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Abstract

We address one of the crucial aspects necessary for safe

and efficient operations of autonomous vehicles, namely

predicting future state of traffic actors in the autonomous

vehicle’s surroundings. We introduce a deep learning-based

approach that takes into account a current world state and

produces raster images of each actor’s vicinity. The rasters

are then used as inputs to deep convolutional models to infer

future movement of actors while also accounting for and cap-

turing inherent uncertainty of the prediction task. Extensive

experiments on real-world data strongly suggest benefits of

the proposed approach. Moreover, following successful tests

the system was deployed to a fleet of autonomous vehicles.

1. Introduction

Driving a motor vehicle is a complex undertaking, requir-

ing drivers to understand involved multi-actor scenes in real

time and act upon rapidly changing environment within a

fraction of a second (actor is a term referring to any vehicle,

pedestrian, bicycle, or other potentially moving object). Un-

fortunately, humans are infamously ill-fitted for the task, as

sadly corroborated by grim road statistics that often worsen

year after year. Traffic accidents were the number four cause

of death in the US in 2015, accounting for more than 5% of

the total [31]. In addition, despite large investments by gov-

ernments and progress made in traffic safety technologies, in

the US the year 2017 was still one of the deadliest years for

motorists in the past decade [33]. Moreover, human error is

responsible for up to 94% of crashes [41], suggesting that

removing the unreliable human factor could potentially save

hundreds of thousands of lives and tens of billions of dollars

in accident-related damages and medical expenses [6].

Latest breakthroughs in AI and high-performance comput-

ing, delivering powerful hardware at lower costs, unlocked

the potential to reverse the negative safety trend on our public

roads. In particular, together they gave rise to a development

of the self-driving technology, where driving decisions are

entrusted to a computer aboard a self-driving vehicle (SDV),

equipped with a number of external sensors and capable

of processing large amounts of information at speeds and

throughputs far surpassing human capabilities. Once mature

the technology is expected to drastically improve road safety

and redefine the very way we organize transportation and

our lives [36]. To this end, the industry and governments are

working closely to fulfill this potential and bring the SDVs to

consumers, with companies such as Waymo, Uber, and Lyft

investing significant resources into autonomous research,

and states such as Texas, Pennsylvania, and California enact-

ing necessary legal frameworks. Nevertheless, autonomous

driving is still in initial development phases, with a number

of challenges lying ahead of the researchers.

To safely deploy SDVs to public roads one must solve

a sequence of tasks that include detection and tracking of

actors in SDV’s surroundings, predicting their future trajec-

tories, as well as navigating the SDV safely and effectively

towards its intended destination while taking into account

current and future states of the actors. We focus on a critical

component of this pipeline, predicting future trajectories of

tracked vehicles (in the following we use vehicle and actor

interchangeably), where a working detection and tracking

system is assumed. Our main contributions are as follows:

• We propose to rasterize high-definition maps and sur-

roundings of each vehicle in SDV’s vicinity, thus pro-

viding complete context and information necessary for

accurate prediction of future trajectory;

• We trained deep convolutional neural network (CNN) to

predict short-term vehicle trajectories, while accounting

for inherent uncertainty of motion in road traffic;

• Large-scale evaluation on real-world data showed that

the system provides accurate predictions and well-

calibrated uncertainties, indicating its practical benefits;

• Following extensive offline and online testing, the sys-

tem was deployed to a fleet of self-driving vehicles.
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Figure 1: Complex intersection scene handled by our model; (a) scene in a 3D viewer, with lane boundaries, surrounding actors,

and actor of interest (indicated in yellow); (b) rasterized surroundings of the actor of interest (colored red) in bird’s-eye view

used as an input to CNN; (c) raster with overlaid ground-truth (dotted green line) and predicted (dotted blue line) 3s-trajectories

Example of a complex scene is shown in Figure 1, where Fig.

