This WACYV 2020 paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

How Much Deep Learning does Neural Style Transfer Really Need?
An Ablation Study

Len Du
Australian National University

Len.Du@anu.edu.au

Abstract

Neural style transfer has been a “killer app” for deep
learning, drawing attention from and advertising the ef-
fectiveness to both the academic and the general public.
However, we have found by ablative experiments that
optimizing an image in the way neural style transfer
does, while the objective functions (or more precisely,
the functions to transform raw images to corresponding
feature maps being compared) are constructed without
pretrained weights or biases, worked almost as well.
We can even factor out the deepness (multiple layers of
alternating linear and nonlinear transformations) all-
together and have neural style transfer working to a
certain extent. This raises the question how much of
the the current success of deep learning in computer vi-
ston should be attributed to training, structure or simply
spatially aggregating the image.

1. Introduction

Neural Style Transfer [13, 14] has been a popular
topic ever since its introduction, which involves creat-
ing a third image given a pair of images, so that the
generated image resembles one of the image in content
while resembling the other in style. Such techniques
generated huge publicity on the internet, to the extent
of becoming a “killer app” to promote deep learning
towards the general public, complete with literal killer
apps such as DeepArt.io[32] and Prisma|[33].

Ablation study or analysis has been advocated as a
crucial methodology to achieve the much-needed in-
terpretability in the field of machine learning [29],
let alone deep learning. For example, a dedicated
ablation study has been successfully applied to (hy-
per)parameters [3]. To be precise, in this work we not
only remove parts of the network but also substitut-
ing them with (usually simpler) alternative constructs,
which is a very natural (and sometime necessary) move

on computers but arguably deviates from its root in
neuroscience where there are no alternative parts to
put back on.

In addition to the widely spread pair of example im-
ages in the PyTorch tutorial [23], we also use the images
provided in a very comprehensive review [24] on neural
style transfer methods. That said, we do not consider
the many different style transfer methods in this work
except the baseline from [13]. One special technicality
about this paper is that there are too many images to
fit in this main text if we were to display comprehen-
sive comparsions. To mitigate this issue, we rotate the
image pairs displayed in the main text, while leaving
more comprehensive comparsions to the supplementary
material.

2. Related Work

While we reached our results mostly through our
own experiments, we have found that our findings hap-
pen to resonate with many latest topics even beyond
the field of neural style transfer. We feel the need to
exposit them thoroughly.

It would be no surprise if this work were compared
against [16], which makes a superficially similar claim
about performing style transfer (in lieu of other com-
puter vision tasks such as texture synthesis) using an
untrained network to achieve results on par with [13].
However their titular ranVGG actually fails to be a
verbatim untrained version of VGG-19 [41]. Most im-
portantly, by sampling “several sets of random weights
connecting the [*" layer”, reconstructing “the target
image using the rectified representation”, and then
choosing “weights yielding the smallest loss” [16], es-
sentially some kind of very weak layer-wise training
resembling an autoencoder has slipped into the “un-
trained” ranVGG@G, albeit with only one image on the
spot instead of the whole ImageNet [9] in advance. A
“VGG with purely random weights” [16] has even been
included in one of the comparisons, indicating that ran-

3150

1x3x256x256 . 1= 1x64x256x256_’
array conv_ feature map
v

(image to be

optimised)
turn to Gram matrix — 64x64 array —
turn to Gram matrix — 64x64 array —
1x3x512x512
array 4

(the style

N 1] = 1x64x256x256_'
image) conv_ feature map

1x64x256x256 1x64x256x256
— — | conv_2 | — —
feature map feature map

1x64x256x256
feature map

relu_1 | —

_’ o

mean square error — style loss

_ 2| — 1x64x256x256_'
conv_ feature map

relu_2 | — .-

Figure 1: Pipeline to compute the style loss L, from the output of conv_1 as an example

VGG is not “purely random”. The algorithm to opti-
mize for the combined image also differs from the orig-
inal in [13] by adding a third term for spatial smooth-
ness. To be fair, there is a huge difference between
ranVGG and a typical pre-trained VGG model, but
[16] has not compared two instances of style transfer
using the same algorithm and the same network, the
only difference being whether the weights and biases
are purely random or pretrained. Moreover, it is not
clear whether the pre-trained biases were kept in ran-
VGG, as there is no mentioning of biases in the paper,
although both weights and biases may sometimes be
referred to as weights altogether. [5] approaches tex-
ture synthesis, closely related to style transfer, from
statistical physics rather than deep learning.

