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Abstract

Convolutional neural networks have recently advanced

the state of the art in many tasks including edge and ob-

ject boundary detection. However, in this paper, we demon-

strate that these edge detectors inherit a troubling property

of neural networks: they can be fooled by adversarial exam-

ples. We show that adding small perturbations to an image

causes HED [42], a CNN-based edge detection model, to

fail to locate edges, to detect nonexistent edges, and even

to hallucinate arbitrary configurations of edges. More im-

portantly, we find that these adversarial examples blindly

transfer to other CNN-based vision models. In particular,

attacks on edge detection result in significant drops in ac-

curacy in models trained to perform unrelated, high-level

tasks like image classification and semantic segmentation.

1. Introduction

Edge and contour detection have long played a major

role in computer vision. First studied as a low-level function

of biological vision [21, 35], the notion that edge detection

can be used to filter out irrelevant lighting and texture in-

formation and extract shape information from images dates

back to early work in the field [18, 22, 6]. Edge detection

has been used as a pre-processing step in many classical vi-

sion algorithms [9, 44, 34, 4].

The history of edge detection is substantial, and a wide

variety of techniques have been developed. Early ap-

proaches used hand-crafted features [22, 6]. Later, data-

driven methods like [23, 9] emerged, in which some set

of model parameters is automatically tuned on a training

dataset in order to reduce false positives. Most recently,

convolutional neural networks (CNNs) have been applied

to the edge detection problem [36, 42, 5, 28]. One ma-

jor success of this line of research is Holistically-Nested

Edge Detection (HED), a CNN model that achieves near-

human edge detection accuracy on standard datasets [42].

“bighorn sheep” “Indian elephant”

Figure 1: Adding a small perturbation (right) to an image

causes a state-of-the-art edge detection model to produce a

contrived pattern. The same perturbation causes a VGG16

model to misclassify the image (changing the predicted

class label from “bighorn sheep” to “Indian elephant”). We

set ytarget to achieve the edge pattern above. Here, ǫ = 8.

This approach has attracted attention for its competitive per-

formance, architectural simplicity, and computational effi-

ciency.
In recent years, automatic feature learning by CNNs has

replaced explicit edge detection for higher-level vision tasks

like image classification. However, it is well known that

CNNs learn edge-like features implicitly [24]. The Gabor-

like filters learned by the earliest layers of CNNs emerge
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regardless of which dataset or task they are trained on [43].

In this sense, edge detection is a universal visual task that

continues to underlie modern vision systems, albeit implic-

itly.

Despite CNNs’ marked gains in accuracy over classical

techniques in domains like classification and semantic seg-

mentation, they are vulnerable to adversarial examples. In

a variety of tasks [38, 40], small perturbations that look like

noise to a human can cause the network to produce non-

sensical results. In many cases, an attacker can select this

perturbation to cause the network to produce any desired

output. Worse, some attacks transfer: the same perturba-

tion trained to fool one network sometimes fools similar

networks trained on slightly different datasets.

However, it has not yet been shown whether these adver-

sarial examples are limited to networks trained on “com-

plex” visual tasks like classification and semantic segmen-

tation, or whether even a CNN trained to perform a low-

level task like edge detection is vulnerable. In this paper, we

address this question by investigating the degree to which

HED suffers from adversarial examples. Adapting exist-

ing methods to HED, we find that it is indeed vulnerable

to a particular class of adversarial attacks. Altogether, the

following results add yet another example to the list of do-

mains where deep neural networks can be fooled.

Just as edge detection is a universal component of many

methods in computer vision, we find that adversarial ex-

amples for edge detection affect other models, too: they

transfer to higher-level tasks. In particular, we show that an

attack on edges can transfer to models regardless of archi-

tecture, training data, and visual task. Without knowing the

parameters of a vision model, we can impair that model’s

accuracy on an image by attacking the edges of the image.

The intuition behind these results should be clear: because

edge detection is used in CNNs for downstream processing,

the CNN will fail to perform higher-level tasks if we can

obfuscate these edges.

