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Abstract

Even though object detection is a popular area of research

that has found considerable applications in the real world, it

has some fundamental aspects that have never been formally

discussed and experimented. One of the core aspects of

evaluating object detectors has been the ability to avoid

false detections. While major datasets like PASCAL VOC

or MSCOCO extensively test the detectors on their ability

to avoid false positives, they do not differentiate between

their closed-set and open-set performance. Despite systems

being trained to reject everything other than the classes of

interest, unknown objects from the open world end up being

incorrectly detected as known objects, often with very high

confidence. This paper is the first to formalize the problem

of open-set object detection and propose the first open-set

object detection protocol. Moreover, the paper provides a

new evaluation metric to analyze the performance of some

state-of-the-art detectors and discusses their performance

differences.

1. Introduction

Object detection research has a long history in computer

vision, dating back more than five decades [31]. The aim of

an object detector is to localize all the objects it is trained

to identify while neglecting all other regions from random

objects or scene backgrounds. Object detection approaches

have evolved from feature-based detectors, to sliding win-

dow algorithms [27], leading to region proposal methods

[7, 6, 24] and anchor box-based approaches [18, 21, 22, 16].

Especially in the past few years, advances in computation

speed, the increase of labeled training data and challenges

such as the PASCAL Visual Object Categorization (VOC)

[2] and Microsoft’s Common Objects in Context (MSCOCO)
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Figure 1: THE ELEPHANT IN OBJECT DETECTION While

current state-of-the-art detectors are trained to handle backgrounds,

their designs are not well equipped to address unknown objects,

which they often incorrectly detect as one of the existing classes with

a high confidence. (a) shows results from Faster R-CNN and (b) was

produced by RetinaNet, both of which were only trained to detect

the 20 classes from PASCAL VOC, which do not include elephants,

clocks, scissors or wrenches as present in the above images. As

we explore in this paper, different detectors such as Faster R-CNN,

RetinaNet and YOLOv2 respond to unknowns differently.

[17] have made the use of deep networks possible, which

provide significant improvements to the field.

With the popularity of deep learning techniques, the im-

portance of dataset size has increased. Challenges such as

PASCAL VOC increased their training data size between

2007 and 2012, while more recently in 2017 MSCOCO

changed its 83k/41k train/val split to 118k/5k, citing the need

for more training data by the research community. Increasing

the number of training samples can improve generalization

and, hence, enable the detectors to better capture variations

in a given object.

While the majority of real world detection applications

are only interested in a small subset of the object categories

provided in these datasets, additional categories seem to be

providing a generalization in order not to misclassify a sam-

ple as one of the classes of interest. Though detectors trained

on smaller academic datasets such as PASCAL VOC seem

to perform well on the according test sets, it is frequently ob-
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served that their performances do not translate into the real

world. As we shall see, experiments with our new evaluation

protocols show that open-set object detection is far from

being solved – despite training with a ”background” class,

which is supposed to reject everything other than the objects

of interest. We see that with current designs, unknown ob-

jects will often be mapped onto existing classes (see Fig. 1)

with high confidence.

Object detectors produce two types of errors: (a) False

Negatives, i.e., objects of interest are classified as another

object or as background, and (b) False Positives where a

background sample or an unknown object is mistaken as

one of the classes of interest. While false negatives may

be considered as a shortcoming in the network training or

the generalizability of the network or dataset, the same can-

not be said for false positives. The network is trained to

identify a small set of known objects from the infinite num-

ber of object classes in the real world. Even if the network

used a ”background” class to reject samples not of inter-

est, it is impossible for a dataset to sample instances from

each of the remaining infinite number of undesirable object

classes for training. Since these unknown objects are not

sampled during training, the expectation that they will be

rejected during testing is unrealistic. Though all detectors

are somewhat equipped to prevent false positives, the current

evaluation protocols used by datasets such as PASCAL VOC

and MSCOCO do not sufficiently test a detectors ability to

reject unknown objects and, thus, overestimate their real-

world performance. In closed-set evaluation protocols, the

rejection of random objects directly impacts precision values,

but there is no specific differentiation between false positives

arising from unknown objects and from random textures in

the background. In this work, we focus on understanding the

responses of detectors to objects that they were not trained

to detect, i.e., we propose and perform open-set evaluation.