1a shows the scene in our internal 3D viewer, Fig. 1b shows

the rasterized 2D image (or raster) used as a model input,

while Fig. 1c shows 3-second ground-truth and predicted

trajectories. Actor whose context corresponds to the raster is

referred to as actor of interest. We can see that the method

uses rasterization of surrounding map and actors to accu-

rately predict actor movement in a dynamic environment.

2. Related work

In the past decade a number of methods were proposed

to predict future motion of traffic actors. Comprehensive

overview of the topic can be found in [30, 47]. Here, we

review literature from the perspective of autonomous driving

domain. We first cover engineered approaches commonly

used in practice. Then, we discuss learned approaches using

classical machine learning as well as deep learning methods.

2.1. Motion prediction in self­driving systems

Accurate prediction of actor motion is a critical compo-

nent of deployed self-driving systems [10, 49]. In particular,

prediction is tightly coupled with SDV’s egomotion planning,

as it is essential to accurately estimate future world state to

correctly and safely plan for SDV’s path through a highly dy-

namic environment. Inaccurate motion prediction may lead

to severe accidents, as exemplified by a collision between

MIT’s “Talos” and Cornell’s “Skyne” vehicles during the

2007 DARPA Urban Challenge [12].

Most of the deployed self-driving systems use well-

established engineered approaches for motion prediction.

The common approach consists of computing object’s future

motion by propagating its state over time based on kinematic

models and assumptions of an underlying physical system.

State estimate usually comprises position, speed, accelera-

tion, and object heading, and techniques such as Kalman

filter (KF) [21] are used to estimate and propagate the state

in the future. For example, in Honda’s deployed system [10],

KF tracker is used to predict motion of vehicles around SDV.

While this approach works well for short-term predictions,

its performance degrades for longer horizons as the model

ignores surrounding context (e.g., roads, other traffic actors,

traffic rules), as we confirm in Section 4. On the other hand,

Mercedes-Benz’s motion prediction component uses map in-

formation as a constraint to compute vehicle’s future position

[49]. The system first associates each detected vehicle with

one or more lanes from the map. Then, all possible paths are

generated for each (vehicle, associated lane) pair based on

map topology, lane connectivity, and vehicle’s current state.

This heuristic provides reasonable predictions in most cases

(as evaluated in Section 4), however it does not scale well

nor is able to model unusual scenarios. As an alternative

to existing deployed engineered approaches, by considering

large amounts of data our proposed approach automatically

learns that vehicles usually obey road and lane constraints,

while also being capable of handling outliers.

2.2. Learned prediction models

Manually designed engineered models often impose un-

realistic assumptions not supported by the data (e.g., that

traffic always follows lanes), which motivated use of learned

models as an alternative. A large class of learned models are

maneuver-based models (e.g., using Hidden Markov Model

[43]) which are object-centric approaches that predict dis-

crete action of each object independently. The independence

assumption does not often hold true, which is mitigated by

the use of Bayesian networks [38] that are computationally

more expensive and not feasible in real-time tasks. Addition-

ally, in [3] authors learned scene-specific motion patterns and

applied them to novel scenes with an image-based similarity

function. However, these methods also require manually

designed features to capture context information, resulting

in suboptimal performance. Alternatively, Gaussian Process

(GP) regression can be used to address the motion prediction

problem [45]. GP regression is well-suited for the task with

desirable properties such as ability to quantify uncertainty,

yet it is limited when modeling complex actor-environment

interactions. In recent work researchers focused on how to
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model environmental context using Inverse Reinforcement

Learning (IRL) [32] approaches. Kitani et al. [24] used

inverse optimal control to predict pedestrian paths by consid-

ering scene semantics, however the proposed IRL methods

are inefficient for real-time applications.

