
 

 

 

Abstract 
 

A back-of-the-napkin idea is typically created on the spur 

of the moment and captured via a few hand-sketched notes 

on whatever material is available, which often happens to 

be an actual paper napkin. This paper explores the 

preservation of such back-of-the-napkin ideas. Hand-

sketched notes, reflecting those flashes of inspiration, are 

not limited to text; they can also include drawings and 

graphics. Napkin backgrounds typically exhibit diverse 

textural and colour motifs/patterns that may have high 

visual saliency from a low-level vision standpoint. We thus 

frame the extraction of hand-sketched notes as a 

background modelling and removal task. We propose a 

novel document background model based on texture 

mixtures constructed from the document itself via texture 

synthesis, which allows us to identify background pixels 

and extract hand-sketched data as foreground elements. 

Experiments on a novel napkin image dataset yield 

excellent results and showcase the robustness of our 

method with respect to the napkin contents. A texture-based 

background modelling approach, such as ours, is generic 

enough to cope with any type of hand-sketched notes. 

 

1. Introduction 

The next generation of business productivity tools aims 

at supporting creative processes underlying innovation. 

While these productivity tools generally focus on the 

workplace, such as digital whiteboards in conference 

rooms, one cannot underestimate the power of the back-of-

the-napkin concept [1]. A good idea can strike at any 

moment. It often takes a writing surface to capture those 

flashes of inspiration and further develop them into real 

solutions. A back-of-the-napkin idea is typically created on 

the spur of the moment and captured via hand-sketched 

notes on whatever material is available [1]. This concept 

refers to how an idea may be born during dinner 

conversations and preserved, while still fresh in mind, by 

sketching on the back of a paper napkin [1]. 

This paper focuses on the preservation of such back-of-

the-napkin ideas written on perishable media via camera-

captured document image analysis. Given a camera-

captured image of an actual paper napkin containing hand-

sketched notes, we aim to automatically extract these notes 

in order to facilitate further processing steps such as optical 

character recognition (OCR), handwriting recognition, 

document vectorization, or content-based information 

retrieval and querying. The term "hand-sketched" is more 

adequate than "hand-written" (which generally refers to 

text) since these notes can include anything from text to 

drawings and graphics. 

Document analysis from camera-captured images 

typically addresses issues such as low resolution, blur, 

perspective distortions, sensor noise, and uneven lighting 

causing shading [2]. In the context of back-of-the-napkin 

ideas, we are also faced with potential creases, relief in the 

material from the pen pressure, as well as complex and 

colourful backgrounds that can have high visual saliency 

from a low-level vision standpoint. Due to the large 

variability of hand-sketched notes (text, drawings, 

graphics) and to the diversity of napkin backgrounds in 

terms of colours and patterns, we frame the problem of 

hand-sketched notes extraction as document background 

modelling and removal. 

1.1. Related works 

To the best of our knowledge, there are no other papers 

that address a problem similar to ours. The literature is also 

sparse when it comes to background modelling in the 

context of documents. However, works on binarization of 

camera-captured document images share a similar goal, 

which is to convert a colour or gray-level image into a bi-

level one, effectively splitting the document contents into 

foreground (text/ink) and background. Text detection (or 

more specifically hand-written text detection) is a separate 

topic, as hand-sketched notes here are not limited to text. 

While document binarization is trivial in the case of 

digitally-born documents with a white background, it 

remains an open challenge for images of physical 

documents with more complex backgrounds, degradation 

due to moisture, discoloration in the paper, ink bleed-

through or show-through, or various artefacts from the 

digitization process. These challenges have been 

showcased in a series of biennial contests since 2009 for the 
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Document Image Binarization COmpetition (DIBCO) [3] 

and 2010 for the Handwritten Document Image 

Binarization COmpetition (H-DIBCO) [4]. 

