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Abstract

We release SVIRO, a synthetic dataset for sceneries in

the passenger compartment of ten different vehicles, in or-

der to analyze machine learning-based approaches for their

generalization capacities and reliability when trained on a

limited number of variations (e.g. identical backgrounds

and textures, few instances per class). This is in contrast

to the intrinsically high variability of common benchmark

datasets, which focus on improving the state-of-the-art of

general tasks. Our dataset contains bounding boxes for ob-

ject detection, instance segmentation masks, keypoints for

pose estimation and depth images for each synthetic scenery

as well as images for each individual seat for classification.

The advantage of our use-case is twofold: The proximity

to a realistic application to benchmark new approaches un-

der novel circumstances while reducing the complexity to

a more tractable environment, such that applications and

theoretical questions can be tested on a more challenging

dataset as toy problems. The data and evaluation server

are available under https://sviro.kl.dfki.de.

1. Introduction

Interior vehicle sensing has gained increased attention in

the research community, in particular due to challenges and

developments related to automated vehicles [1, 2]. In this

work, we focus on rear seat occupant detection and classi-

fication using a camera system and different ground truth

data, as illustrated in Figure 1. Information about the pres-

ence and location of the passengers can be used to help re-

duce injuries in case of an accident, e.g. by adjusting the

strength of airbag deployment [3, 4]. Seat occupancy de-

tection can be used to remind the passengers to fasten their

seat-belts or to detect children forgotten in the car [5, 6].

a b

c d

Figure 1. Example scenery of SVIRO together with the provided

ground truth data. Left seat: infant seat with an infant. Middle

seat: empty. Right seat: adult passenger. a) RGB image with key-

points for human pose estimation. b) Grayscale infrared imitation.

c) Position and class based instance segmentation. d) Depth map.

For autonomous driving, it will be of interest to understand

the overall scenery in the car interior [7], e.g. for handover

situations [8]. For all the aforementioned applications, one

has to ensure that trained machine learning models will be

capable of classifying new types of child seats correctly

while not being mislead by arbitrary everyday objects or

through the window background sceneries. However, ma-

chine learning-based models, and specifically neural net-

works, trained in a single environment take non-relevant

characteristics of the specific environmental conditions into

account in an uncontrolled way [9] and therefore data must

be recorded repetitively for different environments. Acquir-

ing images in various (natural) lightning and weather con-

ditions and accounting for different seat textures, car inte-

rior features, or even changing camera poses make the data
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acquisition even more difficult. While domain adaptation

investigates solutions to account for a shift in the source

distribution with respect to the target distribution, common

approaches still need a large amount of data for the tar-

get distribution [10, 11] to work well. Consequently, the

means for generating a real training dataset with the cor-

responding annotations are limited and need to be repeated

for each additional new car model and automotive manufac-

turer. Therefore, theoretically founded means to overcome

the limitations of datasets collected for many real world ap-

plications have to be developed or advanced.

Common machine learning datasets and benchmarks fo-

cus on pushing the state-of-the-art of general tasks like clas-

sification [12], segmentation [13], object detection [14],

human pose estimation [15] or multiple tasks at once

[16, 17, 18, 19]. They do so on sceneries of high variable

backgrounds and intra-class variations, or focus on toy ex-

amples to investigate theoretical and fundamental research

questions [20]. However, none of the available datasets

focuses on the application-oriented case when all images

are taken on the same, or similar, background. They do

not consider classes with only sparse representations, as is

common in engineering problems when the available re-

sources are limited. Consequently, available datasets do

not provide a framework to evaluate models trained in the

above-mentioned challenging conditions for solving identi-

cal tasks, but in a new environment. Hence, similar investi-

gations for the rear seat occupancy cannot be performed and

there is no publicly available dataset for the vehicle interior.