Another closely related work is Deep Image Prior
[45], where untrained convolutional networks are used
for denoising, super-resolution and inpainting, reach-
ing to a similar conclusion that the structure rather
than weights is more significant. Apart from that style
transfer is included in its experiments, [45] does not
provide a back-to-back comparison of results gener-
ated by the untrained /trained versions of precisely the
same network, either. Curiously, their best-performing
model resembles an autoencoder structurally. Finally,
the weights are also “fitted to maximize their likelihood
given a specific degraded image and a task-dependent
observation model” [45], which is yet again arguably
some kind of one-shot training under the hood.

Random Gaussian Weights, extensively exam-
ined in [15], are probably the most often considered
type of random weights in generic discussions about
random weights in neural networks, presumably be-
cause its range is R. Even in classically-trained neu-
ral networks, Gaussian Priors are widely employed
[48]. Random uniform weights are usually regarded as
a technicality when intializing neural networks before
training instead of studied as an alternative to trained
weights.

Being the intersection of both random weights and
discrete weights, studies on random discrete weights
are scarce, except for using them for only part of the
network [47] for easier training, which will be covered

later in this section. On the other hand, Discrete
Weights trained with special techniques have received
significant attention [2, 51]. Some early works [31, 43]
examined weights that are powers of two. In particu-
lar, Binary Weights in neural networks or Binarized
Neural Networks have been extensively discussed
[8, 21, 40, 35, 28, 37, 49], frequently with respect to con-
volutional neural networks. It is also natural to con-
sider the possibility of zero-valued weights, resulting
in Ternary Weights [25, 10, 55]. Another perspec-
tive on discrete weights is training a neural network as
usual and then quantizing the weights, or Quantized
Neural Networks [22, 27, 26, 18]. However, interests
on discrete weights are often based on efficient execu-
tion of inference on constrained hardware rather than
our standing that the discrete weights may actually be
more desirable in an intrinsic way, even without con-
siderations of computational efficiency.

Using random weights partially in a neural network
to make training simpler has been examined under dif-
ferent names [6]. One recent work sharing our inspi-
ration from [16, 45, 38] examines fixing the convolu-
tional layers of a CNN under the term Deep Weight
Prior [1]. The popular but controversial [52, 19] Ex-
treme Learning Machine [20] (ELM) is a standard
single layer neural network where the weights between
the input layer and the hidden layer are fixed to ran-
dom values, which then enables the weights between
the hidden layer and the output layer to be decided
by linear regression. Random Vector Functional
Link [36] (RVFL) predated ELM, but RVFL has extra
direct links from the input layer to the output layer.
Feed Forward Neural Network With Random
Weights [39] proposed in the same year does not have
this extra feature and is closely resembled by the ELM
except for the existence of biases and the choices of
activation functions, though the former has been ex-
plicitly declared to be “not presented as an alterna-
tive learning method” [39]. The kind of Radial Basis
Function Networks where the parameters (centers)
are randomly assigned rather than trained had been
proposed even earlier in [4]. In the current renaissance
of deep neural networks, many multi-layer variants of

3151

(b) Style Im-
age

(a) Content Image

(c) Baseline

IS 4 F - B ot P g
(d) B/a =102 (e) Removing the con-
tent loss

Figure 2: Removing the content loss

these partially-random models have been being pro-
posed [7, 53, 44, 46]. Their applications to computer
vision, such as [34, 30, 50, 7], are no suprises either,
though we are yet to see them applied to neural style
transfer specifically.

Weight Agnostic Neural Networks (WANN)
[12] is a way to construct neural networks by sheerly
searching through different topological structures while
shifting the focus from weights. Compared to a closely
related topic Neural Architecture Search [56, 11],
where combinations of smaller “component” networks
searched through and weights are weights are trained
with candidate combinations, WANN use a single
shared weight for all connections and select architec-
tures based on performance when given different uni-
versal weights, making the result literally “weight ag-
nostic”.. WANN has been partly inspired by the fact
that animals often have certain abilities immediately
after birth without a chance of learning. Such innate
behaviours, coupled with the fact that the genomes
are unlikely to have the capacity to encode individ-
ual weights, form the grounds of criticising the cur-
rent approach to training neural networks, in favour
of the Information Bottleneck [54] between parents
and children. While we may attribute any changes in
the nervous system in an individual organism to learn-
ing, such changes simply do not (usually) go to the
genomes in the reproductive process, even if the learned
“weights” may be encoded very compactly. So the ini-
tial configuration of neurons in new-born individuals
and their innate behaviours can only be attributed to
natural selection rather than learning, supporting the
emphasis on structure instead of weights.