Binarization methods are generally classified into global, 

adaptive (local), and hybrid. Global approaches such as the 

classic Otsu's method [5], which use a single threshold 

value for the entire document image, are computationally 

inexpensive but tend to work poorly on camera-captured 

document images due to the various artifacts from the 

acquisition process. On the other hand, adaptive approaches 

such as the classic Sauvola method [6], which compute 

threshold values for each pixel using local neighbourhood 

information, are computationally more expensive and tend 

to perform better, but can be sensitive to the selection of 

their free parameter values [7]. In [8], Howe presented an 

automatic technique for setting the free parameters in a 

manner that tunes them to the individual image, which is 

still utilized frequently as part of proposed approaches in 

recent DIBCO contests. 

In the specific context of camera-captured document 

image binarization, Kiragu and Mwangi [9] used the single 

scale retinex algorithm (SSR) to enhance images prior to 

applying Otsu's global thresholding. Bukhari et al. [7] 

proposed an adaptive binarization approach based on the 

Sauvola method that utilizes different sets of free 

parameters values for pixels that belong to roughly 

estimated foreground regions and to background regions. 

Foreground regions are estimated from multi-oriented 

multi-scale anisotropic Gaussian smoothing and a ridge 

detection technique. Afzal et al. [10], addressing 

specifically the issue of blurred images, proposed an 

adaptive approach based on percentile filters. Zhao et al.'s 

adaptive approach [11] uses multi-level multi-scale local 

statistical information to binarize from coarse to fine and is 

based on variance and clarity data. Kim [12] proposed a 

hybrid approach via a multiple window scheme, in which 

local thresholds are determined from global trends and local 

details by applying multiple windows with their size tuned 

to the size and thickness of text characters. Also using a 

hybrid approach, Chou et al. [13] proposed to split camera-

captured document images into regions and learn what 

simple binarization operation, based on Otsu's thresholding, 

is best suited for each region type. Focusing on performance 

assessment of camera-captured document binarization 

techniques, Lins et al. [14] found that the best binarization 

algorithm depends on the device and the camera setup. 

Enlarging the scope of this literature review to include 

works that are not necessarily focused on camera-captured 

document images leads us to consider the binarization of 

degraded documents, whis is a very active research topic 

(e.g. [15-18]). Such documents are somewhat similar to 

napkin documents in terms of their complex and highly 

variable backgrounds. However, document degradation is 

typically studied on historic artifacts, which are quite 

different from the data considered in our project. Deep 

learning-based methods, mostly convolutional neural 

networks (CNNs), have recently started to permeate 

document binarization. Deep learning approaches proposed 

for document binarization typically fall in this application 

area of historical document restoration (e.g. [19-23]). 

1.2. Contributions 

Binarization methods tend to underperform when applied 

to documents with salient backgrounds. Also, text detection 

methods typically cannot cope with varied sketched notes 

(text, drawings, graphics). In light of those remarks, our 

paper makes the following contributions: 1) from a 

theoretical viewpoint, we utilize texture synthesis for image 

segmentation purposes and propose a document 

background model based on texture mixtures extracted 

from the document itself; 2) from a practical viewpoint, we 

apply this document background model to the challenging 

problem of extracting hand-sketched notes in the context of 

preserving back-of-the-napkin ideas; 3) for transparency 

purposes and as a service to the research community, we 

share our annotated dataset of camera-captured images of 

napkins with hand-sketched notes. A strength of our 

approach is its training-free nature: the background model 

is constructed "on the fly" from the napkin itself. This 

constitutes a sizable advantage which contributes to make 

our approach readily applicable to various motifs/patterns. 

Also, our solution of background modelling and removal 

applies to all documents with varied hand-sketched notes 

and flat or patterned backgrounds of low or high saliency. 

We use napkins as a case study; another example use case 

(not addressed in this paper) could be the improved 

digitization of documents with structured and salient 

background patterns such as documents printed/written on 

security paper. 

The remainder of the paper is structured as follows. Sect. 

2 details our approach to napkin background modelling for 

hand-sketched notes extraction, Sect. 3 discusses the 

experimental results, and Sect. 4 presents concluding 

remarks and future work directions. 

2. Proposed method 

The goal is to separate the foreground pixels (hand-

sketched notes) from the background pixels (motifs on the 

napkins) to extract and preserve the notes. This is 

accomplished by framing the problem as background 

modelling and removal. Our method has the advantage of 

not requiring any training data, and of not requiring any pre- 

or post-processing. 