The success of deep learning [16] motivated its use in the

self-driving domain. In [7] an end-to-end system that directly

maps input sensors to SDV controls was proposed. In [29]

the authors described a Recurrent Neural Network (RNN)-

based method for long-term predictions of interacting agents

given scene context. In [2] authors proposed a social Long

Short-Term Memory (LSTM) to model human movement to-

gether with social interactions. Authors of [13] used LSTM

to predict ball motion in billiards directly from images. In

[46] LSTM models were used to classify basketball plays,

with overhead raster images taken as inputs. Similarly, the

authors of [34, 35] used overhead rasters and RNNs to track

multiple objects in a scene by predicting raster image in a

next timestep, unlike our work where full per-object trajec-

tories are directly inferred. Due to strict time constraints of

a deployed real-time system and the requirement to more

easily debug and understand model decisions made on pub-

lic roads, in this work we used simpler feed-forward CNN

architectures for the prediction task. In addition, recent

work indicates temporal CNNs could be more powerful than

RNNs [28], further justifying our choice.

A critical feature for the safety of SDVs is uncertainty

estimation for predictions. We address this important is-

sue in our current work, building on an existing body of

literature. This includes [2], where the authors estimate

uncertainty due to observation noise (i.e., aleatoric uncer-

tainty) by learning to predict the parameters of assumed

noise distribution. The authors of [14] showed that dropout

training in deep networks approximates uncertainty of the

prediction model itself (i.e., epistemic uncertainty). In a

followup work, [22] presented a deep method that jointly

estimates aleatoric and epistemic uncertainties. Some re-

cent publications have addressed uncertainty estimation in

motion prediction from a self-driving perspective. For ex-

ample, [4] models both aleatoric and epistemic uncertainties

of pedestrian and bicyclist motion over a 1-second hori-

zon. Authors of [5] developed a novel optimization scheme

for dropout-based Bayesian inference using synthetic likeli-

hoods to accurately capture model uncertainty. Lastly, [19]

generated conditional variational distribution of predicted

trajectories together with confidence estimates for different

horizons. However, in contrast to our work, the proposed

approach does not utilize high-definition maps and assumes

that observation sensors are present on the actor of interest.

3. Proposed approach

Let us assume that we have access to real-time data

streams coming from sensors such as lidar, radar, or cam-

era, installed aboard a self-driving vehicle. Furthermore,

we assume to have an already functioning tracking system

ingesting the sensor data, allowing detection and tracking

of traffic actors in real-time. For example, we can make

use of any of a number of Kalman filter-based methods that

have found wide practical use [9], taking sensor data as input

and outputting tracks of individual actors that represent their

state estimates at fixed intervals. State estimates contain the

following information describing an actor: bounding box,

position, velocity, acceleration, heading, and heading change

rate. Lastly, we assume access to mapping data of an oper-

ating area, comprising road and crosswalk locations, lane

directions, and other relevant map information.

Let us denote high-definition map data by M, and a set

of discrete times at which tracker outputs state estimates

as T = {t1, . . . , tT }, where time gap between consecutive

time steps is constant (e.g., gap is equal to 0.1s for tracker

running at the frequency of 10Hz). Then, we denote state

output of a tracker for the i-th actor at time tj as sij , where

i = 1, . . . , Nj with Nj being a number of unique actors

tracked at time tj . Note that in general actor counts vary for

different time steps as new actors appear within and existing

ones disappear from the sensor range. Then, given data M
and all actors’ state estimates up to and including time step

tj (denoted by Sj), the task is to predict sequence of future

states [si(j+1), . . . , si(j+H)], where H denotes the number

of future consecutive time steps for which we predict states

(or prediction horizon). Without the loss of generality, we

simplify the task to infer i-th actor’s future positions instead

of full state estimates, denoted as [xi(j+1), . . . , xi(j+H)] for

x- and similarly for y-positions. Past and future positions

at time tj are represented in actor-centric coordinate system

derived from actor’s state at time tj , where forward direction

represents x-axis, left-hand direction represents y-axis, and

actor’s bounding box centroid represents the origin.

3.1. Model inputs

To model dynamic context at time tj we use state data Sj ,

while to model static context we use map data M, compris-

ing road and crosswalk polygons, as well as lane directions

and boundaries. Road polygons describe drivable surface,

lanes describe driving path, and crosswalk polygons describe

road surface used for pedestrian crossing. Lanes are encoded

by boundaries and directed lines positioned at the center.

