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Abstract

Monocular depth estimation has gained increasing at-

tention in recent years, and various techniques have been

proposed to tackle this problem. In this work, we aim to pro-

vide a comprehensive study on the techniques widely used

in monocular depth estimation, and examine their individ-

ual influence on the performance. More specifically, we

provide a study on: 1) network architectures, including dif-

ferent combinations of encoders/decoders. 2) supervision

losses, including fully supervised losses and self-supervised

losses and 3) other practices such as input resolution. The

experiments are conducted on two commonly used public

datasets, KITTI and NYU Depth v2. We also provide an

analysis on the errors produced by different models, to re-

veal the limitations of current methods. Furthermore, by

a careful redesign, we present a model for depth estima-

tion, which achieves competitive performance on KITTI

and state-of-the-art performance on NYU Depth v2. Our

code is publicly available at https://github.com/

zenithfang/supervised_dispnet.

1. Introduction

Monocular depth estimation is a fundamental task in

computer vision, which aims to estimate the depth of each

pixel for an input image. It is closely related to many

downstream applications, such as 3D modeling, robotics,

autonomous driving, etc.

Over the years, various techniques have been proposed

for monocular depth estimation. Early efforts mainly rely

on hand-crafted features and probabilistic models [31, 32],

while recent approaches [6, 7, 19, 20, 38] are mostly based

on convolutional neural networks (CNNs) due to the strong

performance of the learned representations. CNN-based

models typically formulate depth estimation as a per-pixel

regression problem which is then solved using fully con-

volutional networks (FCNs). In order to learn such net-

works, depth sensors are often used to collect the ground-

truth depth values. However, collecting such labels can be

costly in many cases. To alleviate the demand for ground-

truth labels, self-supervised methods have been proposed

to essentially leverage photometric error as the supervision

source, either between temporal frames [4, 41], or between

left and right images in the stereo setup [8, 10, 17].

Though these techniques have shown promising results

for monocular depth estimation, they are usually evaluated

with different configurations. This makes it arduous to di-

rectly compare the effectiveness of each component and

identify the limitation of the current methods. For example,

many works are trained with images of different resolutions

while the resolution itself may be an influential factor for

the benchmark performance.

Therefore, in this work, our aim is to provide an empiri-

cal analysis for each influential factor/component by decou-

pling the commonly used components in depth estimation

methods and then examining their individual influence with

controlled experiments.

Our contributions can be summarized as follows:

• We experimentally evaluate the influence of different

components/factors for monocular depth prediction.

For network architectures, we test different combina-

tions of encoders/decoders. We also examine the effect

of different supervision losses and other factors such as

input image resolution, number of training images etc.

• To reveal the limitations of the current models and pro-

vide insights on model design, we analyze the errors

made by different models. In more details, we perform

studies on distributions of image-wise and pixel-wise

error and also show the correlation on errors between

different models.

• Driven by our study, we present a model for monocu-

lar depth estimation which achieves the state-of-the-art

results on NYU Depth v2 and competitive results on

KITTI.
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2. Related Works

Classical Monocular Depth Estimation Early efforts for

monocular depth estimation are mainly based on hand-

crafted features and probabilistic methods. Saxena et

al. [31, 32] proposed to use global features and multi-scale

features with Markov Random Field (MRF). Achanta et

al. [1] utilize constraint between neighboring pixels and Liu

et al. [21] fuse semantic information into depth estimation.

Supervised Monocular Depth Estimation Driven by the

efficacy of deep learning, the performance of depth estima-

tion has been significantly improved by CNN-based meth-

ods [6, 7, 19, 20, 38]. Such models are typically trained

with supervision signals from depth sensors [9, 27] or syn-

thetic datasets. Eigen et al. [6] introduce convolutional net-

works (CNN) to depth estimation with dense depth map

regression predicting target depth values. Specifically, the

architecture consists of two parts, a coarse prediction net-

work based on AlexNet [16] and a refinement network. The

approach is later improved by techniques such as Condi-

tional Random Fields (CRF) [23], hierarchical CRF refine-

ment [20] and multi-scale CRF method [38]. Better losses

are also proposed to improve the depth estimation, such as

reverse Huber (Berhu) loss [28, 43], and ordinal regression

loss [7]. Depth estimation can also be trained jointly with

other tasks such as semantic segmentation [3, 40].