3. Preliminaries

While the reader may already know it well, it is
nevertheless necessary to introduce a formulation to
facilitate further discussion. Simply put, the original
algorithm [13] works by minimizing a value over the

pixel values of an image X as follows,

arg)rcnin(al’content (X) + ﬁLsty1e<X))) (1)

which is optimized with gradient descent almost uni-
versally.

Both Leopgent(X) and Ly . (X) are computed by
taking the mean square error between (a linear combi-
nation of) the feature maps generated by certain layers
of the CNN when taking the optimized image and the
content /style image respectively, only that the feature
maps are transformed into their Gram matrices to re-
move spatial information before taking the MSE when
computing the style loss. As the feature maps are 3-
dimensional arrays, the Gram matrix of a w x h X ¢
feature map is computed by AT A where the matrix A,
a “flattened” feature map, has wh rows and ¢ columns.
Here, w and h are the width and height of the feature
map, while ¢ is the number of channels, or the number
of features at each pixel location. From the dimension
¢ x ¢ of the resulting matrix, we can see that taking the
Gram matrices truely removes any spatial information
in the sense that you can reorder the pixels spatially in
the feature map and still end up with the same Gram
matrix. Of course, style losses and content losses can be
derived from different layers of the network. For exam-
ple, Ly;y10(X) could be computed using the output from
the first layer of VGG-19 [41] as in Figure 1. We use
the commonly used VGG-19 model. While it would be
more persuasive if we included results generated with
other models such as ResNet [17], doing so would re-
quire a much longer exposition, as the results cannot be
easily summarised by numbers. So we have opted for
concentrating on an apple-to-apple comparison limited
on results generated with VGG-19. Moreover, com-
parison across style transfer results with different deep
learning models can be left to another dedicated work.

Because the learning rate usually needs tuning, and
the magnitude of the loss is not significant, we can
treat g as one hyperparameter so that we have one
less hyperparameter to tune. For example, using

3152

(a,) = (101, 10°) and learning rate 10~2 would be ex-
actly equivalent to using («, 3) = (1,10%) and learning
rate 107!, sans the concrete values of losses.

For more technical aspects, we use g = 10% and
a learning rate of 1, the same setup as in the well-
know PyTorch tutorial [23] which we have found to be
engineered well enough to provide very good results.
We use the commonly used optimizer L-BFGS, but we
count epochs by the larger optimizer step in which the
loss may be evaluated as much as 20 times. All re-
sults are taken after 20 optimization steps, a point af-
ter which we have found the search to have converged
in general. The layers chosen are conv_1 for the con-
tent loss and conv_1, conv_2, conv_3, conv_4, conv_5
for the style loss, a choice we have found hard to beat.
To be more precise, the style loss is always computed
as Ly = Zle L,; where each L, is computed from
Gram matrices of feature maps after the ith convolu-
tional layer, except for Section 6.3.

Finally, our implementation contains some measures
to deal with numerical stability problems. Other im-
plementations may have the same or similar measures
as well. We describe what we use here, sheerly for re-
producibility, rather than to claim any inventions in
this regard. Sometimes the floating-point gradients
may become NaN. In this case we simply replace the
NaNs with zero. Even with NaN gradients suppressed,
the search still explodes occasionally, depending on the
random sequences used when generating filters. Since
such cases are rare (a few percent), instead of lower-
ing the learning rate, we simply reseed the program
with another seed, genreate the filters again, and then
restart the search, when detecting losses of floating-
point values inf or nan. However, not every config-
uration has randomness in itself. For example, it is
possible to encounter such problem when running the
original configuration, which is deterministic. So we
also add a 10% perturbation once we detect a last-step
loss repeated exactly between two executions with dif-
ferent random seeds.