2. Related work

Adversarial examples have primarily been studied in the

context of image classification [38, 14, 26]. However, they

have also been found to affect networks for object detec-

tion [40], semantic segmentation [40, 12], and natural lan-

guage processing [1]. Apart from finding new domains in

which adversarial examples exist, much of recent research

has focused on devising generic algorithms for generating

adversarial examples—i.e., how to synthesize them effi-

ciently and how to improve their success rates. The first

work of this kind uses a L-BFGS optimizer to minimize the

size of the perturbation subject to the constraint that the net-

work produces the target output [38]. The prevalent fast

gradient sign method (FGSM) [14] exploits the linearity of

the loss function landscape to generate adversarial exam-

ples with only first-order information and a single pass of

backpropagation. This method has been improved by iter-

ated updates [26] and momentum [10]. The literature on

defending against these adversarial examples is as rich as

the study of the attacks themselves; prominent examples

are defensive distillation [31], input transformations [15],

and adversarial training [38, 29].

While we are the first to develop adversarial attacks for

edge detection models, others have investigated the rela-

tionship between adversarial attacks and edge information.

Harmonic Adversarial Attack Method [17] considers the re-

lationship between edge information and attack quality and

transferability. The goal of this work is to maximize the

smoothness of the perturbation so that the high-frequency

statistics of the image change as little as possible.

Black-box attacks and transferability have been the sub-

ject of extensive study since [38]. In the black-box setting,

the attacker does not have access to the model parameters

and architecture; however, the model can be queried to gen-

erate an attack. An attack transfers if it affects a different

model without access to parameters, architecture, or input-

output pairs. One approach to generating black-box adver-

sarial examples is to attack a surrogate model trained to

mimic outputs from the target model [30]. Another is to

train a separate network to generate perturbations [32, 3].

Finally, other work studies the transferability of attacks on

intermediate layers [19].

3. Methods

3.1. Holistically­Nested Edge Detection [42]

Like many recent models for semantic segmentation,

HED uses a fully-convolutional architecture [42]. This

means that all of the network’s parameters consist of con-

volution kernels; for this reason, the model is agnostic to

input size. HED’s convolutional layers are derived from

a pretrained VGG16 [37] model and are fine-tuned on the

Berkeley Segmentation Data Set (BSDS500) [2]. A multi-

scale architecture and deep supervision are two crucial as-

pects of the HED method. In particular, HED outputs edge

predictions from five different layers of the network, each

corresponding to a different scale. During training, each of

these side outputs is encouraged to match the ground-truth

edge map [42].

In this paper, we show that despite HED’s impressive

performance on in-distribution images, this model is easily

fooled by adversarial examples. Just like neural network

training, the choice of loss function strongly affects the re-

sults of an adversarial attack. This is because adversarial

attacks are formulated as an optimization problem in the

space of images; like learning, generating adversarial exam-

ples also uses backpropagation to compute gradients of the

loss. Our attack methods optimize a similar cross-entropy
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loss to that of HED, except for one crucial difference. Con-

sider the loss for side output m:

ℓm(X, ytrue; θ) = −
1

2

∑

i : ytrue
i

=1

log(ŷmi )

−
1

2

∑

i : ytrue
i

=0

log(1− ŷmi ).

(1)

Here, ŷmi denotes the ith pixel of side output m, which

is a function of X and θ. Unlike HED, we do not weigh

edges (ytrue
i = 1) more strongly than non-edges (ytrue

i =
0). Instead, the positive and negative classes are penal-

ized equally. This enables additional types of attacks. In

particular, in the class-balanced formulation of HED, using

ytrue = 1 causes the first term to vanish, since it is propor-

tional to the number of non-edges in the ground truth ytrue.

This prevents the attack from generating new edges in the

image, making so-called edge activation attacks impossible.

Thus, we use a 1:1 class weighting for all attacks.