We release SVIRO to provide a starting point for inves-

tigating the aforementioned challenges and overcome some

of the shortcomings of common available datasets. For the

training set, we used different human models, child and in-

fant seats, backgrounds and textures than for testing. Hence,

we can test the generalization and robustness of models

trained in one vehicle to a new one, for solving the same

task. Our dataset has a higher visual complexity than toy

scenarios while being close enough to a realistic applica-

tion. Consequently, SVIRO can be used to benchmark com-

mon machine learning tasks under new circumstances while

allowing the investigation of theoretical questions due to its

intrinsically more tractable environment. Additional ground

truth data for existing sceneries can be generated or new fea-

tures can be integrated upon request. For an overview, you

can also watch our video https://youtu.be/_arwrYIz7Ok

2. Related work

Some previous works have been investigating occupant

classification [3, 4], seat-belt detection [21] or skeletal

tracking [7] in the passenger compartment, but, as to best

of our knowledge, no dataset was made publicly available.

Investigations regarding the tasks and challenges as men-

tioned in Section 1 could also be performed in a different

framework, as long as they reproduce the same limitations.

KITTI [17] provides a wide range of different available an-

notations and benchmarks for vehicle exterior applications.

Closely related are the Cityscapes dataset [13] for different

segmentation tasks, ECP [14] for person detection in urban

traffic scenes and JTA [15] for pedestrian pose estimation

and tracking. On the other hand, there is COCO [19], a

widely used benchmark for object detection, keypoint de-

tection and panoptic and stuff segmentation as well as PAS-

CAL VOC [16]. Similarly, with Open Images [18], the

largest unified dataset for image classification, object detec-

tion and instance segmentation was released. Even though

these datasets contribute a wide range of images and cor-

responding annotations, they all have in common that their

provided data has intrinsically high background and intra-

class variation due to their nature for the exterior applica-

tion. These datasets can be used to benchmark models for

their performance and push the state-of-the-art in specific

tasks, as ImageNet [12] did for classification. However, it is

not possible to test the generalization to new environments

and unseen intra-class variations for a larger range of tasks

when only a limited amount of variability is available dur-

ing training. In particular, those datasets cannot be used to

benchmark applications for the (vehicle) interior regarding

the challenges discussed in Section 1.

The annual VISDA challenge [22] hosts a benchmark for

domain adaptation for different tasks, but it is limited to the

transfer from synthetic to real data and solutions to differ-

ent tasks are not comparable. It includes the Syn2Real [23]

dataset for classification and object detection and the trans-

fer from GTA sceneries [24] to Cityscapes [13] for segmen-

tation. Other common datasets for domain adaptation, e.g.

Office-Home [25], DomainNet [26] and Open MIC [27],

focus on a single task and/or the transfer from non-real to

real environments. Some approaches combine two existing

datasets to test the generalization from synthetic to real im-

ages, e.g. from synthetic traffic signs [28] to real ones [29].

It is believed that scene decomposition into meaning-

ful components can improve the transfer performance on

a wide range of tasks [20]. Although datasets like CLEVR

[30] and Objects Room [20] exist, they are limited to toy

examples and lack increased visual complexity.

Moreover, deep learning-based approaches capture too

much relevance between the information contained in the

background and the task the models are designed to solve

[9]. Consequently, the aforementioned datasets all help to

push the state-of-the-art for many computer vision tasks, but

lack the possibility to investigate the challenges introduced

in Section 1. With our SVIRO dataset and benchmark we

are the first to provide the means to analyze the generaliza-

tion and reliability of machine learning-based approaches

for different tasks when only a limited number of variations

is available during training. We thereby address an impor-
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tant engineering issue. Further, recent studies have shown

the importance and applicability of using synthetic data for

investigations in the automotive industry [31] possibly in

combination with real data [32, 33].

3. Dataset

We created a synthetic dataset to investigate and bench-

mark machine learning approaches for the application in the

passenger compartment regarding the challenges introduced

in Section 1 and to overcome some of the shortcomings of

common datasets as explained in Section 2.