4. Removal of Content Loss

While in theory we need to compute the content
loss, in practice we have found that as long as we make
the content image the initial value, which also leads
to better results than initialisation with white noise
and is the preferred choice in practice, we can almost
use whatever content loss function L, ., We want, or
even remove the content loss L, ene from the objec-
tive function altogether, without a visible impact on
the result (Figure 2e). This is desirable as we have one
less component to experiment with. It is clear at this
point that the style loss is much more interesting part

(d) All zero biases (e)

Figure 3: Varing the biases while keeping trained
weights

of the whole neural style transfer landscape. In the
rest of the paper we will use zero content loss except
when showing the baselines. Even with smaller gand
theoretically more significant content loss, the result in
Figure 2d does not show a significant difference. Note
that setting g to large values is the common practice,
and the ratio in Figure 2d already errs on the side of
favoring contents. For example, g = 103,10% yields
the best results in [13]. The role of content losses is es-
sentially substitued by the nature of gradient descent
that the solutions are gradually modified from the ini-
tial one.

5. Removal of Learned Parameters

To compare apples to apples, we have tried reset-
ting the weights and biases with different strategies in
the VGG19 network in the first place, and then tried to
figure out the simple parametric distributions resulting
in best performing networks, in contrast to the alter-
native network structures and algorithms in [16] and
[45].

5.1. (Un)importance of biases

Whether the biases were kept, zeroed, or generated
from scratch were not mentioned in [16]. It might be
possible that it is the bias that kept the important in-
formation. Though, our experiments quickly show that
this is not the case, as in Figure 3. While simply zero-
ing the biases slightly weakens the result (Figure 3d),
a universal positive bias as in Figure 3e could perform

3153

(d) Trained weights (e) N(0=0.015)
(trained bias)

(f) N(0=0.015) [16]

(i) U(-0.5,0.5)

G) U(-1,1) (k) Shuffled weights (1) Shuffled weights

(trained biases)

Figure 4: Continuously or densely distributed weights

just as well as the original trained bias or random biases
reproducing the original distribution (i.e. shuffled) in
Figure 3f. Note that this positive value has been cho-
sen through experiments, and larger or smaller values
do not necessarily perform as well. This value perform
just as good when used on other image pairs. Again,
we use this universal bias 0.5 in following discussions
unless stated otherwise.

5.2. Continuously or densely distributed weights

When talking about random weights, the most com-
mon distributions are Gaussian and uniform. On the
other hand, the random sample with a distribution
closest to that of the trained weights is probably a ran-
dom permutation of the trained weights, which is also
worth consideration. Strictly speaking, the last one
may not be a continuous distribution, hence the word
“densely”. From the results shown in Figure 4, we can
see that the quality is sensitive to the parameter of
distribitions. Among the best performing distributions
from the three categories, we consider U(—0.1,0.1)
(Figure 4h) to be the best. We can also see that the
choice of variance in Gaussian parameters in [16] was
suboptimal, compared to Figure 4g The result from the
best uniform distribution is obviously better than the
best Gaussian we have found. The uniform distribution
is even arguably better than the shuffled weights in Fig-
ure 4k, which means that the distribution of (values of)
weights in the trained network may be suboptimal. We
theorise that it is the weights with the largest absolute
values are of real use in CNN, judging from the superi-
ority of the uniform distribution, which inspires us to
experiment discrete weights to be discussed in the next
section.

5.3. Discrete weights

What we have found to be the most interesting is
that we can actually use discrete weights, including bi-
nary and ternary ones. We would also expect the distri-
bution to be symmetric around 0. Actually we exper-
imented with asymmetric weights but they performed
too bad to be included. Whether there are zeroes in the
weights or how much zeroes there are among the waits
is also potentially significant. It is also worth investi-
gation whether quantizing learned weight into binary
values would lead to better results than random. In
binarization we assign +1 times some magnitude ac-
cording to whether the weights are greater than the
mean at the layer. The mean is favored over the me-
dian because order statistics do not work very well with
automatic differentiation.

From the results in Figure 5, we can see that un-
trained binary weights perform as good as, if not
slightly better, than the best continuous/dense distri-
bution U(-0.1,0.1) previously found. Moreover, adding
zeroes making it ternary does not help. The magni-
tude of binary weights are significant (best 0.1). Finer
quantization does not help, supporting that only the
the weights with the largest absolute values are of im-
portance. However, weights binarized from the trained
weights performs visibly better, so there is still some-
thing significant demanding training.