Instead of manually defining features that represent actor

context, we propose to rasterize a scene for the i-th actor at

time step tj into an RGB image (see Figure 1 for an example).

Then, using rasterized images as inputs we train CNN to

predict actor trajectory, where the network automatically

infers relevant features. Optionally, the model can also take

as input a current state of the actor of interest sij represented

as a vector (see Section 3.3 for details of the architecture).
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3.1.1 Rasterization

To describe rasterization, let us first introduce a concept

of a vector layer, formed by a collection of polygons and

lines that belong to a common type. For example, in the

case of map elements we have vector layer of roads, of

crosswalks, and so on. To rasterize vector layer into an RGB

space, each vector layer is manually assigned a color from

a set of distinct RGB colors that make a difference among

layers more prominent. The only layer that does not have

its defined RGB color is a layer that encodes lane direction.

Instead of assigning a specific RGB color, we use a direction

of each straight line segment as a hue value in HSV color

space [42], with saturation and value set to maximum. The

hue component is angular measurement and corresponds to a

position at a color wheel, with hue of 0◦ indicating red, 120◦

indicating green, and blue corresponding to 240◦. We then

convert HSV to RGB color space, thus encoding driving

direction of each lane in the resulting raster image. For

example, in Figure 1 lanes going in opposite directions are

represented by colors diametrically opposite to each other on

the HSV color cylinder. Once the colors are defined, vector

layers are rasterized one by one on top of each other, in the

order from layers that represent larger areas such as road

polygons towards layers that represent finer structures such

as lanes or actor bounding boxes. Important parameter is

pixel resolution, which we set to 0.1m considering trade-off

between image size and ability to represent fine details.

As discussed earlier, we are interested in representing con-

text for each actor separately. To represent context around

the i-th actor tracked at time step tj we create a rasterized im-

age Iij of size n×n such that the actor is positioned at pixel

(w, h) within Iij , where w represents width and h height

measured from the bottom-left corner of the image. The im-

age is rotated such that actor’s heading points up, where lane

directions are computed relative to the actor’s heading and

then encoded in the HSV space. We set n = 300, actor of

interest is positioned at w = 150 and h = 50, so that 25m in

front of the actor and 5m from the back is rasterized (for our

experiments we only considered roads with maximum speed

limit of 25mph where this setup performs well, for faster

roads more context would be required). Lastly, we color the

actor of interest differently so that it is distinguishable from

other surrounding vehicles (as seen in Figure 1b the actor of

interest is colored red, while all others are colored yellow).

To capture past motion of all traffic actors, their bounding

boxes at consecutive time steps [tj−K+1, . . . , tj ] are raster-

ized on top of map vector layers. Each historical actor poly-

gon is rasterized with the same color as the current polygon

yet with reduced level of brightness, resulting in the fading

effect. Brightness level at tj−k is equal to max(0, 1− k · δ),
k = 0, 1, . . . ,K−1, where we set δ = 0.1 and K to either 1
(no fading) or 5 (with fading, example shown in Figure 1b).

Note that we consider map data and tracked states of all

traffic actors to generate rasters, and do not use raw sensor

data (i.e., camera, lidar, or radar) for rasterization. Moreover,

although we did not observe a significant effect for different

color selections, we recognize that the rasterization could

be further optimized. For example, layer ordering can be

modified, along with the raster size, resolution, and other

parameters. However, due to limited space this is outside of

the scope of the current work, and in the following we use

the stated parameter values found to work well in practice.