Like HED, the overall loss is a linear combination of in-

dividual side output losses and a multi-scale fusion term:

L(X, ytrue; θ) =
∑

m

αmℓm(X, ytrue; θ)

−
1

2

∑

i : ytrue
i

=1

log(ŷfuse
i )−

1

2

∑

i : ytrue
i

=0

log(1− ŷfuse
i ),

(2)

where ŷfuse
i = sigmoid(

∑

m hmŷmi ). At test time, the final

edge prediction is a weighted average of the side outputs

and ŷfuse [42].

3.2. Generating adversarial examples

In this paper, we apply attacks in the family of fast gra-

dient sign methods (FGSM). These are some of the most

studied attack methods [14, 26, 25, 10], and they require

relatively little computation when compared with methods

like L-BFGS [14]. In the following section, we describe a

few relevant examples of fast gradient sign methods, adopt-

ing the notation of [41].

The original FGSM [14] generates an adversarial pertur-

bation using the gradient of the loss

Xadv = X + ǫ sign(∇XL(X, ytrue; θ)), (3)

where ytrue is the ground-truth edge map. FGSM can

be extended to the iterative fast gradient sign method (I-

FGSM) [26] and the momentum iterative fast gradient sign

method (MI-FGSM) [10], the latter of which uses the up-

date rule

gn+1 = µgn +
∇XL(Xadv

n , ytrue; θ)

‖∇XL(Xadv
n , ytrue; θ)‖

1

(4)

Xadv
n+1 = ClipǫX

[

Xadv
n + α sign(gn+1)

]

, (5)

where ǫ ≥
∥

∥X −Xadv
∥

∥

∞

measures the size of the pertur-

bation and the momentum µ and step size α are attack pa-

rameters. In this paper, all attacks are based on MI-FGSM.

In transferability studies, [41] showed that introducing

input diversity transformations makes attack perturbations

more likely to transfer across architectures. Like data aug-

mentation, the input image X is randomly resized during

the optimization process. Following this approach, we test

M-DI2-FGSM, a modified version of MI-FGSM, in our

transfer experiments. This replaces the update in Eq. 4 with

gn+1 = µgn +
∇XL(T (Xadv

n ), ytrue; θ)

‖∇XL(T (Xadv
n ), ytrue; θ)‖

1

(6)

where

T (X) =

{

resize(X) with probability 1/2

X otherwise
(7)

The transformation function resize(X) first down-scales

the image to a rectangle with random dimensions (w, h)—
where w, h ∼ Uniform(0, 300)—then randomly pads the

boundaries of the image with black pixels to restore it to its

original size.

After perturbing the image, it is possible that pixel inten-

sities of Xadv leave the valid range [0, 255]. To deal with

this, we simply clip pixel intensities to [0, 255] after adding

the perturbation. Although this can destroy some of the per-

turbation, [40] find that the effect is negligible for small ǫ,
so we adopt this practice.

3.3. Targeted attacks

Up to this point, we have only discussed so-called un-

targeted attacks, which maximize the original training loss.

Adversarial attacks also come in a targeted form that mini-

mizes, rather than maximizes, a modified loss. For example,

targeted MI-FGSM has the update rule

gn+1 = µgn +
∇XL(Xadv

n , ytarget; θ)

‖∇XL(Xadv
n , ytarget; θ)‖

1

(8)

Xadv
n+1 = ClipǫX

[

Xadv
n − α sign(gn+1)

]

, (9)

where ytarget is the desired output of the network. Note that

ytrue has been changed to ytarget and the sign in front of α is

now negative.