Self-supervised Monocular Depth Estimation To address

the expenses and effort of label acquisition for depth su-

pervision, self-supervised methods are developed. Garg et

al. [8] propose to train models using the supervision from

image alignment with an encoder-decoder architecture. Par-

ticularly, the stereo image is warped according to the pre-

dicted depths such that an image alignment loss can be ob-

tained from the difference between the warped image and

the ground-truth. This method is further extended by Go-

dard et al. [10] with a loss calculated from both left and right

images. Unlike these methods, Zhou et al. [41] propose

to simultaneously predict both pose and depthand train the

network with an alignment loss computed from the warped

images for pose and depth. Kuznietsov et al. [17] combine

the loss from supervised learning and unsupervised learn-

ing, and report further improvement on the prediction accu-

racy. Yang et al. [39] combine stereo training with video

training. Godard et al. [12] propose a full resolution multi-

scale loss.

3. Methodology

3.1. Problem Formulation

Firstly, we briefly introduce the formulation of monoc-

ular depth estimation. Monocular depth estimation aims to

map an input image I ∈ R
H×W×C to an output pixel-wise

depth map as Ŷ ∈ R
H×W , with H , W being the height and

width of the image and C being the number of RGB chan-

nels. CNN-based methods typically establish such a map-

ping by learning a neural network F such that Ŷ = F (I).
To learn the parameters of such networks, direct supervision

losses L(Ŷ ) are applied on the output Ŷ to approximate the

ground-truth depth map Y . Self-supervision losses L(I, Ĩ)
are applied on the reconstructed image Ĩ which is synthe-

sized from Ŷ and other source images to approximate the

target image I .

In this work, we study several aspects involved in

monocular depth estimation. As for architecture, we re-

search the influence of the encoder and decoder choice

in terms of model performance. As for network parame-

ters, we investigate the supervision loss with those param-

eters learned from training progress. Generally, supervi-

sion loss L is typically categorized as direct supervision

loss L(Y, Ŷ ) and self-supervision loss L(I, Ĩ). Thus, we

first study different types of supervisions and their combi-

nations and then further study different direct supervision

loss functions L(Y, Ŷ ) which are typically computed from

Ŷ and Y . Specifically, the supervision with multi-scale out-

put of DispNet and L(Ŷ , Y ) of different forms are studied.

In addition, we look into the influence of the input image

size (e.g. H and W ) and dataset size. Lastly, we evaluate

the advantages, correlation and limitations of the methods

at both image- and pixel-wise level with mapping functions

F learned by different architectures and losses.

3.2. Network Architectures

Networks used for depth estimation typically follow an

encoder-decoder design. We compare the performance with

combinations of different encoder and decoder structures.

We base the empirical study on the architectures of Disp-

Net [26] and FCRN [19].

DispNet with ResNet-based and VGG-based encoders

DispNet [26] is one of the most widely used architectures

for depth estimation with the encoder-decoder structure,

skip connections and multi-scale intermediate predictions

as in Figure 1a. We adopt the original DispNet decoder

architecture and replace its original encoder with different

structures like VGG [34] and ResNet [14].

Unlike earlier works [10, 12, 17] that build DispNet with

ResNet, we apply different settings for the skip connection

and set the strides in the encoder as in Figure 1b. The en-

coder is based on VGG-16 [34] similarly to [13] and per-

forms a 5-time down-sampling in the spatial direction. The

decoder is symmetrical to the encoder with the same num-

ber of blocks and skip connections. Overall, VGG, VGG

with batch normalization and ResNet are implemented as

the encoder.

FCRN with ResNet-ASPP decoder Fully Convolutional

Residual Network (FCRN) is another prevalent architecture
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Figure 1: Architecture overview

proposed for depth estimation. The network comprises a de-

coder concatenated with a pre-trained ResNet-50. Specifi-

cally, the decoder has 4 up-convolution blocks with each

block mapping each entry into the top left corner of a 2× 2
kernel. After this mapping, it performs a convolution with

initially a filter size of 5×5 and then 3×3, as well as a pro-

jection connection from the lower resolution feature map ss

shown in Figure 1c. Note that FCRN is not equipped with

skip connections.

Atrous Spatial Pyramid Pooling (ASPP) is firstly pro-

posed in DeepLab v2 [2] for semantic segmentation, and

shows promising performance improvement. Due to the

success in modelling contextual information, we also test

ASPP module with the ResNet-based encoder.

With the addition of ASPP to the ResNet-50-based en-

coder, we use a dilation rate of 6, 12, 18 and 24 in the de-

coder. Meanwhile, the dilation is introduced to the encoder

to give a dense feature map for the ASPP module so that

no skip connection is required between the encoder and the

decoder.

3.3. Loss Functions

We categorize the proposed loss functions for depth esti-

mation into direct supervision losses which require ground-

truth depth and self-supervision losses which require no

ground-truth depth. We briefly describe the losses of each

type with the same notations as in subsection 3.1 and denote

a pixel-wise depth prediction Ŷ and ground-truth Y for the

pixel i as ŷi and yi.