3.2. Optimization problem

To obtain analytical expressions for loss functions used to

optimize deep networks, let us first introduce displacement

error for the i-th actor at time tj for horizon h ∈ {1, . . . , H},

di(j+h) =
(

(

xi(j+h) − x̂i(j+h)(Sj ,M, θ)
)2
+

(

yi(j+h) − ŷi(j+h)(Sj ,M, θ)
)2
)1/2

,
(1)

defined as Euclidean distance between observed and pre-

dicted positions. Here, θ denotes parameters of a model,

while x̂i(j+h)(Sj ,M, θ) and ŷi(j+h)(Sj ,M, θ) denote po-

sition outputs of the model that takes available states Sj and

map M as inputs. Then, overall loss incurred by predict-

ing trajectory for a complete prediction horizon is equal to

average squared displacement error of trajectory points,

Lij =
1

H

H
∑

h=1

d2i(j+h), (2)

where we train the model to output 2H-D vector, represent-

ing predicted x- and y-positions for each of H trajectory

points. Optimizing over all actors and time steps, we find

optimal parameters by minimizing overall training loss,

θ∗ = argmin
θ

L = argmin
θ

T
∑

j=1

Nj
∑

i=1

Lij . (3)

Alternatively, as the prediction task is inherently noisy it

is useful to capture aleatoric uncertainty present in the data

[22, 27], in addition to optimizing for a point estimate as

in (3). To that end, we assume that displacement errors are

sampled from a half-normal distribution [20], denoted as

di(j+h) ∼ FN
(

0, σ̂i(j+h)(Sj ,M, θ)2
)

, (4)

where standard deviation σ̂i(j+h) is computed by the model.

Then, we can write overall loss for the i-th actor at time tj
as negative log-likelihood of the observed data, equal to

Lij =
H
∑

h=1

( d2i(j+h)

2 σ̂i(j+h)(Sj ,M, θ)2
+log σ̂i(j+h)(Sj ,M, θ)

)

,

(5)
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Figure 2: Feed-forward network architecture combining raster image and actor state inputs Figure 3: LSTM decoder

where we train the model to output 3H-dimensional vector,

representing predicted x- and y-positions, as well as standard

deviation for H trajectory points. Lastly, optimizing over

entire training data we solve (3) with Lij computed as in (5).

3.3. Network architecture

In this section we describe an architecture used to solve

the optimization problems (2) and (5), also illustrated in

Figures 2 and 3. To extract features from an input raster

we can use any existing CNN (referred to as base CNN). In

addition, to input actor state we encode it as a 3D vector

comprising velocity, acceleration, and heading change rate

(position and heading are not required as they were already

used during raster generation), and concatenate the resulting

vector with flattened output of the base CNN. Then, the

combined features are passed through a fully-connected (FC)

layer (we set its size to 4,096) connected to an output layer

of size 2H if solving (2), or 3H if solving (5).

Alternatively, we can decode the actor trajectory through

a recurrent architecture, using an LSTM [18] after the first

FC layer (shown in Figure 3). We set LSTM size to 128,

cell state is 0-initialized, while initial input is obtained by

converting output of the FC layer of size 4,096 into a vector

of size 128 with another FC layer. For each time step LSTM

output is converted by an output FC layer into a 2-D vector

if solving (2) or a 3-D vector if solving (5) (representing x-

and y-position, and standard deviation).

4. Experiments

Baselines 1) We used Unscented Kalman filter (UKF)

[44] with kinematic vehicle model [25], taking raw sen-

sor data from camera, lidar, and radar and outputting state

estimates for each tracked vehicle. The filter was readily

available as it is a default tracker on our fleet, is pretrained on

large amount of labeled data generated by an in-house team

of human labelers, is highly optimized and tested on millions

on miles (unfortunately, no other details can be given due

to confidentiality concerns). Then, we can use this tracker

to predict future motion by forward propagating estimated

states in time. 2) We used a linear baseline that directly

converts input states (of size 3) into future positions for each

time step. 3) Vehicle-lane association [49] that considers

map constraints was used. More specifically, an actor was

assigned to nearby lanes within 5m radius, and Pure Pursuit

algorithm [11] with dynamic lookahead [8] was used to fol-

low that lane. If there are multiple associated lanes, the one

with the lowest error was reported (denoted as lane-assoc).