We found that switching from HED’s class-balanced loss

to a 1:1 class weighting as in Eq. 1 makes it harder for some

attacks to suppress edges. To compensate for this, we apply

a morphological thickening operation (radius of 3 pixels) to

the ground-truth labels ytrue before using it in an attack. This

makes certain attacks, namely MI-FGSM and I-MI-FGSM

(see Fig. 2) stronger.
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(a) no attack (b) MI-FGSM (c) I-MI-FGSM

y
target

= 1− y
true

(d) S-MI-FGSM

y
target

= 0

(e) A-MI-FGSM

y
target

= 1

Figure 2: Figure 2a is an unaltered image from the BSDS500 test set and the output of HED. Attack 2b uses the untargeted

MI-FGSM optimizer (Eqs. 4 and 5). Inverse-target (Figure 2c), suppression (Figure 2d), and activation attacks (Figure 2e)

use the targeted MI-FGSM optimizer (Eqs. 8 and 9). Here, we use ǫ = 8 and 10 iterations.

This leads to four main attack variants, the last three of

which are targeted:

U Untargeted attack. Use Eqs. 4 and 5.

S Suppression attack. The objective is to lower the

probability of edges throughout the image. This cor-

responds to setting ytarget = 0.

A Activation attack. The objective is to increase the

probability of edges throughout the image. This cor-

responds to setting ytarget = 1.

I Inverse-target attack. The objective is to minimize

the loss on the inverted ground truth label, using

ytarget = 1 − ytrue. This is an alternative to untargeted

attacks.

3.4. Evaluation

We evaluate our approach on the test set of the BSDS500

dataset [2]. This consists of 200 images with ground-truth

boundary annotations. Like [42], evaluation is performed

using the fixed-contour threshold F-score (ODS). We per-

form the same standard non-maximal-suppression proce-

dure as [6, 42] before evaluating outputs. To measure the

effectiveness of the attack, we compare the mean ODS of

HED outputs on unattacked images and outputs on attacked

images.

4. BSDS500 experiments

In the following experiments, we evaluate these attack

variants on BSDS500. Attacks are run for 10 iterations

with ǫ = 16, following [10]. We fix µ = 0.5 and α = 2.

In Table 2, we see that all methods decrease the ODS F-

score of HED, with I-MI-FGSM being the most effective
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U MI-FGSM Eqs. 4, 5 n/a

S S-MI-FGSM X Eqs. 8, 9 0

A A-MI-FGSM X Eqs. 8, 9 1

I I-MI-FGSM X Eqs. 8, 9 1− ytrue

U M-DI2-FGSM Eqs. 6, 9 n/a X

S S-M-DI2-FGSM X Eqs. 6, 9 0 X

A A-M-DI2-FGSM X Eqs. 6, 9 1 X

I I-M-DI2-FGSM X Eqs. 6, 9 1− ytrue X

Table 1: Attack variants. No prefix (U ): untargeted attacks.

S- prefix (S): suppression attacks. A- prefix (A): activa-

tion attacks. I- prefix (I): inverse-target attacks. The last

four attacks are the same as the first four, except they use

input diversity transformations (Eqs. 6, 7).

attack. For other methods, we find that the combination

of side-output averaging and non-maximal suppression pro-

tects HED against major drops in accuracy, even though the

raw output of the network changes (see Figure 2).

It is worth noting that these attacks are less successful at

suppressing edges than activating non-edges. In Figure 2d,

notice that the boundary of the buffalo is still detected, al-

beit with much lower probability. This may be due to the

weighting of the loss function in Eq. 1, as edges are less

frequent than non-edges so they contribute less to the loss

function. In general, we find that the attacks typically fail

to suppress unambiguous edges (e.g., the high-contrast leg

in Figure 2) and fool those that require more global context
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ǫ MI-FGSM I-MI-FGSM S-MI-FGSM A-MI-FGSM

0 0.775 0.775 0.775 0.775

1 0.720 0.728 0.752 0.756

2 0.680 0.637 0.731 0.726

4 0.636 0.445 0.702 0.684

8 0.588 0.332 0.645 0.642

16 0.545 0.312 0.573 0.580

Table 2: BSDS500 test ODS F-score as a function of attack

magnitude ǫ for each attack variant.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall
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0.1

0.2

0.3

0.4
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0.8

0.9

1

P
re

c
is
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n

[F=.80] Human

[F=.77] No attack

[F=.32] Attack side output 1

[F=.33] Attack side output 2

[F=.34] Attack side output 3

[F=.37] Attack side output 4

[F=.37] Attack side output 5

Figure 3: Precision-recall curves from I-MI-FGSM attacks

on different side outputs. The “inverted” precision-recall

curves are due to the fact that I-MI-FGSM makes the net-

work more likely to classify edges as non-edges and non-

edges as edges.

to detect (e.g., the boundary between the mountain and the

sky in Figure 2).

