5a and

Fig. 5b with Fig. 5c, there is not much similar response

pattern between them due to different action classes (‘put

on jacket’ vs ‘reading’). We also learn that the proposed

(a) ‘Put on jacket’ action with subject 1

(b) ‘Put on jacket’ action with subject 2

(c) ‘Reading’ action with subject 1

Figure 5: Self-attention probabilities from the last self-

attention layer for three test videos on NTU RGB+D are

visualized. The brighter color denotes the higher probabil-

ity or the stronger connection.

model is robust to subtle motion or speed of action changes

from difference subjects or even views.

6. Conclusion

In this paper, we propose three novel SAN variations

in order to extract high-level context from short and long-

range self-attentions. Our proposed architectures signifi-

cantly outperform state-of-the-art methods. CNN employed

in our model is effective to extract feature representations

for the input sequence of the self-attention network. SAN

can capture the temporal correlations regardless of distance,

making it possible to obtain high-level context information

from both short and long-range self-attentions. We also pro-

pose an effective integration of SAN and TSN which re-

sults in observable performance boost. We perform exten-

sive experiments on two large scale datasets, NTU RGB+D

and Kinetics-skeleton, and verify the effectiveness of our

proposed models for the skeleton-based action recognition

task. In the future, we will apply our model to video-based

recognition tasks with key point annotations, such as facial

expression recognition. We will also explore different meth-

ods to extract effective feature representations for the input

sequence of SAN.
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