We assume that the border regions of a napkin are 

representative of the napkin patterns, which exhibit some 

(unknown) spatial periodicity. The margins of the napkin 

are also more likely to contain little to no hand-sketched 

notes compared to other regions, which simplifies the 

construction of the background model. However, we do not 
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assume that the border regions should never include notes, 

as people usually scribble on napkins in unconstrained 

ways. The proposed approach is designed to handle the 

occurrence of some notes in the border regions (see end of 

Sect. 2.2). We make no assumption as to the 

size/type/colour/contrast of textural patterns occurring on 

napkins. We extract several patches at various scales and 

along all four borders to increase robustness to intra-napkin 

variations due to background changes (e.g. different 

patterns along some of the sides of a napkin), shadows, 

local distortions, and potential foreground data. 

Fig. 1 illustrates the flow chart of the method. Patches are 

first sampled along the border of the napkin image. Each 

patch is then used to grow a large textured image via texture 

synthesis, which is then aligned with the original napkin 

image and cropped to its original size to create one 

candidate background image. This process is repeated at 

various scales and allows us to create a texture mixture 

model. All modules of the flow chart are detailed in the 

following subsections, along with a complexity analysis of 

the proposed method. Tables 1 and 2 define all notations 

and parameters of the method, respectively. 

Table 1: Notations of the proposed method. 

Symbol Definition 

I Original napkin image 

TI Synthesized texture image 

BI Candidate background image 

TMM Texture mixture model 

Table 2: Parameters of the proposed method. 

Param. Definition Sect. 

P Number of patches at a given scale 2.1 

N Number of scales 2.1 

HSPi Patch half size at scale i 2.1 

M Size multiple w.r.t. base scale 2.1 

BS Block size for texture quilting 2.2 

O Amount of overlap at block boundary 2.2 

TH Threshold for background removal 2.5 

2.1. Patch sampling 

The idea is to obtain a set of patches which represents 

well the background that we wish to model. Thus, we 

extract P square patches at uniform intervals along the 

borders of the napkin image I. The single-scale version, 

where all sampled patches have the same size, is 

insufficient if the motifs vary in size across napkins. This is 

why we propose a multi-scale version in which N*P patches 

of different sizes are sampled, where N is the number of 

scales. The base patch half size HSP1 is set as a fraction of 

the napkin image size, and subsequent scales (HSP2, HSP3, 

etc.) are set as a multiple M of the base. Fig. 2a shows an 

example of sampled patches at different scales from a given 

napkin image, with P = 10, N = 3, HSP1 = Isize/32, and M = 

2(Level-1), i.e. HSP2 = HSP1*2(2-1) = 2HSP1 and HSP3 = 

HSP1*2(3-1) = 4HSP1. 

2.2. Texture synthesis 

From each patch obtained in Sect. 2.1, we generate a 

larger image (typically 1.5 times the size of I) via texture 

synthesis. Texture synthesis is a process in which an 

unlimited amount of image data is generated from a sample 

texture in a way that the new data will be perceived to be 

the same texture. 

We utilize the texture synthesis method proposed by 

Efros and Freeman [24], called "texture quilting", which is 

remarkably simple and cost efficient yet works very well. 

Sample square blocks from the patch are quilted together to 

synthesize a new texture sample. In order to mitigate the 

"blockiness" appearance, the boundary between the 

"quilted" blocks is computed as a minimum cost path 

through the error surface at the overlap. There are two 

parameters: the block size (BS) and the amount of overlap 

(O) at the block boundary. Fig. 2b shows an example of 

texture image TI synthesized from a napkin patch, with BS 

= 1.5*HSPi and O = HSPi/6. If any hand-sketched notes 

occur on a patch, they will most likely be reduced in 

importance in TI as they do not yield a smooth transition 

between blocks. 

2.3. Texture alignment and cropping 

Once a texture image TI is synthesized, we need to align 

it with the original napkin image I so that the patterns in 

both match each other. TI needs to be larger than I (see Sect. 