3.1. Synthetic objects

We used the free and open source 3D computer graphics

software Blender 2.79 [34] to construct and render the syn-

thetic 3D sceneries. We used realistic child safety seats or

child restraint systems (CRS) to which we will simply refer

to as child seats. For our dataset, we selected a subset of

available seats on the market, from which we then created

a 3D model so that it could be used in our simulation. The

3D models were generated using depth cameras (Kinect v1)

and precise structured light scanners (Artec Eva).

We needed to define the reflection properties and visual

colors for each 3D object in the scene, so that its perception

by the camera under simulated lightning conditions could

be calculated. For this, we used textures (Albedo, Nor-

mal and Roughness images) from Textures.com [35] (with

permission) for all the objects in the scene. The environ-

mental background and lightning were created by means of

High Dynamic Range Images (HDRI) from HDRI Haven

[36]. The human models (adults, children and babies) and

their clothing (additional clothes were downloaded from

the community assets [37]), were randomly generated by

using the open source 3D graphic software MakeHuman

1.2.0 [37]. The 3D models of the cars were purchased from

Hum3D [38] and everyday objects (e.g. backpacks, boxes,

pillows) were downloaded from Sketchfab [39].

3.2. Design choices

During the data generation process we tried to simulate

the conditions of a realistic application. We decided to par-

tition the available human models, child seats and back-

grounds such that one part is only used for the training im-

ages (for all the vehicles) and the other part is used for the

test images. For each of the ten different vehicle passenger

compartments and available child seats, we fixed the texture

as if real images had been taken. Consequently, the machine

learning models need to generalize to previously unknown

variations of humans, child seats and environments. In this

setting, we can train models in one or several car environ-

ment(s) and test them on a different one. This is an ad-

vantage compared to common domain adaptation datasets

[23, 25, 26, 28, 29] which usually focus on the transfer

from synthetic to real images. Further, the photorealistic

rendering and close-to-real models introduce a high visual

complexity which makes them more challenging than toy

examples [20, 30]. The dataset has an intrinsic dominant

background and texture bias: all of the images are taken in

a few passenger compartments, but generalization to new,

unseen, passenger compartments and child seats should be

achieved. This evaluation is currently not possible by state-

of-the-art datasets [13, 14, 15, 16, 17, 18, 19].

The human models were generated randomly in Make-

Human. Their facial expression was selected to be neutral

and identical. We defined a fixed set of poses for the humans

represented by unit quaternions. For every human in each

scenery, two poses were selected randomly and a spherical

linear interpolation (Slerp) [40] was performed to get an in-

termediate pose. For each scenery, we randomly selected

what kind of object is placed at each position, however, we

avoided appearances of the same object for a same scenery.

Child and infant seats can be empty and we decided to not

allow children to be placed on the rear seat without a child

seat. Infant seats were randomly rotated by 180
◦

along the

z-axis and an offset from the straight ahead orientation was

randomly applied to all child seats. The handle of the in-

fant seat was selected to be up or down. Randomly selected

environmental backgrounds were rotated around the vehi-

cle to simulate arbitrary lightning conditions. We placed

everyday objects onto the rear seat to make the scenery

more versatile. All cameras have the same intrinsic pa-

rameters (focal length=3.4mm, sensor width: 8.5mm, f-

number= 2.5, skew coefficient= 0, focal length in terms of

pixels: αx = 514.4208, αy = 514.4208, principal point:

u0 = 640, v0 = 480), however, their pose is different in

each car. Example sceneries for training and test data can

be found in Figure 2 and in the supplementary material. An

overview of the 3D objects are shown in Figure 3.

We also generated a training dataset with randomly se-

lected (partially unrealistic) textures and backgrounds from

a large pool of images. When trained on the latter, the in-

creased variations improve the generalization for classifica-

tion and semantic segmentation on the test set and to new

passenger compartments, as shown in Section 4.1 and 4.2.