We also investigate the effect of attacking HED’s indi-

vidual side outputs. Instead of optimizing the loss in Eq. 2,

we simply optimize the single-side-output loss in Eq. 1 for

m = 1, . . . , 5. As shown in Figure 3, attacking side out-

puts 2-5 is more effective than attacking side output 1. Two

possible explanations for this are (1) when attacking deeper

layers, more of the network’s parameters are available for

the attack to exploit, and (2) later side outputs have larger

receptive fields, so each edge output value is a function of

more degrees of freedom in the input. These findings agree

with the previous paragraph and show that the deeper, non-

local layers of HED are the most vulnerable to attack.

Some of the perturbations generated by our method can

ℓ2 SSIM ESSIM Laplacian

Unattacked 0.000 1.000 1.000 37.234

MI-FGSM 0.090 0.760 0.342 45.441

I-MI-FGSM 0.107 0.684 0.281 47.875

S-MI-FGSM 0.096 0.754 0.318 50.589

A-MI-FGSM 0.106 0.675 0.297 48.708

Table 3: Measurements of image degradation due to vari-

ous attacks. Each metric is computed on every image in the

BSDS500 test set; mean values are reported. ℓ2 corresponds

to the normalized ℓ2-norm, i.e.
∥

∥X −Xadv
∥

∥

2
/ ‖X‖

2
.

SSIM [39] is a prevalent measurement of image degrada-

tion. ESSIM [17], or Edge-SSIM, is obtained by applying

SSIM to the Laplacian maps of each image. Laplacian cor-

responds the mean absolute value of the Laplace operator

evaluated on the attacked image.

be perceived by the eye; we quantify this perceptibility us-

ing image quality metrics. In Table 3, we see that it is possi-

ble to differentiate attacked images from unattacked images

using metrics for image quality degradation. This makes

sense in the context of earlier findings that FGSM results

in loss of SSIM and Edge-SSIM scores [17]. Note that the

mean absolute value of the Laplacian is higher for attacked

images, but this effect is small. Altogether, these visual and

statistical discrepancies suggest that it may be possible to

detect if the edges of an image have been attacked. We leave

this as an open research question.

5. Transferability

The following section is concerned with how attacks on

HED transfer to higher-level vision tasks and other datasets.

These results are perhaps more noteworthy than those of

Section 4, since they show that edge-based attacks have

implications beyond edge detection. We consider two im-

portant tasks: image classification (a high-level task) and

semantic segmentation (a low- and high-level task). It is

worth investigating both since edges are a low-level fea-

ture, and altering edges might have different effects on net-

works trained to perform high-level tasks compared to those

trained to perform low-level tasks. (Edge detection and

semantic segmentation differ in that edges may not corre-

spond to object boundaries; the related task of object bound-

ary detection [33] corresponds more closely to semantic

segmentation.)

5.1. Classification

First, we study the effect of edge-based attacks on Im-

ageNet classification [8]. For each model, we report the

top-1 classification accuracy on the validation set before at-

tack and after attack. All classifiers use a standard imple-
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mentation and publicly-available pretrained weights. We

test VGG16 [37], the architecture that HED is based on.

To investigate cross-architecture transfer, we also consider

models from the ResNet family [16]. We use the same mo-

mentum and step size parameters from the previous experi-

ments. When not stated, we set ǫ = 16, which yields a slight

perturbation. Because we do not have ground-truth edge

annotations for the ImageNet dataset, we use the output of

HED for ytrue. This is necessary for untargeted attacks like

MI-FGSM (Eqs. 4 and 5).