6. Varying Structure

Now that we have a completely program-generated
model void of learning, we can start trying to modify or
remove some parts from the network structure, with-
out worrying about losing or mismatching the trained
parameters.

3154

(a) Content image

(b) Style image

‘/...(\ - Y P—
(g) {£0.1} trained
binarized

(i) {+0.1,0,0

-

() {+0.2}

{£0.4,+0.2,+0.1,0}

Figure 5: Symmetric discrete weights with fixed biases (0.5)

6.1. Removal of Structure

First of all, let us try further removing some parts of
the network in rather straightforward ways, from the
binary weight network with weights in {£0.1} and uni-
fied bias 0.5. The results are displayed in Figure 6. The
most obvious ways would be removing the ReLU lay-
ers or the max-pooling layers. When removing pooling
layers, we may also like no longer doubling the number
of filters or number of channels in feature maps dur-
ing the convolution layer originaly after the pooling
layer. The VGG model doubles the number of filters
after each max-pooling layer. Of course we could re-
move only some of the ReLLU layers or pooling layers as
well, but that would be too many combinations with-
out clear insights, nor have we found such combinations
to outperform the simpler all-or-nothing ones. As can
be seen from Figure 6f and Figure 6h, the difference
made by removing the ReLU layer compared to Fig-
ure 6d is very visible, while removing the pooling layer
does not matter too much. The irrelevance of pooling
layer has been discussed by [42]. Further removing the
doubling of channels (NPND) as in Figure 6g results
in even more ignorable change.

Now we can simply use one universal number of
channels for all the filter maps, which may not be result
in the smallest amount of computations but is concep-
tually simpler. As a next step we try increasing or
decreasing the number of filters as shown in Figure 6i
to Figure 61. It is evident that if the number of fil-
ters are too small, we indeed lose the functionality of
the network, yet increasing it improves the result with
quickly diminishing returns. We also shown an exam-
ple with a prime number (71) of filters in Figure 6k
here, suggesting that network sizes do not have to be
multiples or powers of any specific number. In the next

sections we will use the NPND case with the default
64 channels as the starting point.

6.2. Alternative Convolution Kernels

All the convolution kernels used in the VGG network
can be put into two obvious categories. One includes
those casting the 3-dimensional (RGB) images to the
first many-dimensional (64 in VGG19) feature map.
The other includes those between many-dimensional
feature maps. This classification sounds trivial, but
the point is that we can enumerate kernels in the first
category with some rules and still have resultant fea-
ture maps with around 102channels, while there is no
obvious way to do so for the second category due to
combinatorial explosion.

We have experimented with the 3 groups of special
(2 x2) filter configurations. Each group is derived from
a set of basic filters (without consideration of channels).
We show results with a = 0.1 following previous expe-
rience. The results are sensitive to the actual a.

1. Line filters only
—a —a a a a —al|l |[—a a
a al|’|—a —a|’la —al|’ |—a al|
2. In addition to 1, add [Z Z] [_“ _a].

S8 A

Then for each basic filter set, we expand the filters
to RGB channels with 4 combination strategies

3. In addition to 2, further add {2

1. For each single-channel (2 x 2) filter, create three RGB
(3 x 2 x 2) filters where one works on one channel and
have all zeroes in other channels.

2. For each single-channel filter, create 7 filters where a
powerset of RGB channels (22 — 1) are enabled in the

3155

(g) No pooling nor (i) NPND, 4 filters

doubling (NPND)

(h) With doubling
but no pooling

(j) NPND, 16 filters

(d) {£0.1}

(¢) No ReLU no
pooling no doubling

(k) NPND, 71 filters (1) NPND, 512 fil-

ters

Figure 6: Removal of structure

filter except the one that degenerates to working on
no channels.

3. For each single-channel filter, create 8 filters where a
powerset of RGB channels (2%) are given the original
weights as in the original single-channel filter, while
the rest of channels are given negated values.

4. Same as the second strategy but keep the degener-
ated all-zero filter, resulting in 8 filters for each single-
channel filter.

We have also experimented with randomly gener-
ated convolution filters of size 2 x 2 instead of 3 x 3 in
the previous experiments, as the special configurations
are all (2 x 2).