An additional advantage of our approach is the possibility to

create images under defined conditions (e.g. same scenery,

but under different lightning conditions) so that additional

investigations can be performed in future works. Moreover,

the difficulty can be gradually increased: one can, for ex-

ample, train on occupied child and infant seats only, train

on infant seats with the handle down (or up) only or remov-

ing everyday object completely from training.

3.3. Statistics

Our dataset consists of ten different vehicles: BMW X5,

BMW i3, Hyundai Tucson, Tesla Model 3, Lexus GS F,
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Figure 2. Example sceneries for training (top) and test (bottom) splits for different cars. Each split uses different objects, seats, environments

and humans. Some images appear darker, which is why (also in real applications) it is preferred to use an active infrared camera system.

Figure 3. Representative selection of the assets used for our synthetic dataset. First and third row are assets used for the training while the

second and fourth are assets used for testing. Some children and adults for training and 1 environment per split are not shown.

Mercedes A-Class, Renault Zoe, VW Tiguan, Toyota Hilux

and Ford Escape. The number of windows varies, which

causes different lightning conditions, and some cars have

only two rear seats instead of three. The different vehicle

interiors are compared in Figure 4. We used the same peo-

ple and child seats for the training set of each vehicle and

the remaining ones for the test sets. This results in two child

seats and one infant seat per data split. We did the same for

the background: five were selected for the training and five

different ones for the test set. For the everyday objects, we

used two bags, a card-box and a cup for the training dataset

and a different bag, a paper-bag, pillows and a box of bottles

for the test set. The number of people and the distribution

of the gender, age and ethnicity for the training and test set

can be found in Table 1. The number of images generated

for each vehicle and each training and test set are identical.

In total, this results in 20000 training and 5000 test scener-

ies. The distribution of the different classes across the vehi-

cles and data splits is summarized in Figure 5. The number

and constellation of appearances varies between the vehi-

cles, because all the sceneries were generated randomly.

Train Test

Adult Child Baby Adult Child Baby

African 5 2 1 2 1 1

Asian 5 2 1 2 2 1

Caucasian 4 2 1 4 1 1

Female 9 3 - 5 2 -

Male 5 3 - 3 2 -

Total 14 6 3 8 4 3

Per Car 2000 500

Table 1. Number of people and distribution of gender, age and

ethnicity for the training and test dataset. The same people were

used for the training and test set for all the vehicles, respectively,

and the same number of images were generated for each car.
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Figure 4. Comparison of the different vehicle interiors. a) BMW X5, b) Tesla Model 3, c) Hyundai Tucson, d) Lexus GS F, e) Toyota

Hilux, f) BMW i3, g) Mercedes A-Class, h) Renault Zoe, i) VW Tiguan and j) Ford Escape. The geometry of the rear-seat, the windows,

headrest and car features differ between the cars and some cars only have two seats instead of three.

Figure 5. Distribution of the different classes over the vehicles and

data splits. As the images were generated randomly, the distribu-

tion is different for each split and vehicle. The bar represents the

median value for a given class for a given data split over all vehi-

cles. The error bar represents the minimum and maximum number

of occurrences along the vehicles for a given split. The dark colors

represent the training data and the light ones the test data. We ab-

breviate infant seat as IS and child seat as CS. The large difference

in empty seats is due to vehicles with only two rear seats.

3.4. Rendering

The synthetic images were generated using Blender, its

Python API and the Cycles renderer. As many applica-

tions in the passenger compartment require an active in-

frared camera system to work in the dark, we decided to

imitate such a system by means of a simple approach: We

placed an active red lamp (R=100%, G=0%, B=0%) next

a b c

Figure 6. Comparison between a standard RGB image and our

simple approach to imitate an active infrared camera system for

a dark scenery. a) Standard RGB image in environmental light-

ning. b) RGB image of the scenery illuminated by an active red

light. c) Red channel only of the RGB image of the illuminated

scenery (used as infrared imitation in SVIRO).

to the camera inside of the car illuminating the rear seat,

but overlapping with the illumination from the HDR back-

ground image. We then took the red channel only from the

resulting rendered RGB image. We will refer to these im-

ages as grayscale images. This is, however, not a physically

accurate simulation of a real active infrared camera system.