Our Contributions: (a) In Sec. 2, we categorize cur-

rent detectors based on their approaches to handle back-

ground/unknown objects and generalize our finding to the

currently popular detection algorithms. (b) In Sec. 3, we

formalize object detection as an open-set problem. (c) We

propose the first open-set object detection protocol that bet-

ter approximates the real world in Sec. 3.1. (d) We propose

an evaluation metric for open-set object detection that allows

better comparison of performance than mAP. (e) In Sec. 4,

we highlight the shortcomings of current state-of-the-art

object detectors. (f) Finally, we attempt to provide an under-

standing toward choosing an operating point when applying

a detector to the real world in Sec. 5.

2. Dividing Detectors by Classifier Type

A core concept common in all object detectors is that

they consider a specific region R of an image and attempt to

provide the probability pi for each of the N known classes

C1, . . . , CN being present in that area. These specific areas

are known by different names such as windows, crops, region

proposals or anchor boxes. They may also be generated by

different algorithms such as sliding window [27], selective

search [7] or region proposal networks [24]. Because there

are so many potential regions, it is critical that the systems

are good at rejecting regions that do not contain objects

of interest. While it is one of the key challenges for object

detectors to avoid misdetections in these specific image areas,

little research on improving this aspect has been performed.

To address detection/classification of objects while rejecting

non-object regions or unknown objects, there has been only

a small range of designs. We broadly divide these into the

following categories:

Multi-Class Classifiers without Background Many

early-stage detectors such as OverFeat [27] treated object

detection as a sliding window-based image classification

problem. These systems are trained to identify objects of N
different classes C1, . . . , CN and for each generated window

they provide an estimate of the probability pi for presence

of each object category such that
∑N

i=1
pi = 1. In some

approaches, from the various sampled windows R, the win-

dow with the maximum classification score is used, which

allows to detect only a single object in the image. In others,

different crops where the same class is predicted with the

maximum score and that have a significant bounding box

overlap are combined to provide one detection. While an

advancement when first introduced, these systems implic-

itly assume that all inputs map to one of the known classes,

which results in many false detections. Consequently, these

approaches are no longer used.

Multi-Class Classifiers with Background Most two-

stage detectors such as Fast R-CNN [6] and Faster R-CNN

[24] classify a region R into N + 1 classes. The additional

class, called the background class Cb, is trained from non-

object windows and pb is interpreted as representing the

probability of R not belonging to any of the N classes such

that pb +
∑N

i=1
pi = 1. Some one-stage detectors such as

SSD [18] also belong to this category. We note that during

evaluation all of these systems use each probability indepen-

dently and do not consider the maximum over pb, p1, . . . , pN
because even for objects of known classes, the background

probability pb is higher than that of the correct class – a

supporting experiment is in the supplemental material.

One vs. Rest Classifiers Detection algorithms in this

category utilize one-versus-rest classifiers. The idea here

is that a region contains the known object or it does not.

Hence, the detectors do not explicitly provide a probability

pb for R being not of any known class. But at the same

time it is not guaranteed that
∑N

i=1
pi = 1, and often the

models do not even estimate probabilities. Some of the early

approaches such as DPM [4], SPPnet [9] and R-CNN [7]

fall under this category. For each known class, these models
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use an SVM-based one-versus-rest classifier to provide the

score that the object belongs to this class. Another variation

of one-versus-rest classifiers can be seen in the current state-

of-the-art one-stage detector RetinaNet [16], which uses

binary cross-entropy to identify the presence of a known

object. This approach is inspired by the observation that

a region may contain more than one object, e.g., a person

sitting on a chair with a cat on the lap. In such cases, giving

a high probability to just one of the classes would not be

justified, but instead the probabilities of several classes could

approach 1. Therefore, such detectors give an independent

probability to each of the objects and do not force them to

sum to 1. If none of the known objects is present, the detector

is expected to provide low probabilities to each of the known

classes. Unfortunately, one-vs-rest classifiers generally have

unbounded open space risk [26] and unknown samples will

often confidently be classified as one of the known classes.