In general, most of the designed convolutional ker-
nels, i.e. those based on basic filter sets 2 and 3,
perform at a level virtually indistinguishable from the
randomly generated ones. None of the designed ker-
nels magically outperform random kernels. However,
one class of the designed kernels (1) perform particu-
larly bad, exemplified by Figure 7a, which means we

do need filters like Z Z for neural style transfer to

work properly, which is slightly counter-intuitive. The
2 x 2 random kernels also work just as well as the 3 x 3
ones, given the same number of channels in the feature
maps. We avoid cluttering this paper with too many
similar images by displaying only a few representative
cases in Figure 7.

6.3. Discarding Deepness

Finally we would like to try not relying on a deep
neural network structure. Then what does it mean to
rely on a deep neural network structure? We consider
the more than one layers of non-linearity as the key

trait of “deepness”. Yet it is obvious that we want some
kind of hierarchical processing of the image to cover
large-scale features. The traditional wisdom in image
processing to deal with features at different scales falls
in three categories: frequency space, wavelet, and im-
age pyramids. We only cover using Gaussian and lapla-
cian pyramids here, due to both limit of scope and that
we have not found more sophiscated yet “shallow” ap-
proaches to work better than basic pyramids. Note
that Gaussian pyramids could be regarded as average-
pooling layers in deep learning jargon, but they are still
linear in contrast to max-pooling.

Here we have a shallow network with a convolutional
layer of random binary weights from {£0.1} and bias
0.5, and then a ReLU layer, and an optional pool-
ing layer. Then we compute L, = Z?@ L;, this
time with L; computed from pushing the ith layer of
the Gaussian pyramid (1st being the original image)
through the shallow network rather than taking the
output of conv_i from the deep network. As can be
seen from Figure 8, either Gaussian pyramids or Lapla-
cian pyramids can substitute the deep structure to a
certain extent. Pooling is detrimental for both types
of pyramids, introducing unwanted artifacts not part of
the intended “style”. The simpler Gaussian pyramids
work somewhat better than the Laplacian ones.

7. Discussion

It is clear that random binarized weights perform
very well, which means current deep convolutional net-
works could probably be replaced by much simpler con-
structs. Even the necessity of multiple layers of nonlin-
earity is questionable. We also see that such networks
are very sensitive to the actual magnitude of (shared)

3156

(a) Basic set 1, strategy (b) Basic set 2, strategy (c) Basic set 3, strategy (d) 2 x 2 kernels, ran- (e) 3 x 3 kernels, ran-

4 (32-channel) 1 (18-channel)

3 (64-channel)

dom, 64-channel dom, 64-channel

Figure 7: Alternative first-layer convolution kernels

(a) Gaussian pyramid (b) Laplacian pyramid
without pooling

, <t
(¢) Gaussian pyramid (d) Laplacian pyramid
with pooling with pooling

Figure 8: Using image pyramids instead of multi-layer
nonlinearities

weights and the shared bias. Compared to purely ran-
dom configurations, training still provides some ben-
efits, not yet replaceable by manually configuring the
filters. The assumption of normal-distributed weights
is no longer useful.

We suspect that an “optimal” CNN should have
heavily patterned weights similar to filters in tra-
ditional computer vision, with much fewer parame-
ters by, for example, treating the magnitue of binary
weights as one parameter.

Due to the page limit we cannot include an objective
and quantitative comparison of feature extraction ca-
pabilities of (part of) the original pre-trained network
and our non-learning or non-deep variants with tasks
other than style transfer which inherently can only be
evaluated subjectively.

In the future, in addition to further ablation with
style transfer, we may want to quantitatively evaluate

such networks with classification problems and trans-
fer learning without having to worry about losing or
mismatching the trained parameters.

References

[1] A. Atanov, A. Ashukha, K. Struminsky, D. Vetrov, and
M. Welling. The deep weight prior. In International
Conference on Learning Representations, 2019.

[2] C. Baldassi and A. Braunstein. A max-sum algo-
rithm for training discrete neural networks. Jour-
nal of Statistical Mechanics: Theory and Ezperiment,
2015(8):P08008, 2015.

[3] A. Biedenkapp, M. Lindauer, K. Eggensperger,
F. Hutter, C. Fawcett, and H. Hoos. Efficient param-
eter importance analysis via ablation with surrogates.
In Thirty-First AAAI Conference on Artificial Intelli-
gence, 2017.