The simulation of the latter is not trivial, as the perception

in the infrared domain not only depends on the object’s ma-

terial properties, but also on the wavelength which is used

[41]. We argue that this is of minor importance, because

SVIRO is intended to investigate the general applicability

of possible machine learning methods. Our approach helps

to become less dependent on the environmental lightning

and to facilitate the tasks: see Figure 6 for a comparison be-

tween a standard RGB image and our grayscale image for

a dark scenery, where a lot of information would be lost.

More comparisons are available in the supplementary ma-

terial. Moreover, we report in Section 5 and Figure 10 the

evaluation of a model trained on SVIRO on real infrared

images and show that it behaves similarly on real data.

3.5. Ground truth

For each scenery we provide a set of images and ground

truth data: 1) An RGB image of the scenery without an
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active red lamp next to the camera, e.g. Figure 2, 2) a

grayscale image (red channel only) of the rendered RGB

image using an active red lamp next to the camera, e.g.

Figure 1 (b), 3) an instance segmentation map, where each

object is color-coded depending on its position and class,

e.g. Figure 1 (c), 4) Bounding boxes for all the elements

in the scenery, 5) Keypoints for all the human poses in the

scenery, e.g. Figure 1 (a), 6) a depth map of the scenery,

e.g. Figure 1 (d). For classification, we split the images

(RGB, grayscale, depth) into three rectangles (one for each

seat position) with slight overlap between them. See Figure

7 for an illustration. If a car has only two seats, then we

exclude the middle rectangle. Note that objects from neigh-

bouring seats are overlapping to the neighbouring rectangle,

which makes classification more difficult. However, this is

necessary as people can lean over to the neighbouring seat.

Both semantic segmentation and instance segmentation can

be performed using the provided segmentation masks. Chil-

dren on a child seat, as well as babies in an infant seat, are

treated as two separate instances. We save the human poses

by using keypoints, as used by the COCO dataset [19], but

our skeleton is defined using partially different joints. The

visibility of the keypoints are set to zero if the keypoint is

outside the image, to one if it is occluded by an object or

neighbouring human and set to two if it is visible or oc-

cluded by the person itself. Keypoints are provided for the

babies as well. For each scenery, we provide a .json file

containing the 2D pixel coordinates of the keypoints of all

people together with the visibility flag, the bone names and

their seat position. All the images are provided in .png for-

mat. The depth maps are saved in millimetres and as 16-bit

.png images. The bounding boxes are given in the format

[class, x1, y1, x2, y2], where (x1, y1) is the upper left cor-

ner and (x2, y2) the lower right corner of the bounding box

(coordinates start in the upper left image corner). For clas-

sification, the labels are as follows: 0=empty seat, 1=in-

fant in infant seat, 2=child on child seat, 3=adult passenger,

4=everyday object, 5=infant seat without baby, 6=child seat

without child. For segmentation and object detection, the la-

bels are: 0=background, 1=infant seat, 2=child seat, 3=per-

son and 4=everyday object. We did not fasten the seat-belt

for our models and let them un-attached in all our sceneries.

4. Baseline evaluation

In this baseline evaluation, we will show that SVIRO

provides the means to analyze the performance of common

machine learning methods under new conditions. We will

test some widely used models and approaches for their ro-

bustness and reliability, when trained on limited number of

variations only. Specifically, we will show that state-of-the-

art models cannot generalize well to new environments and

textures when trained on the previously discussed challeng-

Figure 7. We split each image into three rectangles to use them

for classification. The contents of the rectangles overlap slightly,

because objects are not limited to their seat position.

ing, but realistic, conditions. For this evaluation, we limited

ourselves to training on the X5 and testing on the Tucson

(three seats) and i3 (two seats). For all tasks, we consid-

ered two training data versions (for which we used the exact

same hyper-parameters): 1) the standard X5 training data

with fixed textures and backgrounds (F), 2) half of the stan-

dard X5 training data is replaced by randomly textured X5

training data with random backgrounds (F&R).