Data We collected 240 hours of data by manually driving

SDV in Pittsburgh, PA and Phoenix, AZ in various traffic

conditions (e.g., varying times of day, days of the week),

with collection rate of 10Hz (the same frequency the UKF

was run on). Each actor at each discrete tracking time step

amounts to one data point, with overall data comprising 7.8
million examples after removing static actors. We considered

prediction horizon of 3s (i.e., we set H = 30), and used 3:1:1

split to obtain train/validation/test data.

Models We compared the baselines to several variants

of the proposed approach. We considered the following

base CNNs: AlexNet [26], VGG-19 [40], ResNet-50 [17],

and MobileNet-v2 (MNv2) [37]. Furthermore, to evaluate

how varying input complexity affects the performance, we

considered architectures that use: 1) raster without fading

and state, solving (2); 2) raster with fading and without state,

solving (2); 3) raster without fading and with state, solving

(2); 4) raster with fading and state, solving (2); 5) raster with

fading and state, and outputting uncertainty, solving (5).

Training Models were implemented in TensorFlow [1]

and trained on 16 Nvidia Titan X GPU cards. To coordi-

nate the GPUs we used open-source framework Horovod

[39], completing training in around 24 hours. We used per-

GPU batch size of 64 and trained with Adam optimizer [23],

setting the initial learning rate to 10−4 that was further de-

creased by a factor of 0.9 every 20 thousand iterations. All

models were trained end-to-end from scratch, except for a

model with uncertainty outputs which was initialized with

a corresponding model without uncertainty and then fine-

tuned (training from scratch did not give satisfactory results).

We deployed models to an SDV with an undisclosed GPU,

performing batch inference on 32 object in 10ms on average.

4.1. Results

In Table 1 we report error metrics relevant for motion

prediction: displacement errors, as well as along-track and
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Table 1: Comparison of average prediction errors for competing methods (in meters)

Method Raster State Loss Displacement Along-track Cross-track

UKF – yes – 1.46 1.21 0.57

Linear model – yes (2) 1.19 1.03 0.43

Lane-assoc – yes – 1.09 1.09 0.19

AlexNet w/o fading no (2) 3.14 3.11 0.35

AlexNet w/ fading no (2) 1.24 1.23 0.22

AlexNet w/o fading yes (2) 0.97 0.94 0.21

AlexNet w/ fading yes (2) 0.86 0.83 0.20

VGG-19 w/ fading yes (2) 0.77 0.75 0.19

ResNet-50 w/ fading yes (2) 0.76 0.74 0.18

MobileNet-v2 w/ fading yes (2) 0.73 0.70 0.18

MobileNet-v2 w/ fading yes (5) 0.71 0.68 0.18

MobileNet-v2 LSTM w/ fading yes (5) 0.62 0.60 0.14
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Figure 4: Reliability diagrams at horizons of: (a) 1s; (b) 3s

cross-track errors [15], averaged over the prediction hori-

zon. We emphasize that metrics improvements of even a

couple of centimeters can make a large difference in practice,

significantly affecting the safety and comfort of SDVs.

Considering the baselines, we see that the linear model

easily outperformed the baseline UKF, which simply propa-

gates an initial actor state. Moreover, using the map infor-

mation through the lane-assoc model we gained significant

improvements, especially in the cross-track which is already

at the level of the best deep models. This is an expected

result, as vehicles usually follow their lanes quite well.

We then conducted an ablation study using the feed-

forward architecture from Figure 2 and AlexNet as a base

CNN, running experiments with varying input complexity

(upper half of Table 1). When we provide neither fading

nor state inputs the model performs worse than UKF, as the

network does not have enough information to estimate cur-

rent state of an actor from the raster. Interestingly, when we

include fading the model starts to outperform the baseline

by a large margin, indicating that actor state can be inferred

solely from providing past positions through fading. If in-

stead of fading we directly provide state estimates we get

even better performance, as the state info is already distilled

and does not need to be estimated from raster. Furthermore,

using raster with fading together with state inputs leads to

additional performance boost, suggesting that fading carries

additional info not available through the state itself, and that

the raster and other external inputs can be seamlessly com-

bined through the proposed architecture to improve accuracy.