As shown in Table 4, edge-based attacks do transfer to

ImageNet classifiers. The most significant decline is in

VGG16, whose accuracy drops from 71.264% to 14.332%

on images attacked with A-M-DI2-FGSM. This is not much

of a surprise: VGG16 and HED share the same architecture,

and HED is pretrained with VGG16 weights, so one might

expect attacks on HED to transfer to VGG16. More un-

expectedly, however, the same perturbations also cause the

accuracy of ResNet models to drop precipitously. The effect

is greater the shallower the model—ResNet18 suffers a 40-

point drop from A-M-DI2-FGSM whereas ResNet152 only

has a 34-point drop—but in all cases the reduction is con-

sequential. This drop does not occur when the pixels of the

perturbation are randomly permuted (column 3 of Table 6),

showing that the structure of the perturbation matters.

Again in Table 4, observe that the edge activation attack

A-M-DI2-FGSM and the inverse-target attack I-M-DI2-

FGSM transfer the best to classification networks (columns

5, 9). In part, this is due to the small boost in transferability

that comes from input diversity transformations. Nonethe-

less, the effect is small, and the same techniques without

input diversity transformations transfer almost as well (e.g.,

compare columns 8 and 9). Overall, it appears that edge

activation attacks transfer to classification much better than

other types of edge-based attacks.

To give a better understanding of transferability of at-

tacks on edge detection, Table 6 compares the drop in clas-

sification accuracy due to edge-based attacks versus white-

box attacks on the same models. In particular, we at-

tack VGG16 and ResNet34 directly, using the same at-

tack method (MI-FGSM) and identical parameters (ǫ = 16,

µ = 0.5, α = 2, 10 iterations). However, instead of using

gradients from HED, we use gradients of the cross-entropy

loss from the ImageNet ground truth like standard white-

box classification attacks [14]. The white-box MI-FGSM

attacks on VGG16 and ResNet34 are highly effective on

their respective models (both lead to less than 3% accuracy).

However, unlike edge attacks, the perturbations from these

attacks do not transfer to the other models.

We conduct an additional experiment to see if white-box

adversarial examples for classification transfer to edge de-

tection. Using a ResNet18 model, we generate adversarial

examples for each image in the BSDS500 test set using MI-

FGSM. Here, we set ytrue to the output of ResNet18 on the

BSDS500 images. We find no difference in HED F-scores

on the perturbed images versus unperturbed images, indi-

cating that the transferability only works in one direction.

Table 5 shows the transferability of attacks on differ-

ent HED side outputs. Here, we choose A-M-DI2-FGSM,

which we found has the highest transferability (Table 4).

We observe that attacking side output 3 transfers the best

to classification (i.e., optimizing the loss in Eq. 1 for m =
3). This result mimics findings that attacking intermedi-

ate layers of classifiers—rather than output layers—leads to

greater transferability of adversarial examples [19]. How-

ever, attacking the multi-scale loss of Eq. 2 still transfers

better than attacking any individual side output.

5.2. Reducing texture bias: a successful defense
against edge­based transfer attacks?

It has been shown that CNNs trained on ImageNet rely

heavily on texture to classify images [13]. To reduce this re-

liance, [13] train classifiers on ImageNet training examples

that have transformed using AdaIN style transfer [20]. This

style transfer removes low-level texture information but pre-

serves global shape. Augmenting the dataset with these

stylized images reduces a CNN’s reliance on texture [13].

Moreover, training on stylized examples improves robust-

ness to distortions such as uniform noise, contrast changes,

and high-pass and low-pass filtering [13].

In this experiment, we investigate whether training on

texture-free images also improves robustness to our edge-

based attacks. We compare the ImageNet validation ac-

curacy of a ResNet50 model trained on ImageNet and a

ResNet50 model trained jointly on ImageNet and Stylized-

ImageNet [13] under various edge-based attacks. Accord-

ing to the first row of Table 7, both models have roughly the

same performance on unattacked images (75.586% versus

74.074%). However, on edge-based adversarial examples,

the two models’ accuracy differs considerably.