Objectness-Based Classifiers One-stage detectors from

the YOLO family [21, 22, 23] belong to this category. Be-

fore providing a probability score for each of the object

categories, these detectors provide an objectness score, i.e.,

they assess if the region includes any known object. All

class scores are considered to be mutually independent and

classifiers are trained with either sigmoid or binary cross

entropy loss. The authors of [21, 22, 23] present their ob-

jectness score as a probability of one of the known objects

being present in the respective anchor box. However, as we

will see later, this objectness score is high in the presence of

many other unknown objects as well. Thus, their model is

better interpreted as a “generic objectness” score rather than

the claimed “known objectness” score.

Discussion While object detection is a problem inher-

ently intended to handle unknown objects by detecting only

the known objects, existing systems have not been formally

formulated as open-set, and neither have they been evaluated

under real-world open-set conditions where really unknown

objects need to be ignored. While both training a back-

ground class or treating the problem as one-vs-rest classifica-

tion helps in rejecting some unknowns, neither formulation

provides bounded open-space risk as defined in [25]. The

remainder of this paper will help to analyze the impact of

ignoring the open-space risk possessed by the above families

of detection algorithms.

3. Formalizing Open-Set Object Detection

A scenario where a system is tested on instances belong-

ing to classes different from what it was trained on is defined

as open-set. Since, by definition, detectors are only supposed

to detect objects they were trained to identify while rejecting

others, we see object detection as a general open-set problem.

While it is easy to draw a parallel to the prior definition of

the open-set classification problem [26], we introduce the

additional category mixed unknown, whose determination is

bottle 0.76 bottle 0.95

(a)

train 0.86

(b)

Figure 2: MISDETECTIONS DUE TO UNCOMMON IMAGING

OF KNOWN OBJECTS In (a) we demonstrate how uncommon

imaging conditions such as snow or rain can cause misclassification

of a known object. Similarly, in (b) we demonstrate how different

scenes cause a misdetection of a simple background as a known

object, all with high confidence scores.

crucial and unique to the practical open-set object detec-

tion problem. In order to explain the need for this additional

subcategory, we explain all the types of object classes that

are present in the infinite space of labeled objects Y . These

classes can be broadly categorized into [19]:

• K = {~x1, . . . , ~xM} ⊂ Y : The known objects or objects

of interest that the detector is trained to detect. These can

be separated into known knowns KK , the data similar to

that used in training, and unknown knowns KU , which

can be defined as novel views of known objects and are

typically seen in test sets. These views may originate due

to environmental conditions, distortions in imaging condi-

tions or deformation of the known object, as provided in

Fig. 2. This problem has been a subject of various chal-

lenges and datasets [29]. While unknown knowns are a

part of general open-set object detection, analyzing them

is not the core subject of this paper.

• U = Y \K: The unknown objects of classes the detector

needs to reject. Since Y is infinite and K is finite, U is

also infinite. The set U is a combination of two subsets:

1. UK ⊂ U : The background, garbage, undesirable, or

known unknown objects. These are the objects the

detector should learn to ignore during training, e.g.,

grass, trees and sky in Fig. 1. Since U is infinitely

large, only the small subset UK can be used during

training.

2. UU = Y \(KK ∪KU ∪UK) = U \UK : The unknown

unknown or previously unseen objects, which belong

to the rest of the infinite space from U . Samples from

these object classes are not available during training,

but only occur at test time, see Fig. 1 for an example.

The above breakdown provided by Miller et al. [19]

misses one important aspect required for practical open-set

object detection, i.e., the category of mixed unknown UM .

In bounding box-based detection datasets, not every pixel in

the image is labeled, but known objects K are labeled only

with bounding boxes. When creating an open-set protocol,

one could identify only certain unknown objects as UK and
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certain as UU , since Y is an infinite space. For example, let’s

assume in the entire dataset there is a single instance of a

person on a walking frame. Since a walking frame is not a

labeled object, it does not implicitly belong to either UK or

UU . If during the dataset splitting, this image ends up in the

testing set, the walking frame belongs to UU but if it ends up

in training set it now belongs to UK . Thus, without labeling

all objects of Y in all images, it cannot be determined if the

walking frame is UK or UU . This means for a bounding box-

based true open-set protocol, it is not possible to ensure that

no unknown objects are seen during training, hence giving

rise to the category of mixed unknowns UM .

