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Abstract

In response to recent criticism of gradient-based visual-

ization techniques, we propose a new methodology to gener-

ate visual explanations for deep Convolutional Neural Net-

works (CNN) - based models. Our approach - Ablation-

based Class Activation Mapping (Ablation CAM) uses abla-

tion analysis to determine the importance (weights) of indi-

vidual feature map units w.r.t. class. Further, this is used to

produce a coarse localization map highlighting the impor-

tant regions in the image for predicting the concept. Our ob-

jective and subjective evaluations show that this gradient-

free approach works better than state-of-the-art Grad-CAM

technique. Moreover, further experiments are carried out to

show that Ablation-CAM is class discriminative as well as

can be used to evaluate trust in a model.

1. Introduction

Convolutional Neural Networks (CNNs) are known to

show near human-level performance on various computer

vision tasks such as image classification [8], object detec-

tion [5], semantic segmentation [10] and have performed

well on tasks such as image captioning [19] and visual ques-

tion answering [2]. This is due to the improved architectures

of CNNs [4][6] and availability of greater computational

power. Despite their superior performance, these deep net-

works act as black box and are hard to interpret. They are

prone to failing without providing any plausible explana-

tion and consequently, users could not place trust in net-

work’s decisions [13]. This lack of human trust has limited

the meaningful integration of deep learning systems in ev-

eryday applications. This issue becomes even more critical

for sectors such as healthcare, finance, security etc. where

stakes are high for every single decision made. In order to

make CNN models trustworthy, it is important to explain

their decisions. This transparency will help in understand-

ing failure modes and debugging models as well as identi-

fying and eliminating potential bias in training data [14].

For interpreting convolutional network, it will be useful to

locate the regions of input image the model looked at in

order to assign a class label to it. Grad-CAM [14] is the

state-of-the-art visualization technique to generate such lo-

calization maps. This technique relies on the gradients flow-

ing from the decision nodes to final convolutional layer to

produce explanations. But each of these output nodes is

a non-linear function of the input image as well as previ-

ous layers. Hence, Grad-CAM suffers from the problem of

gradient saturation which causes the backpropagating gra-

dients to diminish and therefore, adversely affect the quality

of visualizations.

We propose a novel “gradient-free” visualization ap-

proach - Ablation-CAM to produce visual explanations for

interpreting CNNs. This technique avoids use of gradi-

ents and at the same time, produces high quality class-

discriminative localization maps. Further, we show that, as

in case of Grad-CAM, it is possible to fuse pixel-space gra-

dient visualizations such as Guided Backpropagation [18]

with Ablation-CAM to produce high resolution localization

maps.

The key contributions of this paper are as follows-

• We propose Ablation-CAM, a class-discriminative lo-

calization technique that can generate gradient-free vi-

sual explanations for any CNN based architecture.

• We demonstrate situations where Ablation-CAM pro-

duces more reliable visualizations than Grad-CAM.

We show that Ablation-CAM overcomes the limita-

tions inherent with Grad-CAM visualizations.

• We show by subjective and objective evaluation that

overall performance of Ablation-CAM is better than
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(a) Leopard (b) Grey Whale (c) Digital watch

Figure 1: Activation score drop in decision nodes due to ablation of feature map units in final convolutional layer of VGG-16

network trained on Imagenet data for categories leopard(a), grey whale(b) and digital watch(c).

the state-of-the-art Grad-CAM technique. We re-

peat experiments from Grad-CAM to evaluate class-

discrimination of Ablation-CAM. We further show

that Ablation-CAM can help users place trust in a

model and assist in model selection.

2. Related Work

Our work draws on recent work in ablation analysis, vi-

sualizing CNNs, evaluating trust in a model and unreliabil-

ity of saliency methods.

Visualizing CNNs : One of the earliest efforts to interpret

CNNs was made by Zeiler and Fergus [20] by highlighting

the pixels in image responsible for activation of a neuron in

a higher layer. They achieved this by using deconvolution

approach which allows data to flow from a neuron activation

in higher layer back to input image. Further, Simonyan et al.

[15] obtained the partial derivatives of predicted class scores

w.r.t. input pixels to produce class-specific saliency maps.

Springenberg et al. [18] extended this work to Guided Back-

propagation which modifies the backpropagating gradients

to improve quality of saliency maps. These works are com-

pared in [11]. The visualizations produced by Guided Back-

propagation and Deconvolution, though high resolution, are

not class-discriminative i.e. for a given image, visualiza-

tions w.r.t. different class nodes will be almost identical

[14]. Sundarajan et al. [17] used integrated gradients to at-

tribute the prediction of CNN to input pixels. Chattopad-

hyay et al. [3] attempted to objectively evaluate efficacy of

saliency visualizations.