Losses for direct supervision To study the effect of di-

rect supervision losses, we adopt the following losses: 1)

scale invariant loss [6], 2) Berhu loss [28, 43], 3) ordinal

regression loss [7].

Scale invariant loss Motivated by the scale ambigu-

ity in depth prediction, scale invariant loss is defined as the

mean of scale invariant error and �2 error (Eq.(1)).

(1)LSI(Y, Ŷ ) =
1

n

n
�

i=1

(yi− ŷi)
2
−

1

2n2

�

n
�

i=1

(yi− ŷi)

�2

Berhu loss Berhu loss is defined as Eq.(2). As the def-

inition shows, Berhu loss assigns large weights for samples

with large residuals. More explicitly, it behaves similarly as

�2 loss when the residual is above a threshold and equals �1
loss when the error is below the threshold which accounts

for more impact than �2 loss.

(2a)LBerHu(Y, Ŷ ) =

�

|Y − Ŷ |, |Y − Ŷ |≤ c
(Y−Ŷ )2+c2

2c , |Y − Ŷ |> c
,

(2b)c =
1

5
maxi(ŷi − yi) .

Ordinal regression loss Ordinal regression loss em-

ploys a Space-Increasing Discretization (SID) to discretize

the depth. Given the depth interval [α,β] is discretized into

K intervals, SID is formulated as:

ti = elogα+
log(β/α)∗i

K (3)

where ti is discretization threshold with ti ∈ t0, t1, ..., tK .

To train with the ordinal regression loss, we obtain the

ordinal output D̂ of size 2K with di denoted as the i-th

component of D̂. In addition, l ∈ 0, 1, ..., K − 1 is the

discretized target label produced by SID. Ordinal regression

loss is defined as:

(4a)LOR(l, D̂) = −

�

l−1
�

k=0

log(Pk) +

K−1
�

k=l

log(1− Pk)

�

(4b)Pk =
ed2k+1

ed2k + ed2k+1

Losses for self-supervision Unlike direct supervision,

self-supervision loss is computed with image reconstruction

where the pixels in two images with similar RGB informa-

tion are assumed to be corresponding pixels. Within this

setting, it is desirable to have smooth changes in the output.

A smoothness loss can be incorporated prevent pixels from

matching to irregular positions. The smoothness can also

be imposed by an appearance matching loss by using a sim-

ilarity metric between the input image and warped image.

Smoothness loss In order to encourage smooth

changes in disparity, the smoothness loss is proposed in the

work [35]. The loss is configured as the sum of �1 norm

of second-order gradient of disparity. Specifically, it is de-

fined in Eq.(5) where yi,j is the prediction, i is the row ordi-

nal number of yi,j , j is the column ordinal number of yi,j ,
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n is the number of pixels and k is the scale ordinal which

represents final output when k = 0.

LSmoothness(y) =
1

n

3
�

k=0

n
�

i,j

1

2k
(
∂y2ij

∂i2
+

∂y2ij

∂j2
+ 2

∂y2ij

∂ij
)

(5)

Appearance matching loss In our unsupervised train-

ing, we adopt the combination of SSIM [36] and �1 as in

previous works [11, 12] as the similarity metric in the ap-

pearance matching loss. The loss is formulated as Eq.(6),

where Ii is the input image pixel, Ĩi is the reconstructed

one and n is the number of pixels. Additionally, the SSIM

here is a 3×3 block filter rather than a Gaussian one, and α

is set as 0.85.

(6)

LAML(Ii, Ĩi)

=
1

n

n
�

i=0

α
1− SSIM(Ii, Ĩi)

2
+ (1− α)

�

�

�
Ii − Ĩi

�

�

�

4. Experiments

4.1. Experiment Setup

We evaluate the methods on KITTI [9] and NYU Depth

v2 [27] to check the performance of the methods on both

indoor and outdoor scenes.

KITTI The KITTI dataset contains outdoor scenes cap-

tured by cameras and depth sensors in a driving car, with

a typical image with a size of 375 × 1242. During train-

ing, we resize the images to 128× 416. Due to the training

data requirement for different supervision methods, we use

different number of images for training while the difference

in data volume has no significant influence on the results

according to our study in subsection 4.4. We train the net-

work with 38564 samples and validate with 5164 samples

for the supervised training. For the monocular video train-

ing, we have 39810 monocular triplets for training and 4424

for validation. For the stereo training, we have 45200 train-

ing pairs and 1776 validation pairs. We clamp the depth

output to obtain a value range from 0 to 80 meters and eval-

uate the single-view depth performance on the 697 samples

on the Eigen test split [6].