While current detection approaches perform well on

datasets such as PASCAL VOC and MSCOCO, their re-

sponse to unknown unknowns UU is not specifically studied

as the dataset only includes mixed unknowns UM . In the

real world, detectors may be applied in environments with a

variety of control levels. For example, the environment for a

detector in a warehouse may be highly controlled but that for

a self-driving car or a home robot may be unconstrained. For

the majority of unconstrained environments, detectors are

subjected to images which either do not contain any object

(usually captured in UK) or they contain objects unknown

to the detection system (UU ).

3.1. Open­Set Protocol for Object Detection

Though the current object detection protocols proposed

in the PASCAL VOC and MSCOCO challenges have been

widely accepted by the research community, these protocols

do not contain images of random objects. This means that

these protocols do not explicitly ensure the inclusion of

images with objects from U . One might argue that this is

not true in the case of MSCOCO where out of the 5000
validation images 969 do not have objects from any of the

80 object categories. Here, we wish to clarify that though

the MSCOCO dataset has 80 object categories, the original

dataset had 90 object categories. Rather than excluding all

the images containing the additional 10 object categories,

the annotations for these objects were simply removed in the

protocol. This means that instances of these objects are seen

during training, so that the many of the unknown unknowns

(UU ) actually are known unknowns (UK).

Our open-set object detection protocol differs from the

traditional protocols in this aspect. In addition to the im-

ages from PASCAL VOC 2007 test set, we select the 23008

images from MSCOCO training set that do not contain any

of the known PASCAL VOC objects. We use a subset of

these MSCOCO images, specifically 4952 for our experi-

ments in Fig. 3 and Fig. 4. This subset is referred to as

Wilderness Ratio 1 (WR1) as described in Sec. 4.2. The

remainder of experiments in Sec. 4.2 use all 23008 images

from MSCOCO.

A very important requirement of our protocol in order

Algorithm
PASCAL

VOC

Open-Set

WR1

Faster R-CNN 81.86% 77.09%

RetinaNet 79.29% 73.81%

YOLOv2 75.89% 67.54%

Mask R-CNN 81.70% 77.05%

Dropout Sampling

(Faster R-CNN)
78.15% 71.07%

Table 1: PERFORMANCE SUMMARIZATION (MAP) We

provide the mean average precision (mAP) values for the detectors

used in our experiments. Performance is reported for the standard

PASCAL VOC 2007 test set and our open-set protocol WR1. WR1

represents a wilderness ratio of 1, which means that for each image

from the PASCAL test set we add an image from MSCOCO that

does not contain any of the 20 PASCAL objects.

to maintain its true open-set nature is to restrict the type

of datasets used for training the detectors. Any detector

attempting to evaluate using our protocol must not train on

any data from MSCOCO, more specifically, any detection

dataset that contains instances of the 60 objects that are

unique to MSCOCO.

The unsolved problem When using a combination of

datasets, since the samples marked in one dataset being con-

sidered as unknowns may not be labeled in the other dataset,

their absence from training images cannot be guaranteed.

This leads to the fact that all unknowns being identified as

mixed unknowns UM . As explained, the presence of mixed

unknowns can never be avoided but reducing their number

may be one of the primary steps for the research community

to make progress in open-set object detection.

3.2. Experimental setup

In our experiments, we investigate four object detection

networks, i.e., Faster R-CNN, RetinaNet, YOLOv2 and

Mask R-CNN. For each of these networks, we use a publicly

available ResNet-50 backbone that is pretrained on the Ima-

geNet classification problem. In order to further enhance the

performance of the networks, we employ feature pyramid

networks (FPN) [15]. While for Faster R-CNN, RetinaNet

and Mask R-CNN experiments we used detectron [8] for

YOLOv2 [22] we used their implementation along with the

configuration and weights provided for the model trained

on PASCAL VOC dataset. We also provide the detectron

training files along with trained models on our project page,∗

including all the evaluation scripts used in this paper along

with the custom protocol splits.