Above methods provide explanations for individual im-

age instances. Simonyan et al. [15] uses gradient ascent to

synthesize images that maximally activates a neuron to un-

derstand overall notion of concept it represents. Zhou et al.

[22] show that activation maps in higher convolutional lay-

ers act as object detectors and trigger for specific concepts.

Trust evaluation : Lipton et al. [9] emphasized the need

for interpretable and trustworthy networks. Ribeiro et al.

[13] conducted human studies to assess if humans can place

trust in a classifier.

Unreliability of saliency methods : Adebayo et al. [1] and

Kindermans et al. [7] exposed the unreliability of gradient-

based methods citing gradient saturation to be one of the

main reasons.

Ablation studies : Morcos et al. [12] used ablation analysis

to quantify the reliance of network output on single neurons.

According to this work, class selectivity is a poor predic-

tor of neuron’s importance towards overall performance of

network. Zhou et al. [23] extends this work to show that

ablation of highly selective units, though having negligible

effect on overall accuracy, has severe impact on accuracy of

specific classes.

Our approach is highly inspired from two visualization

techniques i.e. CAM and Grad-CAM. For CNNs with

Global Average Pooling (GAP) layer as penultimate layer,

Class Activation Mapping (CAM) [21] produces class-

discriminative visualization maps. This map is weighted

linear combination of feature maps of final convolutional

layer where weights are obtained from trained linear clas-

sifier of target class node. Since CAM is limited to CNNs

with GAP layer, it cannot generate explanations for CNN

architectures with fully-connected layers or CNNs trained

for tasks such as image captioning and visual question an-

swering.

Gradient-CAM (Grad-CAM) [14] provides a general-

ization of CAM to be able to explain CNNs irrespective

of their architectures. This method utilizes the gradients

backpropagating from output node to compute the weights

for feature maps as follows -

αc
k =

1

M

∑

i

∑

j

∂yc

∂Ak
ij

(1)

where M is the total number of cells in a feature map, yc

is activation class score for target class c, Ak
ij represents

activation of cell at spatial location i, j for feature map Ak.
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(a) Original (b) Unit 437 Visual-

ization

(c) Gradient matrix

visualization for unit

437

Figure 2: Visualizing feature map 437 (b) and correspond-

ing gradient matrix (c) of VGG model’s final convolutional

layer for input image (a).

This weight αc
k is the ‘importance’ of feature map k for

target class c.

As shown in Figure 4, Grad-CAM has some limita-

tions. Grad-CAM fails to provide faithful explanations for

highly confident decisions due to gradient saturation. Many

times, Grad-CAM highlights relatively smaller, incomplete

regions of an object in image which might not be enough

for the users to place their trust in the system. Also, it fails

to detect multiple occurrences of same object in an image.

We show that our proposed approach - Ablation-CAM ad-

dresses all these shortcomings and proves to be a better vi-

sualization technique.

3. Motivation

Current techniques for visualizations depend on gradi-

ents backpropagating from output class nodes. These nodes

are complex non-linear function of the input image as well

as preceding convolutional layers. Gradient-based methods

suffer from problem of gradient saturation (discussed in sec-

tion 5) wherein the backpropagating gradients diminish and

hence visualization methods fail to localise relevant regions

in image.

Grad-CAM uses gradients of decision node w.r.t. indi-

vidual cells in feature maps to find the weight (importance)

of feature map units for a decision node. Feature maps with

lesser spatial footprints fade away in the final saliency map

in Grad-CAM. Chattopadhyay et al. [3] tries to fix this by

taking a weighted average of the gradients of individual

cells. These gradients denote the contribution of individ-

ual cells for a decision and not of individual feature map.

Hence, finding the importance of entire feature map repre-

sentation by aggregating these seems inappropriate.

Moreover, the backpropagated gradients fail to retain the

spatial information. As shown in Figure 2 , the feature map

437 of VGG’s final convolutional layer activates for body

portion of dog. But backpropagating gradients do not have

any spatial correlation to this. We find this for networks

with fully connected layers whereas this behaviour is absent

for networks without fully connected layers such as Incep-

tion and Resnet. As per our knowledge, we are the the first

to report this behaviour.