2.2), as the alignment process requires some extra texture. 

We use template matching with normalized cross-

correlation [25] to register I with TI: 

 𝛾𝛾(𝑢𝑢, 𝑣𝑣) =
�∑ �𝑇𝑇𝑇𝑇(𝑥𝑥,𝑦𝑦)−𝑇𝑇𝑇𝑇���𝑢𝑢,𝑣𝑣�[𝑇𝑇(𝑥𝑥−𝑢𝑢,𝑦𝑦−𝑣𝑣)−𝑇𝑇̅]𝑥𝑥,𝑦𝑦 ��∑ �𝑇𝑇𝑇𝑇(𝑥𝑥,𝑦𝑦)−𝑇𝑇𝑇𝑇���𝑢𝑢,𝑣𝑣�2𝑥𝑥,𝑦𝑦 ∑ [𝑇𝑇(𝑥𝑥−𝑢𝑢,𝑦𝑦−𝑣𝑣)−𝑇𝑇̅]2𝑥𝑥,𝑦𝑦 �1 2⁄  , (1) 

 

where γ(u,v) is a cross-correlation coefficient at location 

(u,v), TI(x,y) is the pixel intensity value at coordinates (x, y) 

of the texture image, I(x−u,y−v) is the pixel intensity value 

at coordinates (x−u,y−v) of the napkin image, (x,y) are 

Figure 1: Flowchart of the proposed method. 
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incremented to cover all pixel coordinates of the region of 

the texture image where the napkin image is superimposed, 𝐼̅𝐼 is the mean value of the napkin image, and 𝑇𝑇𝐼𝐼� 𝑢𝑢,𝑣𝑣 is the 

mean value of the texture image in the region covered by 

the napkin image. We then crop TI to the size of I around 

the location of the best match (highest cross-correlation 

coefficient, i.e. (u,v) for which γ is maximal). 

2.4. Texture mixture modelling 

Each aligned and cropped texture image from Sect. 2.3 

Figure 2: Example of texture-based background modelling. Sampled square patches from a napkin image with hand-sketched notes, 

where each colour (red, green and blue) represents a different scale (a). Synthesized texture image from one of the sampled patches (b). 

Background mask with pixels labelled as background in white (c) and corresponding hand-sketched note image after background removal 

(d). 

Figure 3: Examples of candidate background images within a texture mixture model obtained from two patches, displaying different 

etched patterns. Various sampled square patches (coloured bounding boxes) from a napkin image at a given scale (a). Two enlarged 

patches (with blue and magenta bounding boxes) and corresponding candidate background images (b-c). 
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becomes a candidate background image BI. We create a 

texture mixture model (TMM) that represents the napkin 

background from the set of candidate background images:  

 𝑇𝑇𝑇𝑇𝑇𝑇 =  �𝐵𝐵𝐼𝐼𝑗𝑗  �  𝑗𝑗 = 1 …𝑁𝑁 ∗ 𝑃𝑃� (2) 

 

The model gives us the set of probable background 

intensities at each pixel location. Fig. 3 shows several 

candidate background images within the same model, 

illustrating the importance of sampling along all borders of 

of the napkin to capture all possible textural variations. 

2.5. Background removal 

In the last phase, pixels in I are labelled as background if 

their intensity is similar to that of the TMM, i.e. if: 

 ∃𝐵𝐵𝐼𝐼𝑗𝑗 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 � 𝑎𝑎𝑎𝑎𝑎𝑎 �𝐼𝐼(𝑥𝑥, 𝑦𝑦) − 𝐵𝐵𝐼𝐼𝑗𝑗(𝑥𝑥, 𝑦𝑦)� ≤ 𝑇𝑇𝑇𝑇 (3) 

 

for all R, G, and B channels. I(x,y) is the intensity of the 

napkin image pixel at location (x,y) in one of the three 

colour channels, BIj(x,y) is the intensity of the candidate 

background image pixel at (x,y), and TH is a threshold. 

Equation (3) means that as long as the intensity in all three 

colour channels is similar to that of at least one candidate 

background image in TMM, the pixel is considered a 

background pixel. 