The performance of all of the networks in terms of mean

average precision (mAP) is summarized in Tab. 1. As we can

see both in the PASCAL VOC column and in our open-set

∗https://github.com/Vastlab/Elephant-of-

object-detection
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(a) Faster R-CNN (Standard Protocol) (b) RetinaNet (Standard Protocol) (c) YOLO V2 (Standard Protocol)

(d) Faster R-CNN (Open-Set Protocol) (e) RetinaNet (Open-Set Protocol) (f) YOLO V2 (Open-Set Protocol)

Figure 3: IMPACT OF OPEN-SET ON DETECTION We diagnose the types of errors made by three object detectors under closed-set

and open-set conditions at an operating point of Recall = 0.3. All detectors are trained to detect the 20 classes from PASCAL VOC

2007-2012. In the top row, detectors are evaluated on the PASCAL VOC 2007 test set, i.e., under closed-set conditions. In the bottom row,

we test the same detectors in an open-set condition where, in addition to the PASCAL VOC 2007 test set, the detectors are also presented

with an equivalent number of images from MSCOCO that do not contain any of the known (PASCAL) objects, but rather contain some other

objects which are labeled in MSCOCO. From the magnitude of the mixed unknowns it may be observed that the detectors rapidly confuse

objects they were not trained to identify with known objects with an IOU ≥ 0.1. The response to mixed unknown samples significantly

varies across detectors.

protocol, the mAP results differ only moderately between

the employed networks. This would indicate that all net-

works perform similarly with additional unknown samples.

In the next section, we show that this is not the case and,

consequently, mAP is not the the most appropriate measure

for evaluating open-set object detection.

Existing approaches: There are many approaches that at-

tempt to solve the open-set classification task [10, 11], but

the majority of these approaches have been either restricted

to smaller datasets such as MNIST or focus on identifying

unknown knowns, i.e., novel views of known classes such as

adversarial samples, rather than identifying true unknowns.

Lately, Miller et al. [19] proposed to address open-set object

detection by using dropout sampling, which we here apply to

our pre-trained Faster R-CNN network. We employ dropout

with a default probability of 0.5 to the weights for layers

leading to fc7, classification head and regression head. For

ROIs from each image we perform 30 forward passes with

dropouts, resulting in 30 unique detections per ROI, which

are averaged to provide the actual results. As we show in

Tab. 1,Fig. 5 and Tab. 2, this method is actually decreasing

the performance on unknown samples drastically, and it still

overlooks the elephant in object detection.

4. Analyzing Open-Set Object Detectors

4.1. Impact of Unknowns

Since detectors in the real world are deployed at a par-

ticular operating point, in our experiments we chose to use

the operating point of Recall = 0.3. This means that we se-

lect confidence thresholds – separately for each detector and

each class – such that 30 % of all known object instances in

that class are correctly detected. On various other operating

points such as Recall = 0.1, we report similar results in the

supplementary material. We test three different approaches

of network-based detectors: Faster R-CNN [24], RetinaNet

[16] and YOLOv2 [22], which we trained using the training

and validation sets of PASCAL VOC 2007 and 2012. In

Fig. 3(a)-(c) we test these networks on the PASCAL VOC

2007 test set. For Fig. 3(d)-(f) we use our WR1 open-set

protocol detailed in Sec. 3.1.

In object detection, background errors are defined as re-

gions having IOU < 0.1 with a ground truth object [12]

while being classified as one of the known objects. Accord-

ing to our definition of open-set object detection, we interpret

these background errors as errors originating from mixed

unknowns UM . When assuming that our labeled samples

from MSCOCO do not contain classes from PASCAL VOC,

we can further identify the unknown unknowns errors. If

the detector detects a MSCOCO object as one of the known

PASCAL VOC objects with an IOU ≥ 0.1, it is identified

as an unknown unknowns error, i.e., a sample from UU has

been mis-identified as being from K. Similarly, in any image

if the detector makes a detection which has an IOU < 0.1
with objects from both UU and K, it is considered as mixed

unknowns error. We call these detections mixed unknowns

because both PASCAL VOC and MSCOCO do not have a

constraint that a member of UU cannot be present in their

images. Therefore, if a detection has an IOU < 0.1 with

any of the labeled objects, it may still have an IOU ≥ 0.1
with an object that was not labeled.

We use the definitions provided by Hoiem et al. [12] to

diagnose the errors made by the detectors. Rather than using

pie charts as in [12], we visualize via horizontal bar plots.