CNN models depend on activations flowing through the

network to arrive at a decision whereas the visualization

techniques look at the gradients (slope of the learnt func-

tion) to understand them. We found this to be counter-

intuitive. Morcos et al. [12] conducted ablation analysis to

understand the importance of individual neurons for trained

networks. Their findings show that a well-generalized net-

work is less reliant on single neurons and ablation (setting

activation value to zero) of individual units will have neg-

ligible effect on overall network performance. This paper

does not take into account the effect of ablation of units

on performance of network for individual classes. Zhou et

al. [23] showed that removing single feature map units had

a severe impact on accuracy of specific classes. Figure 1

shows the effect of ablation of certain units on activation

scores of output class nodes. We consider this drop to be an

indicator of how important is an unit for a particular class.

Hence, this ablation drop can be used, instead of global av-

erage pooled gradients, to act as weights for feature maps in

final convolutional layer.

4. Approach

Consider a case where we are required to generate a lo-

calization map for an image I using a CNN trained for im-

age classification task. A forward pass through the model is

made to obtain the class activation score yc of class c. Lets

assume this class score to be a non-linear function of fea-

ture map Ak of final convolutional layer, then yc will be the

value of this function when activations of Ak are present.

Set all the individual activation cell values of feature map

Ak to zero and repeat the forward pass of same image I .

The ablation of unit k leads to a (possibly) reduced activa-

tion score yck. Now, yck is value of the function for absence

of unit k and acts as a baseline for Ak. Hence, the slope

describing the effect of ablation of unit k is given by

slope =
yc − yck
||Ak||

. (2)

We argue that this effective slope, is better than the “in-

stantaneous slope” arrived via the gradient in Grad-CAM.

This approach is immune to both saturation which marks

an important filter as not important, and explosion which

marks a filter that has very little value as having high im-

portance.

In our approach, we use a slight variant of the slope as a

measure of importance of the filter k to class c. This is be-

cause norm ||Ak|| is very large compared to the numerator
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(a) Person class (b) Grad-CAM (c) Guided Grad-

CAM

(d) Ablation CAM (e) Guided Ablation

CAM

(f) Goose class (g) Grad-CAM (h) Guided Grad-

CAM

(i) Ablation CAM (j) Guided Ablation

CAM

Figure 3: Ablation CAM and Grad CAM visualizations are shown for two images. Clearly, Ablation-CAM tend to produce

better localization for person class (first row) than Grad-CAM. Ablation-CAM is even better at detecting multiple occurrences

of goose class (second row).

and hence the slope assumes a very small value.

wc
k =

yc − yck
yc

(3)

This importance value, can be simply interpreted as the

fraction of drop in activation score of class c when feature

map Ak is removed.

Ablation-CAM can then be obtained as weighted linear

combination of activation maps and corresponding weights

from Equation 3, in a fashion similar to that of Grad-CAM.

Lc
Ablation� CAM = ReLU

(

∑

k

wc
kAk

)

(4)

The ReLU ensures that we only retain units with posi-

tive drop values i.e. those units whose absence cause a drop

in class score yc. Similar to Grad-CAM, we resize the map

Lc
Ablation� CAM to size of the original image to localize im-

portant regions in the image. To the best of our knowledge,

we are the first to employ this technique.

It should be noted that we have chosen drop in (unnor-

malized) class activation scores and not drop in confidence

scores returned by softmax layer. This is because drop in

confidence scores can be achieved via an increase in ac-

tivation scores of other classes while drop in class scores

only focuses on class in question [15]. We experimented

by considering drop in confidence scores but we found the

visualizations to be less trustworthy.

Our approach is similar to the Integrated gradients

approach [17], which also attacks the gradient saturation

problem. However, instead of choosing a common baseline

of a black image for all inputs, classes and filters, we use

a natural baseline of zeroing out the corresponding filter

activation which varies based on the image and the filter.

Also, it should be noted that unlike integrated gradients,

our method is not a pixel-space visualization technique and

hence, noise-free and class-discriminative.

Guided Ablation-CAM - The heatmaps generated by

Ablation-CAM highlight relevant image regions but these

do not depict fine-grained details like guided backpropa-

gation visualizations do. Similar to Guided Grad-CAM,

Guided Ablation-CAM is obtained by pointwise multipli-

cation of Ablation-CAM and guided backpropagation visu-

alizations.

Figure 3(d)(i) & 3(e)(j) show the visualizations gener-

ated by Ablation-CAM and Guided Ablation-CAM respec-

tively.

5. Case for Ablation-CAM

Many times, Grad-CAM visualizations highlight only

bits and parts of region of interest and hence, fail to gener-

ate considerable amount of trust in human users. Ablation-

CAM overcomes this limitation to some extent. Figure

3(b) & 3(d) shows the localization maps for person class

generated by Grad-CAM and Ablation-CAM respectively.

Clearly, Ablation-CAM visualization provides more com-

plete and trustworthy explanation for person class as com-

pared to Grad-CAM and hence proves to be a better tool
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