In Table 7, note that training on stylized images improves

robustness to edge suppression and activation attacks, but

it decreases robustness to untargeted MI-FGSM edge at-

tacks. In particular, the Stylized-ImageNet model achieves

a 6-point lower accuracy on MI-FGSM adversarial exam-

ples than the ImageNet-trained model. Since this model is

biased towards shape, this suggests that MI-FGSM targets

shape information more than S-MI-FGSM or A-M-DI2-

FGSM. On the other hand, on adversarial examples gen-

erated with S-MI-FGSM, the shape-biased model achieves

a 6-point higher accuracy, and on those generated with A-

M-DI2-FGSM, it improves by 13 points. (This may suggest

that the edge suppression and edge activation attacks obfus-

cate texture more than untargeted edge attacks.)

Thus, augmenting the training set with stylized images

is not enough to defend against all edge-based attacks.
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none
MI-

FGSM
M-DI2-
FGSM

I-MI-
FGSM

I-M-DI2-
FGSM

S-MI-
FGSM

S-M-DI2-
FGSM

A-MI-
FGSM

A-M-DI2-
FGSM

VGG16 71.264 25.184 25.698 15.330 14.830 26.554 26.042 15.856 14.332

ResNet18 68.932 36.748 36.944 29.380 28.902 36.480 35.140 30.310 28.662

ResNet34 72.766 43.910 44.696 35.630 34.202 43.448 42.720 36.374 34.544

ResNet50 75.586 46.202 46.818 36.772 35.574 45.518 45.554 37.152 35.002

ResNet101 77.122 50.354 51.128 41.132 40.094 49.704 49.206 42.346 40.644

ResNet152 78.018 53.418 54.030 45.106 43.722 53.146 52.816 45.870 43.734

Table 4: The top-1 ImageNet accuracy of classification models under various edge-based attacks.

Side output: VGG16 ResNet18 ResNet34 ResNet50 ResNet101 ResNet152

1 39.042 46.376 51.456 52.33 55.262 58.832

2 25.67 40.244 48.122 47.146 51.97 54.83

3 17.352 32.87 40.584 38.896 42.946 46.758

4 20.884 34.642 40.38 40.94 46.288 49.984

5 22.896 36.424 41.19 44.03 48.146 51.996

All 14.332 28.662 34.544 35.002 40.644 43.734

Table 5: Classification transferability results when A-M-DI2-FGSM is applied to one of the side outputs of HED. Of all of

the individual side outputs, the third one is the best to attack (with the exception of ResNet34). However, attacking all side

outputs simultaneously (by optimizing Eq. 2 directly) still transfers the best.

unattacked A-MI-FGSM
A-MI-FGSM

(permuted)

VGG16

MI-FGSM

ResNet34

MI-FGSM

VGG16 71.264 15.856 65.112 2.274 65.774

ResNet18 68.932 30.31 64.262 63.97 59.784

ResNet34 72.766 36.374 68.982 68.546 0.536

ResNet50 75.586 37.152 71.424 71.378 67.87

ResNet101 77.122 42.346 73.718 73.7 70.34

ResNet152 78.018 45.87 74.878 74.946 72.046

Table 6: A comparison of top-1 ImageNet classification accuracies on images attacked with A-MI-FGSM and white-box

MI-FGSM. The third column is obtained by directly attacking VGG16 using MI-FGSM, then evaluating all six models on

the perturbed images. As shown, white-box attacks on VGG16 and ResNet34 are more effective than edge-based A-MI-

FGSM, but they do not transfer as well to the other models, unlike edge-based attacks. The third column, which highlights

the importance of the structure of the perturbation, is obtained by permuting the pixels returned by A-MI-FGSM, in a similar

manner to [40].

5.3. Semantic segmentation

In addition to classification, we also study whether ad-

versarial examples for edge detection transfer to seman-

tic segmentation. Like those for classification, adversar-

ial examples for semantic segmentation have also been

shown to transfer between deep network architectures [40].