We used the grayscale images (infrared imitation) for all

the evaluations. For the deep learning-based approaches,

we used the pre-defined models implemented in PyTorch

1.2 and Torchvision 0.4.0. For classification, we used pre-

trained models on ImageNet. For semantic and instance

segmentation, the models were pre-trained on COCO train

2017. The pre-trained models were fine-tuned on the X5

only and then evaluated on the test sets of all three cars.

Using this approach, we could test the generalization ca-

pacities on two difficulty levels. The training dataset was

partitioned randomly according to a 75:25 split for training

and evaluation, where the latter was used to perform early

stopping when fine-tuning the models. As we consider our

F&R dataset as data augmentation, the only additional data

augmentation performed was a random horizontal flip.

4.1. Classification

As introduced in Section 3.5, we used the rectangu-

lar graycale images for classification with seven different

classes. One could decide to classify a seat with an every-

day object (and an empty infant/child seat) as empty as well.

We trained a single classifier for the three seats, but other se-

tups are possible as well, e.g. train one classifier for each

seat. In the following, we will report results on different

deep learning models, as they are commonly used for visual

classification problems. These results will be compared to

a traditional method using a support vector machine (SVM)

and handcrafted features. We will show that both methods

suffer from the same problems and including the random-

ized F&R dataset overall improves the results.

4.1.1 CNN

We used the ResNet [42], DenseNet [43], SqueezeNet V1.1

[44] and MobileNet V2 [45] architectures and considered
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Figure 8. Comparison of different classification results. We trained several models from scratch (■) or fine-tuned pre-trained models, where

all the weights (▼), the last block (●) or the last layer (⭑) were trainable. Further, we trained a SVM using HOG features. We used the

standard X5 training data (F, in blue) or replaced half of it with the randomized data (F&R, in green). After training, we retained models

with the best total accuracy on the X5 test data and evaluate them on the i3 and Tucson test data. The models have difficulties to generalize

to the test data and perform even worse in unknown vehicles, but including the randomized data helps to generalize to unseen objects.

four different training approaches: 1) Training from scratch,

2) only fine-tuning the last fully connected layer, 3) ad-

ditionally fine-tuning the last residual block, 4) allowing

all weights to be trainable. We tried different combina-

tions of weight decay, weighted costs and imbalanced sam-

pling and report results for the best models only. In Figure

8, we compare the results across the different models and

training approaches and compare them to the SVM. The

deep learning-based approaches have problems to general-

ize to the test set, especially for new cars. The random-

ized backgrounds and textures help to improve the accuracy

on the same car, which gives hint that models trained on

the (F) dataset mostly use the texture as a classification cri-

terion. However, the models can still not generalize well

to new vehicle interiors, probably because of the different

interior structures (see Figure 4). An exhaustive compar-

ison between the different training approaches and hyper-

parameters is available in our supplementary material.

4.1.2 HOG and SVM

For comparison, we also wanted to test at least one tradi-

tional machine learning-based approach for the classifica-

tion task. To this end, we computed the histogram of ori-

ented gradients (HOG) features of all the training images,

and their horizontally flipped versions for data augmenta-

tion. These features were then used to train a SVM, using

the ”one vs. rest” approach and balanced class weights. We

performed a grid search on different kernels (linear, polyno-

mial and radial basis) and their hyper-parameters and used

a 5-fold cross validation for hyper-parameter selection. We

used scikit-learn 0.21.2 for the training and scikit-image

0.15.0 for the feature generation. The results for the best

hyper-parameters are reported in Figure 8. Overall, the tra-

ditional approach has similar problems as the deep learn-

ing approach when the standard X5 data is used, and can

sometimes even generalize better. However, it cannot ex-

ploit the additional information when random textures and

backgrounds are included in the training.