[4] D.S. Broomhead and D. Lowe. Radial basis functions,
multi-variable functional interpolation and adaptive
networks. Technical report, Royal Signals and Radar
Establishment Malvern (United Kingdom), 1988.

[5] J. Bruna and S. Mallat. Multiscale sparse microcanon-
ical models. arXiv preprint arXiv:1801.02018, 2018.

[6] W. Cao, X. Wang, Z. Ming, and J. Gao. A review on
neural networks with random weights. Neurocomput-
ing, 275:278 — 287, 2018.

[7] H. Cecotti. Deep random vector functional link net-
work for handwritten character recognition. In 2016
International Joint Conference on Neural Networks
(IJCNN), pages 3628-3633. IEEE, 2016.

[8] M. Courbariaux, Y. Bengio, and J.-P. David. Bina-
ryconnect: Training deep neural networks with bi-
nary weights during propagations. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 3123-3131. Curran Associates, Inc.,
2015.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Im-
age Database. In CVPR09, 2009.

[10] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li. Gxnor-net:
Training deep neural networks with ternary weights
and activations without full-precision memory under
a unified discretization framework. Neural Networks,

3157

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

21]

22]

27]

100:49 — 58, 2018.

T. Elsken, J. H. Metzen, and F. Hutter. Neural archi-
tecture search: A survey. Journal of Machine Learning
Research, 20(55):1-21, 2019.

A. Gaier and D. Ha. Weight agnostic neural networks.
2019.

L. A. Gatys, A. S. Ecker, and M. Bethge. A neural
algorithm of artistic style. arXiv, Aug 2015.

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style
transfer using convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Jun 2016.

R. Giryes, G. Sapiro, and A. M. Bronstein. Deep neu-
ral networks with random gaussian weights: A uni-
versal classification strategy? I[FEFE Transactions on
Signal Processing, 64(13):3444-3457, July 2016.

K. He, Y. Wang, and J. Hopcroft. A powerful gen-
erative model using random weights for the deep im-
age representation. In Advances in Neural Information
Processing Systems, pages 631-639, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

L. Hou, R. Zhang, and J. T. Kwok. Analysis of quan-
tized models. In International Conference on Learning
Representations, 2019.

G. Huang. Reply to “comments on “the extreme learn-
ing machine””. IEEFE Transactions on Neural Net-
works, 19(8):1495-1496, Aug 2008.

G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, et al. Extreme
learning machine: a new learning scheme of feedfor-
ward neural networks. Neural networks, 2:985-990,
2004.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv,
and Y. Bengio. Binarized neural networks. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 4107-4115. Curran As-
sociates, Inc., 2016.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv,
and Y. Bengio. Quantized neural networks: Train-
ing neural networks with low precision weights and
activations. Journal of Machine Learning Research,
18(187):1-30, 2018.

A. Jacq. Neural transfer using pytorch. 2019.

Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song.
Neural style transfer: A review. IEEE Transactions
on Visualization and Computer Graphics, 2019.

F. Li, B. Zhang, and B. Liu. Ternary weight networks.
arXiv preprint arXiv:1605.04711, 2016.

H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Gold-
stein. Training quantized nets: A deeper understand-
ing. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems,
NIPS’17, pages 5813-5823, USA, 2017. Curran Asso-
ciates Inc.

D. Lin, S. Talathi, and S. Annapureddy. Fixed point
quantization of deep convolutional networks. In M. F.

(28]

29]

30]

(31]

32]

33]

34]

(35]

(36]

37]

(38]

(39]

(40]

(41]

42]

3158

Balcan and K. Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning Re-
search, pages 2849-2858, New York, New York, USA,
20-22 Jun 2016. PMLR.

X. Lin, C. Zhao, and W. Pan. Towards accurate bi-
nary convolutional neural network. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 30, pages 345-353.
Curran Associates, Inc., 2017.

Z. C. Lipton and J. Steinhardt.
in machine learning scholarship.
arXiv:1807.03341, 2018.

J. Lu, J. Zhao, and F. Cao. Extended feed forward
neural networks with random weights for face recogni-
tion. Neurocomputing, 136:96-102, 2014.