Next, we compared popular CNN architectures as base

CNNs. As seen in the bottom half of Table 1, we found that

VGG and ResNet models provide improvements over the

baseline AlexNet, as observed previously [40]. It is inter-

esting to note that only starting with these models did we

outperform the baseline lane-assoc model in terms of all the

relevant metrics. However, both models are outperformed

by the novel MNv2 architecture that combines a number of

deep learning ideas under one roof (e.g., bottleneck layers,

residual connections, depthwise convolutions). Taking the

best performing MNv2 as a base and extending the output

layer by adding uncertainty led to further improvements.

Not only do additional outputs allow estimation of trajectory

uncertainty in addition to trajectory point estimates, but they

also mitigate adverse effects of noisy data during the training

process. Lastly, using LSTM decoder at the output, as de-

scribed in Section 3.3, led to the best results. In our task the

future states depend on the past ones, which can be captured

by the recurrent architecture. In the remainder we analyze

results of this best performing model in greater detail.

We used reliability diagrams to evaluate how closely pre-

dicted error distribution matches testing error distribution.

The diagrams are generated by measuring how large is an

observed displacement error compared to a predicted confi-

dence, and computing what fraction of observed errors falls

within the expected range given by the estimated standard de-

viation. For example, due to the Gaussianity assumption we

expect 68% of observed errors to be within the predicted one

sigma, and diagram point at predicted value of 0.68 should

be as close as possible to observed value of 0.68. Thus, the

closer the curve is to the diagonal line, the better calibrated

is the model. Figure 4 shows diagrams for horizons of 1s
and 3s. The prediction curve is well aligned with the ref-

erence line, especially at 3 seconds whereas 1s-predictions
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Figure 5: Analysis of the best performing model for three case studies, with results overlayed over input raster images; the first

column shows ground truth (dotted green line) and predicted (dotted blue line) 3-second trajectories, the second column shows

aleatoric uncertainty output by the model, the third column shows epistemic uncertainty estimated by dropout analysis, the

fourth column shows relevant parts of raster estimated by occlusion sensitivity analysis; state inputs are provided above rasters

in the first column, indicating velocity (v) in m/s, acceleration (a) in m/s2, heading change rate (hcr) in deg/s

are slightly underconfident. Thus, given an estimated sigma,

we can expect with high confidence that in 68% of cases an

actual error will not be larger than that value. Plots for other

horizons are omitted as they resemble the ones shown.

4.2. Case studies

In Figure 5 we give example outputs for three scenes

commonly encountered in traffic. As we will see, the model

provided accurate short-term trajectories in all the cases, as

well as reasonable and intuitive uncertainty estimates.

The first case (first row) involves actor cutting over oppo-

site lanes when entering road from off-street parking, where

the model correctly predicted that the actor will queue for

vehicles in front (image in the first column). The uncertainty

estimates reflect peculiarity of the situation (image in the

second column), as the actor is not following common traffic

rules and may choose to either queue for the leftmost vehicle

or cut the road to queue for the vehicles in the other lanes.

In the second row we see an actor making a right turn in an

intersection, where the model correctly predicted that the

actor is planning to enter its own lane. However, uncertainty

increases compared to the first example, as the vehicle has

higher speed as well as heading change rate, and there is a

possibility it may enter any of the two vacant lanes. Lastly,

in the third row we have a fast actor going straight, while

changing lanes to avoid an obstacle. The lane change is

correctly predicted, as well as lower cross-track uncertainty

due to actor’s higher speed. Quite intuitively, probability

that the actor hits the obstacle is estimated to be near-zero.