In order to focus only on the errors, we clip the plots to

12% of the detections, the white region up to 100% depicts

correct detections. Since all plots in Fig. 3 are made on a

specific operating point of Recall = 0.3, they all represent

an equal number of true positives, i.e., correctly classified
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PASCAL VOC 2007 MSCOCO

Figure 4: CONFUSION MATRIX FOR KNOWNS AND UNKNOWNS We analyze the confusion of detections for the Faster R-CNN

detector, which was the best performer in Fig. 3. Each detection with an IOU ≥ 0.1 with an object is mapped to its ground-truth object in

the confusion matrix. Apart from detecting a lot of known objects on the left side of the plot, the system also detects many unknown objects

from MSCOCO as one of the PASCAL VOC classes. Major confusions exist for objects that belong to the same parent family, e.g., animals

like elephants, bears and zebras are confused with cats, dogs, horses and sheep. Objects like tennis racket and baseball glove, which are not

visually similar to any of the PASCAL objects, are detected as train, car, boat etc. For objects like tie, handbag and backpack we see almost

no detection, which we attribute to their unannotated presence in PASCAL VOC training set, which helps detectors to learn to ignore them.

known samples. It is interesting to see the different response

of these detectors to mixed unknowns UM .

It can be observed from Fig. 3(d) that while Faster R-

CNN is the state-of-the-art two-stage object detector, its

percentage of false positives almost doubles when compared

to the closed-set performance in Fig. 3(a), attributed to the

errors from mixed unknowns. When we compare Fig. 3(a)

and (b) the performance seems almost equivalent as has

been claimed in [16], but the response of the two state-of-

the-art detectors to mixed unknowns varies drastically. It

seems that RetinaNet is much more susceptible to these

errors than the two stage detector, and this effect may be

attributed to the one vs. rest loss function, since the two

detectors are based on the same network architecture. The

earlier single shot detector YOLOv1 [21] was known to

make localization errors but was also claimed to be much

less prone to background errors than detectors such as Fast

R-CNN [6]. Surprisingly both YOLOv1 and YOLOv2 are

the worst performers when evaluated under our open-set

protocol. Since YOLOv2 is an advancement of YOLOv1

and performance of YOLOv1 was worse, we only provide

results for YOLOv2 in Fig. 3. As discussed in Sec. 2, the

poor performance of YOLOv2 to mixed unknowns may be

attributed to its objectness score, which rather than providing

the probability of an object from K being present, provides

a probability of any object from Y being present.

Since we have inferred from Fig. 3 that unknown un-

knowns are frequently detected as one of the known objects,

we further attempt to understand which objects tend to get

confused with each other. In Fig. 4, we plot a confusion

matrix of all the detections from Faster R-CNN that do not

belong to the mixed unknown error category, i.e., they have

an IOU ≥ 0.1 with either UU or K. It may be observed

from Fig. 4 that most of the confusion is present among ob-

jects from the same parent family such as animals, furniture,

appliances etc. Some objects that are not visually similar to

any of the PASCAL objects, such as tennis racket, baseball

glove or sandwich, also get detected as train, car, boat, aero-

plane, dining table or potted plant. For objects that can be

commonly found on a person, which is one of the objects

with most instances in PASCAL such as tie, handbag, back-

pack, spoon and fork we see almost no detections. This may

be attributed to the presence of these objects in PASCAL

VOC training set, where they were identified as background

and, hence, the detectors learned to avoid detecting them.

4.2. Detection and the wilderness

As we have observed from Fig. 3, unknown objects can

have a very significant impact on a detector’s performance.

When object detection systems are deployed in the wild for

real-world applications like robotics, detection is performed

on frames in a video sequence. The majority of these frames

may not contain any of the known objects KU ; rather, they

may contain objects that either the system was trained to

ignore as background UK , or unknown unknown objects

UU that the detector was not trained to handle. While de-

ploying such a system, an operating point is chosen either

based on the detector’s performance for one of the academic

datasets or by applying it to a small subset of images from

the application it is targeted toward. In neither of these cases,
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Figure 5: WILDERNESS IMPACT The frequency with which

unknown samples are presented to a detector can greatly impact

the detectors performance. For an ideal detector, the impact of

all levels of wilderness should be 0, i.e., the precision for closed-

set and open-set testing should be identical. It may be observed

that detectors are more significantly impacted when operating on

higher recalls. Also, single shot detectors (RetinaNet, YOLOv2) are

impacted more than the two stage detector (Faster R-CNN). The

dropout sampling approach leads to much worse results.

the impact of unknown unknowns is explicitly considered.