M. Marchesi, G. Orlandi, F. Piazza, L. Pollonara,
and A. Uncini. Multi-layer perceptrons with discrete
weights. In 1990 IJCNN International Joint Confer-
ence on Neural Networks, pages 623—-630 vol.2, June
1990.

M. McFarland. This algorithm can create a new van
gogh or picasso in just an hour. WashingtonPost.com,
2015.

C. McGoogan. Prisma: The world’s coolest new app
taking over your instagram. The Telegraph, 2016.

A. A. Mohammed, R. Minhas, Q. J. Wu, and M. A.
Sid-Ahmed. Human face recognition based on multidi-
mensional pca and extreme learning machine. Pattern
Recognition, 44(10-11):2588-2597, 2011.

N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sa-
giv, and T. Walsh. Verifying properties of binarized
deep neural networks. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

Y.-H. Pao, S. M. Phillips, and D. J. Sobajic. Neural-
net computing and the intelligent control of systems.
International Journal of Control, 56(2):263-289, 1992.
M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
Xnor-net: Imagenet classification using binary convo-
lutional neural networks. In European Conference on
Computer Vision, pages 525-542. Springer, 2016.

A. M. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh,
and A. Y. Ng. On random weights and unsupervised
feature learning. In Proceedings of the 28th Interna-
tional Conference on International Conference on Ma-
chine Learning, pages 1089-1096. Omnipress, 2011.
W. F. Schmidt, M. A. Kraaijveld, and R. P. W. Duin.
Feedforward neural networks with random weights. In
Proceedings., 11th IAPR International Conference on
Pattern Recognition. Vol.II. Conference B: Pattern
Recognition Methodology and Systems, pages 1-4, Aug
1992.

T. Simons and D.-J. Lee. A review of binarized neural
networks. Electronics, 8(6):661, 2019.

K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and

Troubling trends
arXiv preprint

[43]

(44]

[45]

[46]

[47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

M. A. Riedmiller. Striving for simplicity: The all
convolutional net. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Workshop Track Proceedings,
2015.

C. Z. Tang and H. K. Kwan. Multilayer feedforward
neural networks with single powers-of-two weights.
IEEE Transactions on Signal Processing, 41(8):2724—
2727, Aug 1993.

M. D. Tissera and M. D. McDonnell. Deep extreme
learning machines: supervised autoencoding architec-
ture for classification. Neurocomputing, 174:42—49,
2016.

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep im-
age prior. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
9446-9454, 2018.

M. Uzair, F. Shafait, B. Ghanem, and A. Mian. Rep-
resentation learning with deep extreme learning ma-
chines for efficient image set classification. Neural
Computing and Applications, 30(4):1211-1223, 2018
M. van Heeswijk and Y. Miche. Binary/ternary ex-
treme learning machines. Neurocomputing, 149:187—
197, 2015.

M. Vladimirova, J. Verbeek, P. Mesejo, and J. Arbel.
Understanding priors in bayesian neural networks at
the unit level. In International Conference on Machine
Learning, pages 6458-6467, 2019.

D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, and
H. Tao Shen. Thn: Convolutional neural network with
ternary inputs and binary weights. In The Furopean
Conference on Computer Vision (ECCYV), September
2018.

W. Wan, Z. Zhou, J. Zhao, and F. Cao. A novel face
recognition method: Using random weight networks
and quasi-singular value decomposition. Neurocom-
puting, 151:1180-1186, 2015.

L. Wang, Q. Zhou, T. Jin, and H. Zhao. Feed-back
neural networks with discrete weights. Neural Com-
puting and Applications, 22(6):1063-1069, May 2013
L. P. Wang and C. R. Wan. Comments on” the ex-
treme learning machine. IEEE Transactions on Neural
Networks, 19(8):1494-1495, 2008.

Y. Yang and Q. J. Wu. Multilayer extreme learn-
ing machine with subnetwork nodes for representa-
tion learning. IFEFE transactions on cybernetics,
46(11):2570-2583, 2015.

A. M. Zador. A critique of pure learning and what
artificial neural networks can learn from animal brains.
Nature communications, 10(1):1-7, 2019.

C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained
ternary quantization. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceed-
ings, 2017.

B. Zoph and Q. V. Le. Neural architecture search with
reinforcement learning. ArXiv, abs/1611.01578, 2016.

3159