The background is then removed from I by subtracting 

all pixels labelled as background. The hand-sketched notes 

can then be easily recovered from the remaining pixels. 

Figs. 2c and 2d show an example of background mask and 

the corresponding hand-sketched note image after 

background removal. 

3. Experimental results 

The experiments used a public implementation of the 

texture quilting algorithm [24] available on Matlab Central 

[26]. Details on the napkin dataset, compared method, 

quantitative and qualitative evaluations, and computational 

considerations are provided next. 

3.1. Napkin dataset 

We have created a dataset comprised of 82 napkin 

images containing hand-sketched notes. The images were 

captured with a handheld digital camera (Canon Powershot 

SX 600 HS) without flash, in a minimally-constrained 

setting (i.e. roughly perpendicular to the napkin plane and 

roughly centered on the napkin), then cropped around the 

napkin itself to remove any extraneous object. Document 

boundary detection and perspective rectification are 

separate and independent problems considered beyond the 

scope of this paper. Should the input images be captured at 

an oblique angle, a solution would be to apply a separate 

document rectification step informed by the napkin contour 

shape using a well-established method such as [27]. 

Due to the fragile and wrinkly nature of napkins and to 

the acquisition conditions, shadows, creases, and relief 

from the pressure of the pen are visible. There are 12 

different napkin backgrounds; some have a solid colour 

print, while others have a checkered, lined, or dotted pattern 

print. All of them also include a textural pattern etched on 

the material over part or over the entire napkin. Six or seven 

pens, differing in colour and/or thickness, were used to 

write down notes on each napkin. We control the semantic 

content by using one sentence only, along with a limited set 

of hand drawings, which allows us to focus on several 

dimensions of variation, such as calligraphy styles, stroke 

thicknesses, ink colours, and note layouts. Each napkin 

image has thus one drawing (smiley, coffee cup, cactus, line 

chart, bar chart, or sunglasses) and the sentence "The most 

exciting ideas fit on the back of a napkin!" written in 

various styles and layouts. The images are in RGB format 

with 8 bits/channel; the resolution is either 868x868, 

910x910, 1050x1050, or 1160x1160, depending on the 

original paper napkin size. Fig. 4 shows sample images 

from the dataset, including details of the textural patterns in 

the material. 

Ground truth data were generated in a semi-automatic 

fashion with Matlab's Image Labeler app [28] using pixel 

labels and the flood fill and brush tools. The napkin dataset 

and ground truth data in the form of background masks are 

available online [29]. 

3.2. Method for comparison 

As noted in Sect. 1.1, while there are no papers in the 

literature that address a problem similar to ours, document 

binarization addresses a similar goal. We thus compare our 

proposed method with Howe's approach to document 

binarization [8], a well-cited approach considered as a 

baseline by many who participated in the latest edition of 

DIBCO [3]. Howe's approach is based upon three points. 1) 

It defines the binarization target as the set of pixel-based 

labels which minimizes a global energy function inspired 

by a Markov random field model. 2) It is meant to be 

invariant to both contrast and intensity due to a data fidelity 

term that relies on the Laplacian of the image intensity to 

distinguish text/ink from background. 3) Edge 

discontinuities are incorporated into the smoothness term, 

which biases text/ink boundaries to align with edges and 

allows for a smoothness incentive over the rest of the 

image. The method introduced a stability heuristic criterion 

that helps to choose suitable parameter values for individual 

images. Its Matlab companion code is available from [8]. 

All comparisons reported in this paper are performed with 

Algorithm 3 [8]. 
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3.3. Quantitative evaluation 

Evaluation metrics found in the literature for assessing 

binarization methods include OCR error rate comparisons 

and pixel-based metrics when ground truth data are 

available [3]. As the handwritten notes are not limited to 

text and our dataset includes ground truth data, we adopt the 

standard pixel-based precision, recall, and F-score metrics. 