The frequency with which these unknowns are encountered

largely depends on the environment in which the detector is

applied. Scheirer et al. [25] define a measure called open-

ness, but it uses the number of known and unknown classes

and ignores the frequency of unknowns. We formalize a

new measure that captures the frequency of frames that may

have unknowns, which we call Wilderness. We define the

Wilderness Ratio as:

Wilderness Ratio =
# images with UM

# images with K
.

In order to understand the variation in performance of

a system when subjected to mixed unknowns as compared

to being tested in closed-set conditions, we design an ex-

periment in which the number of images with unknowns is

increased by 10% of the images containing knowns, hence

increasing the wilderness. For the images containing only un-

knowns, we use the MSCOCO split as described in Sec. 3.1.

In order to understand the performance impact of these open-

set conditions, we evaluate the performance of three detec-

tors on various operating points at several levels of wilder-

ness in Fig. 5. Our evaluations highlight the impact of the

number of unknowns on a detectors performance.

To understand the impact of wilderness, we study the

ratio of the precision values under closed-set and open-set

conditions. Since for an ideal detector, the impact of wilder-

ness should be 0, i.e., the precision under open-set conditions

Algorithm
Average Wilderness Impact

Recall .1 Recall .3 Recall .5

Faster R-CNN 0.0195 0.0382 0.0971

RetinaNet 0.0521 0.0932 0.1785

YOLOv2 0.1603 0.1468 0.2192

Dropout Sampling

(Faster R-CNN)
0.0511 0.1255 0.3569

Table 2: SUMMARIZING WILDERNESS IMPACT We provide

the average wilderness impact (AWI) of various detectors tested on

several levels of wilderness at various recalls. Results for dropout

sampling indicate the performance drop by using that approach.

should be same as under closed set conditions, we subtract

one:

Wilderness Impact =
Precision in closed-set

Precision in open-set
− 1

Simplifying the above equation, we compute the Wilderness

Impact as:
{

TPc

TPc + FPc

/
TPc

TPc + FPc + FPo

}

− 1 =
FPo

TPc + FPc

where TPc is the number of true positive detections from

the PASCAL images, since there cannot be any true posi-

tives from the images responsible for wilderness we do not

have a TPo. The false positives resulting from the PASCAL

images are denoted as FPc while any detections made from

the wilderness images are denoted as FPo. As observed in

Fig. 5, the wilderness impact for a detector increases as its

operating point is changed to represent a higher recall. More-

over, it is clearly visible that single stage detectors such as

RetinaNet and YOLOv2 are much more impacted by wilder-

ness than the two stage detector Faster R-CNN. In order

to consolidate the performance of a detector across various

levels of wilderness, we suggest the measure of Average

Wilderness Impact (AWI). For the wilderness impact curve,

smaller AWI values represent better detectors. In order to

calculate the AWI, we use the average of the wilderness im-

pact values at various levels of wilderness. The AWI values

for various detectors are consolidated in Tab. 2.

5. Making choices

In order to deploy a detector for a specific application, var-

ious factors need to be taken into consideration, i.e., choosing

the object detector to be applied and its operating point.

5.1. Selecting Detector

Mean average precision (mAP) is the preferred choice

for evaluating a detectors performance on various detection

datasets. Since mAP provides a single number across all ob-

ject classes, it makes comparison of detectors easy in order

to decide the new state of the art in the field. As it has been

observed in Tab. 1, while object detectors can have compara-

ble mAPs in closed-set conditions on the standard academic
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datasets, their performance on open-set conditions may vary

considerably. For example, though Faster R-CNN and Reti-

naNet both have a comparable performance on PASCAL

VOC 2007 test set, when tested along with the same number

of images that did not contain any of the known objects the

mAP of Faster RCNN drops by close to 4 % and that of

RetinaNet drops by 6 %. On the other hand, we can see from

Tab. 2 that Faster R-CNN is much more stable when pre-

sented with unknown samples, which is not reflected in mAP.