Our dataset shows that traditional and deep learning ap-

proaches, although commonly used in practice, drastically

decrease classification performance when trained in a set-

ting with limited variations without taking additional pre-

cautions. No reliability can be guaranteed and both pre-

sented approaches do not fully grasp the underlying task,

although the environment and the objects are similar. In-

cluding randomized images increases the performance, but

to be applicable in real world applications further (theoreti-

cal) improvements need to be investigated and developed.

4.2. Semantic segmentation

It could be beneficial to take spatial information into ac-

count to improve the transfer to new instances and envi-

ronments. Further, the model might consider overlapping

objects from neighbouring seats more efficiently when the

entire scene is used. To this end, we evaluated semantic

segmentation and considered the five classes as introduced

in Section 3.5. The model should separate the child from

the child seat and the baby from the infant seat and classify

them as a people. We fine-tuned all layers of a Fully Convo-

lutional Network (FCN) with a ResNet-101 backbone and

report the results in Figure 9. As for the classification re-

sults of the previous section, the model’s performance de-

creases drastically on the child and infant seats on the test

set for the same car and it performs even worse in previously

unknown cars. Using the F&R training data, the generaliza-

tion performance largely increased, although the geometry

of the child seats of the test sets was never observed dur-

ing training. It seems that the texture has a larger influence

on the performance of classification and semantic segmen-

tation models than the geometry. This observation seems to

be in line with recent results by Geirhos et al. [46]. How-

ever, using SVIRO, we can additionally show that the model
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Figure 9. Mean intersection over union (IoU), in percent, for se-

mantic segmentation for a fine-tuned pre-trained FCN. The dark

colour represents the model performance when trained on the stan-

dard X5 training dataset (F) and the lighter colour when we in-

cluded the random X5 data (F&R). The models were evaluated

on the test dataset for the X5, Tucson and i3. Using the random-

ized version largely improves the generalization capacities of the

model, especially for identifying infant seats and child seats.

cannot perform as good on new environments, even though

the textures are randomized and the objects of the different

test sets are the same.

5. Comparison with real images

We tested the transferability of a model trained on

SVIRO to real infrared images and report results on instance

segmentation to illustrate this. We fine-tuned all layers of a

pre-trained Mask R-CNN model with a ResNet-50 back-

bone and considered the same classes as for semantic seg-

mentation. The synthetic images were blurred to be closer

to real infrared images. We combined the training images

of the i3, Tucson and Model 3 and compare results on syn-

thetic and real images in the X5 in Figure 10. More evalua-

tions on real images are available in the supplementary ma-

terial. Only bounding boxes and masks with a confidence

of at least 0.5 are plotted. The model performs similarly

across real and synthetic images and sometimes fails to de-

tect objects. This is expected as the model has only seen a

limited amount of variation. However, the similar child seat

is detected in the real images, but not in the synthetic ones.

We believe that investigations on SVIRO are transferable to

real applications as the resulting model behaves similarly on

real and synthetic images. Additional realistic effects could

be applied to close the synthetic gap even further [47].

6. Conclusion

We release SVIRO, a synthetic dataset for sceneries in

the passenger compartment of ten different vehicles. Our

benchmark addresses real-world engineering obstacles re-

garding the robustness and generalization of machine learn-

ing models. Using SVIRO, we showed in our baseline eval-

uation that common machine learning models, when trained

on limited amount of variability, decrease in performance

Real SVIRO

Figure 10. We acquired real active infrared images (first column)

in an X5 and reproduced the same sceneries in Blender (second

column). The first row compares real and synthetic images. The

remaining rows compare instance segmentation mask predictions.

The model performs similarly on both setups and the similar child

seat is detected in the real images, but not in the synthetic ones.

for solving the same task in a new vehicle interior. Models

cannot generalize well to new intra-class variations, even

in the car they were trained on. We believe that other re-

search directions, e.g. (disentangled) latent space represen-

tation, scene decomposition, domain adaptation and uncer-

tainty estimation, can benefit from our dataset.
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