In all experiments, for the multi-scale approach, P = 10, N 

= 3, HSP1 = Isize/32, M = 2(Level-1), BS = 1.5*HSPi, O = HSPi/6, 

and TH = 20 (see Table I). For the single-scale version (N 

= 1), the only difference is HSP1 = Isize/15.  

Table 3 presents the precision and recall rates for the 

proposed texture-based (both multi-scale and single-scale) 

and for Howe's method [8], along with the F-score. The 

metrics are computed pixel-wise over the entire dataset, 

with true positives being actual background pixels 

predicted as such, false positives being actual foreground 

pixels incorrectly predicted as background pixels, and false 

negatives being actual background pixels incorrectly 

predicted as foreground pixels. The best results are shown 

in bold font. All methods yield a very high precision rate (> 

99%); the proposed single-scale method has the highest 

precision and provides a small improvement over Howe's 

approach. While the proposed multi-scale version is 

slightly less precise, its recall rate is substantially superior 

to that of the single-scale and Howe's methods, by 4.3 p.p. 

and 17.4 p.p., respectively. The proposed multi-scale 

method thus performs significantly better in terms of not 

missing any of the actual background. Overall, the proposed 

multi-scale method outperforms both the single-scale and 

Howe's methods significantly, with an F-score of 0.988 vs. 

0.968 and 0.892, respectively. 

Table 3: Performance metric values of the proposed and 

compared methods over the entire dataset. 

Method Precision Recall F-score 

Howe's [8] 0.993 0.810 0.892 

Proposed (single-scale) 0.996 0.941 0.968 

Proposed (multi-scale) 0.992 0.984 0.988 

Table 4: Performance metric values of the proposed and 

compared methods averaged per image. 

Method 
Precision 

(μ ± σ) 

Recall 

(μ ± σ) 

F-score 

(μ ± σ) 

Howe's [8] 
0.992 ± 

0.021 

0.843 ± 

0.260 

0.884 ± 

0.198 

Proposed 

(single-scale) 

0.996 ± 
0.008 

0.950 ± 

0.058 

0.972 ± 

0.032 

Proposed 

(multi-scale) 

0.991 ± 

0.011 

0.986 ± 
0.013 

0.989 ± 
0.009 

μ = mean, σ = standard deviation 

Table 4 presents the precision, recall, and F-score metrics 

averaged per image, i.e. the three performance metrics are 

first computed pixel-wise for each napkin image, then the 

values from each image are averaged over the entire dataset. 

This allows us to also compute a standard deviation, which 

is of great interest, since it informs us on how consistent the 

methods perform over the proposed dataset at the image 

level. The best results for each metric are again shown in 

bold font. As is the case in Table 3, the proposed multi-scale 

method outperforms the other methods in terms of average 

recall and average F-score. The standard deviation is quite 

high for Howe's method, especially for the recall rate and 

the F-score (0.260 and 0.198), while it remains quite low 

for both single-scale and multi-scale versions of the 

proposed texture-based methods (< 0.05). This means that 

the performance of Howe's method can change drastically 

from one image to the next, while the proposed method is 

more consistent across the entire dataset and more robust 

with respect to the contents of the napkin images. 

Figure 4: Sample images from the napkin dataset. Original images 

(1st and 3rd rows) and zoomed-in regions showing pattern details 

(2nd and 4th rows) 
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3.4. Qualitative evaluation 

Fig. 5 shows typical results obtained by the proposed 

approach and by Howe's method [8]. The 1st column 

illustrates a case for which Howe's method completely 

failed while the best results were obtained by the proposed 

single-scale method. Howe's method overpredicted 

background pixels as most of the hand-sketched notes were 

considered as background. One possible reason is the 

intensity/colour similarity between the napkin background 

and the notes, which did not prevent the texture-based 

methods from correctly identifying the background. In that 

particular case, the proposed multi-scale version was 

slightly better at identifying actual background pixels than 

the single-scale version. This is a general trend that can be 

seen in all examples of Fig. 5, confirmed by the higher 

recall rates in Tables 3 and 4, and can be explained by the 

larger and potentially more varied texture mixture model of 

the multi-scale version, which makes it more prone to 

predict pixels as background. However, the downside is that 

more non-background pixels were identified as background 

by the multi-scale version. The 2nd and 3rd columns are 

cases for which Howe's method locally underpredicted 

background pixels as many patterned regions were falsely 

classified as non-background pixels, while the proposed 

multi-scale method was significantly more successful in 

identifying the background. These two examples, with high 

contrasting patterns, are interesting cases where a 

background modelling approach, as proposed, is preferable 

to classical document binarization approaches. The last 

column illustrates a case for which all methods performed 

well, even in the presence of creases, shadows, and relief 

from the pen pressure. 