DeepLabv3+ [7] is a state-of-the-art CNN model for seman-

tic segmentation. We test a model provided by the authors

of the paper [7] that is pretrained on MS-COCO [27] and

on augmented training examples from PASCAL VOC 2012

[11]. To evaluate the transferability of edge-based attacks,

we compare the mean intersection over union (mIOU) of

DeepLabv3+ on unperturbed and perturbed images from the

PASCAL VOC 2012 validation set.

As shown in Table 8, attacks on edge detection also

transfer to DeepLabv3+, albeit to a lesser degree. The

degradation in this model is smaller than in classification;

in Figure 4—a typical example of semantic segmentation—

many objects in the scene are still detected. However, like in
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ImageNet

(texture-biased)

ImageNet

+ Stylized-ImageNet

(shape-biased)

unattacked 75.586 74.074

MI-FGSM 46.202 40.952

S-MI-FGSM 45.518 51.778

A-M-DI2-FGSM 35.002 48.786

Table 7: Top-1 ImageNet validation accuracies of a

ResNet50 model trained on ImageNet and both the Ima-

geNet and the Stylized-ImageNet datasets. Decreasing tex-

ture bias by training on Stylized-ImageNet improves ro-

bustness to suppression and activation attacks like S-MI-

FGSM and A-M-DI2-FGSM, but it reduces robustness to

MI-FGSM.

attack mIOU

none 0.822

MI-FGSM 0.648

S-MI-FGSM 0.681

A-MI-FGSM 0.553

S-M-DI2-FGSM 0.735

A-M-DI2-FGSM 0.603

A-MI-FGSM (permuted) 0.775

Table 8: Performance of DeepLabv3+ model on the

validation set of PASCAL VOC 2012. The model,

xception65 coco voc train aug, was trained on

the COCO and VOC 2012 training datasets (with data aug-

mentation).

classification experiments, when we randomly permute the

perturbation like [40], we observe a much smaller degrada-

tion in performance (0.047 drop with permutation and 0.269

without). This demonstrates that the structure of perturba-

tion still matters; the attack cannot be replicated with ran-

dom noise.

6. Conclusions

In this paper, we have added to the wealth of existing

evidence that, regardless of task or domain application, un-

defended deep neural networks are susceptible to adversar-

ial attacks. In particular, we have shown that even a net-

work trained to perform a low-level, “straightforward” task

like edge detection can be confused and manipulated by

slight perturbations. This lends further credence to the no-

tion that adversarial examples are intrinsic to current neural

networks (or their optimization process) rather than a mere

artifact of training data and task.

However, at the same time, attacks on edge detection

sofa chair table tv

Figure 4: Top row: output of DeepLabv3+ model [7] on an

image from the Pascal VOC 2012 validation set. Bottom

row: output on the same image attacked with A-MI-FGSM.

Under an edge-based attack, the segmentation model fails

to recognize the sofa.

are unique in that they blindly transfer: the same attacks

that fool an edge detection network also fool deep networks

trained to perform classification and, to a lesser extent, se-

mantic segmentation. These attacks transfer despite signifi-

cant differences in network architecture and training data.

Still, unresolved questions remain. The exact reasons

why edge-based adversarial attacks transfer to classification

and segmentation are unclear. Perhaps the low-level cues

learned by HED are shared by ImageNet classifiers and se-

mantic segmentation networks, and when these cues are dis-

rupted, all models suffer. Perhaps ImageNet classifiers’ re-

liance on texture information makes them especially prone

to certain types of attacks (edge suppression and activation),

a question we began to address in Section 5.2.

As the defense we explored in Section 5.2 was weak, we

see potential in protecting HED and similar models against

white-box adversarial examples and defending higher-level

vision models against edge-based transfer attacks. It is

possible that existing defense techniques (e.g., adversarial

training [14, 29]) are effective here; otherwise, new de-

fenses may need to be explored.
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