Next, we performed a dropout analysis to estimate un-

certainty within the model itself (i.e., epistemic uncertainty)

[22], by dropping out 50% of randomly selected nodes in the

fully-connected layers from Figure 2, repeating the process

100 times, and visualizing variance of the resulting trajec-

tory points. The results are shown in the third column of

Figure 5, where we see that epistemic uncertainty is very low

in all cases, in fact several orders of magnitude lower than

aleatoric (or process) uncertainty visualized in the second

2101



Figure 6: Detailed analysis of cross- and along-track errors

across various horizons for the second example shown in

Figure 5 (top: cross-track, bottom: along-track, left: MNv2

model, right: UKF model); x-axis indicates time of an event,

y-axis indicates the prediction horizon, while color encodes

an error in meters at each particular (time, horizon) pair

column. This indicates that the model converged, that more

data would have limited effect on performance, and that the

overall uncertainty can be approximated by considering only

the learned uncertainty.

In addition, we performed sensitivity analysis [48] to

understand which parts of the raster the model is focusing

on. We swept a 15 × 15 black box across the raster and

visualized the amount of change in the output compared

to a non-occluded raster (as measured by the average dis-

placement error), with results shown in the fourth column of

Figure 5. In the first case the model focused on the oncoming

lane and vehicles in front of the actor, as those parts of the

raster are most relevant for a vehicle cutting across oncoming

traffic and queuing. Quite intuitively, in the second case the

model focused on nearby vehicles and crosswalks in the turn

lane, while in the third case it focused on the obstacle and the

lane further ahead due to actor’s higher speed. Such analysis

helps debug and understand what the model learned, and

confirms it managed to extract knowledge from the training

data that comes naturally to experienced human drivers.

In Figure 6 we provide an additional analysis of cross-

and along-track errors, using the second scenario from Fig-

ure 5 as an example. At each timestamp of the event (x-axis),

we color-code errors at each prediction horizon up to 3 sec-

onds in the future (y-axis). The actor starts to approach

the intersection at around 1s mark, and initiates the turn at

around 3s mark. Looking at the top two figures, we see that

initially both MNv2 and UKF incorrectly predicted that the

actor is going straight (note that allowed directions from the

actor’s current lane are straight and right), as indicated by the

cross-track errors that are increasing as the prediction and

the ground-truth started to diverge several seconds into the
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Figure 7: Displacement error as a function of horizon

prediction horizon. However, we see that the proposed ap-

proach gave accurate prediction nearly at soon as the vehicle

actually initiated its turn, and following 3.2s mark the cross-

track errors dropped significantly. On the other hand, UKF

took more time to catch up, and higher-error predictions lin-

gered for nearly 1.5s more. We see a similar situation when

we compare along-track errors in the bottom two figures.

The proposed approach consistently maintained lower error,

which also dropped significantly when the actor started the

turn. However, it is interesting to note that the error remained

small even once the turn was complete (at around 5s mark),

while UKF again required some time to capture the full actor

state. We believe that such detailed analysis of individual

cases, going beyond aggregated numbers and using the error

heatmaps presented in Figure 6, could be useful to other

researchers within the industry in their own work.

We are exploring several directions to improve the system.

Most importantly, as the traffic domain is inherently multi-

modal (e.g., actor approaching an intersection may turn left,

right, or continue straight), we wanted to explore how far

in the future does the proposed unimodal model provide

useful predictions. To answer this question we retrained a

model with H = 60 and measured performance at various

horizons, with results given in Figure 7. While both UKF and

the proposed method give reasonable short-term predictions,

for longer horizons multimodality causes exponential error

increase. To correctly model longer-term trajectories beyond

the considered short-term 3s horizon we need to account for

that aspect as well, which is a topic of our ongoing research.

5. Conclusion

We presented an effective solution to a critical part of

the SDV problem, motion prediction of traffic actors. We

introduced a deep learning-based method that provides both

point estimates of future actor positions and their uncertain-

ties. The method first rasterizes actor contexts, followed by

training CNNs to use the resulting raster images to predict

actor’s short-term trajectory and the corresponding uncer-

tainty. Extensive evaluation of the method strongly suggests

its practical benefits, and following successful testing the

framework was subsequently deployed to a fleet of SDVs.
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