The proposed approach does not apply any pre-

processing to the napkin images nor any post-processing to 

the results; the pixel labelling shown in Fig. 5 is the raw 

output and showcases the performance of the core 

algorithms of the proposed approach. One could envision 

adding post-processing to the labelling results in order, for 

instance, to fill in very small gaps in the background masks 

or gaps that have straight shapes that are unlikely coming 

from hand-sketched notes, which tend to be uneven. 

3.5. Computational considerations 

Experiments were carried out on a PC (Intel Quad-Core 

i7 @ 1.8 GHz CPU with 12 GB DDR4 RAM) in Matlab 

R2019a. Considering the fixed parameters of Sect. 3.3, the 

computational load mainly depends on the size of the 

original napkin image as well as the number of scales (and 

thus the number of patches). The serial CPU runtime was 

found to be 6.9 ± 0.5 x10-5s and 2.4 ± 0.3 x10-4s per pixel 

on average for the single-scale and multi-scale versions, 

respectively. The task with the largest computational load 

is the texture synthesis (Sect. 2.2), which typically takes up 

about 60% of the execution time. Memory usage depends 

mainly on parameters P and N (i.e. the total number of 

patches), as they define the size of the TMM, which is P*N 

times the size of the original napkin image. Our approach 

has a high potential for data parallelism on two levels: 1) 

each candidate texture image in the TMM is synthesized 

independently from a given napkin patch; 2) each napkin 

pixel is analyzed and labelled independently in the 

background removal phase. To take fully advantage of the 

spontaneous expression of back-of-the-napkin notes, a 

logical next step would be to implement the proposed 

method as a mobile app. Due to the large variability in 

smartphone operating systems and hardware (type of CPU, 

amount of storage and memory), the most feasible approach 

would be a cloud-based solution where the napkin image is 

sent for processing to a server with data parallelism 

capabilities. To limit data consumption by the user and to 

further reduce processing times, the image could easily be 

downsampled to at least half the current resolutions in the 

napkin dataset (Sect. 3.1) without impacting the end results. 

4. Conclusion 

This paper presents a novel approach for extracting hand-

sketched notes from camera-captured images of paper 

napkins. We frame the problem as document background 

modelling and removal due to the complexity and variations 

of napkin motifs which may be as salient as foreground 

data. The background model, based on texture mixtures 

obtained via texture synthesis, allows us to effectively 

remove napkin backgrounds in order to extract hand-

sketched notes such as text, drawings, and graphics. 

Experiments on a new napkin image dataset, made publicly 

available, show very promising results and showcase the 

robustness of our proposed method with respect to the 

napkin contents, compared to a baseline document 

binarization method. A texture-based background 

modelling approach, such as the proposed approach, has the 

main advantage of being able to cope with any type of hand-

sketched notes. We believe that such an approach still has 

its merits in the deep learning era as it does not require any 

training data, the background model being constructed on 

the fly from the napkin itself. 

Future work will focus on building a dynamic version of 

the proposed approach, which uses parameters that vary 

with respect to the local image content. This could include 

a dynamic patch selection based, for instance, on histogram 

analysis, to discard patches that are likely to contain 

substantial foreground data. Other future research 

directions also include implementing the proposed method 

for mobile computing, to allow for capturing back-of-the 

napkin notes via a phone camera in real-life situations. 
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Figure 5: Sample results on the napkin dataset for the proposed and compared methods. In the last three rows, white pixels indicate 

predicted background pixels, while black pixels indicate predicted non-background pixels, i.e. hand-sketched notes. 
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