This observation leads us to believe that, though mAP pro-

vides a good measure for comparing performance in closed

set, it alone cannot be used to provide performance measures

in open-set conditions and better measures in the direction

of the (average) wilderness impact need to be constituted.

5.2. Selecting Operating Point

In theory, for selecting an operating point, one can either

use a threshold for a specific recall or a specific precision.

While a precision-recall (PR) curve can be used in order to

decide an operating point, its non-monotonic nature adds

complexity. Often, PR curves are artificially made mono-

tonic by updating the precision value at a recall r′ with the

maximum precision values for r′ ≤ r [3]. This means that

if a PR curve is used to obtain the operating point based on

precision, the precision we are hoping for is not the one we

would get.

Since, in practice, one attempts to obtain a balance be-

tween precision and recall rather than attempting to obtain

either a high precision or a high recall, a need for a more com-

plex evaluation metric arises. One such evaluation metric

is the Fβ score, which is defined as the weighted harmonic

mean of precision and recall values:

Fβ = (1 + β2)
precision ∗ recall

recall + β2precision
Since Fβ is just a combination of the precision and recall

values and does not need a value for true negatives, which

are needed by metrics such as accuracy and are not available

for a detection problem, it naturally has become the second

choice for the detection community [14, 1]. Fβ can provide

an excellent operating point, but it requires one to weight

precision and recall, and often equal weights (F1) are pre-

sumed. Though Fβ may be used to decide an operating point

for a detector, it too is unable to address the performance

of detector under open-set conditions – see supplemental

material for quantitative data.

6. Conclusion

This paper’s primary goal is to provide an understanding

of object detector performances in the real world. In order

to achieve this goal, we have formalized object detection

as an open-set problem. Though Miller et al. [19] also at-

tempted to approach object detection as an open-set problem,

they did not provide a formalization of the problem and its

deep impact on the applicability of object detectors in the

real world. Our open-set evaluation protocol enables re-

searchers to estimate the performance of any object detector

under real-world conditions. Rather than simply containing

a fixed number of unknowns, this protocol varies the fre-

quency of unknown inputs in what we call the wilderness

ratio. This varying frequency allows to simulate a detectors

performance in environments with varied levels of control

over the input to the detector. Because an operating system

cannot know the wilderness ratio in which it might operate,

we introduce the novel Average Wilderness Impact (AWI)

measure to quantify an algorithms sensitivity to unknown

unknowns over a range of wilderness.

We investigated the open-set performance of three object

detection networks that all have different approaches to han-

dle the background. While the mAP of all these networks

are similar in both closed-set and open-set evaluation, we

found that the algorithms handle unknown objects very dif-

ferently. The state-of-the-art two-stage multi-class detector

Faster R-CNN, which uses an additional background class

to assemble known unknown samples in a separate region

of the feature space, has the lowest AWI showing it is the

least influenced by samples of unknown objects. The state-

of-the-art one-stage detector RetinaNet provides comparable

performance in closed-set conditions, but has difficulty in

rejecting unknown objects due to its one-versus-rest classi-

fier. Finally, the objectness-based YOLO detectors have a

high AWI and may not be ready to handle unknown objects

well. We attribute this to the fact that their objectness score

is not just high for known but also for unknown objects. This

makes rejecting unknowns based on the objectness score

difficult. Thus, we believe that the type of classifier used by

the detectors to identify backgrounds versus knowns highly

impacts their performance in the open-set protocol.

There has been significant progress in zero-shot, one-shot,

few-shot, and incremental learning [13, 30, 5, 20, 28], which

can be applied to object detection. However, if detectors

incorrectly but confidently classify unknowns, there is no

reason for a system to consider learning these objects as new

classes. Even if the system was robust to unknowns and was

to simply ignore unknown objects as ”background”, it could

not learn them as new objects. Therefore, we consider it

important that detection systems eventually learn to create

a separation between background and unknown objects, en-

abling new objects to be identified. Currently, there is no

such architecture and a design is left for future work. This

paper lays the ground for research to eventually progress

in this direction while providing new open-set evaluation

protocols and metrics as the first steps. We hope that these

steps guide object detection research toward detectors that

are robust even beyond academic datasets.
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