NYU Depth v2 The NYU Depth v2 dataset contains in-

door scenes captured by Microsoft Kinect camera, with a

typical image of 480× 640. The images are then resized to

284×392 and randomly cropped to 256×352 during train-

ing. We train the network with 69837 images and evaluate

the single-view depth performance on the 654 samples from

the Silberman test split [27].

Implementation details We implement the methods us-

ing the publicly available PyTorch framework [29]. Dur-

ing training, we use Adam optimizer [15] with β1 = 0.9,

β2 = 0.999, learning rate of 0.0001 and a mini-batch size

of 4. The iteration number should be set to 250K for KITTI

and 750k for NYU Depth v2.

4.2. Architecture Study and Comparison with
State-of-the-art

Despite the proposal of various architectures, the per-

formances of the proposed methods are often evaluated in

different settings. In order to understand the influence of

architecture design, we experimentally test different archi-

tectures in the same setting on KITTI dataset.

Architecture study The effectiveness of different en-

coders and decoders is studies in the setting of direct super-

vision. According to Table 1, VGG-16 with batch normal-

ization achieves the best result among all the encoders while

DispNet decoder outperforms the other two decoders. Ob-

serving such results, we recommend pre-trained VGG-16

with batch normalization as the encoder and DispNet de-

coder as the decoder.

Comparison Method
rel rms rms log δ1 δ2 δ3

lower is better higher is better

encoder

Dispnet 0.139 5.416 0.232 0.810 0.930 0.971

VGG-16 pt 0.109 4.583 0.190 0.867 0.958 0.982

VGG-16 BN pt 0.105 4.537 0.186 0.873 0.959 0.983

ResNet-18 pt 0.119 4.921 0.204 0.847 0.947 0.978

ResNet-50 pt 0.111 4.762 0.197 0.861 0.951 0.979

ResNet-101 pt 0.118 4.880 0.201 0.849 0.949 0.980

decoder

Dispnet 0.111 4.762 0.197 0.861 0.951 0.979

FCRN 0.138 5.318 0.226 0.805 0.934 0.974

ASPP 0.119 4.801 0.196 0.846 0.953 0.982

Table 1: Comparison of different encoders and decoders.

Comparison of encoder is based on same Dispnet decoder

and comparison of decoder is based on same pretrained

ResNet-50 encoder. pt: using model weight pretrained on

ImageNet [30], BN: batch normalization.

Performance on KITTI In Table 2, our network trained

with �1 loss in the direct supervision setting and its variant

are compared with the previous works on KITTI dataset.

Our network achieves the second best performance.

Performance on NYU Depth v2 In Table 3, our network

trained with �1 loss under direct supervision setting is com-

pared with previous works on NYU Depth v2 dataset. Our

network obtains the best performance among all works.

4.3. Supervision Study

Besides the architectures, the type of supervision is an-

other key factor in depth estimation methods. Different su-

pervision methods make use of different image information,
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Method supervision
rel rms rms log δ1 δ2 δ3

lower is better higher is better

Saxena et al. [33] direct 0.280 8.734 0.361 0.601 0.820 0.926

Eigen et al. [6] direct 0.203 6.307 0.282 0.702 0.890 0.958

Liu et al. [23] direct 0.201 6.471 0.273 0.680 0.898 0.967

Zhou et al. [41] video 0.208 6.856 0.283 0.678 0.885 0.957

Fu et al. [7] direct 0.072 2.727 0.120 0.932 0.984 0.994

Luo et al. [25] stereo 0.127 5.008 0.209 0.841 0.946 0.979

Godard et al. [12] stereo 0.109 4.960 0.209 0.864 0.948 0.975

Watson et al. (high reso) [37] stereo 0.096 4.393 0.185 0.890 0.962 0.981

Kuznietsov et al. [17] DS 0.113 4.621 0.189 0.862 0.960 0.986

Guo et al. [13] DS 0.105 4.422 0.183 0.874 0.959 0.983

Our VGG-16 BN direct 0.105 4.486 0.183 0.873 0.960 0.984

Our VGG-16 BN (high reso) direct 0.098 4.075 0.174 0.889 0.963 0.985

Our VGG-16 BN (high reso) DMS 0.096 3.966 0.167 0.893 0.969 0.987

Table 2: Performance on KITTI. δi : δ < 1.25i. DS:

direct and stereo supervision. DMS: monocular video and

stereo supervision with direct supervision finetuning. High

reso: the model is trained with image being 1024 × 320

pixels in size. Best results in each category are in bold;

second best are underlined.

Method
rel rms rms log δ1 δ2 δ3

lower is better higher is better

Ladicky et al. [18] - - - 0.542 0.829 0.941

Liu et al. [24] 0.335 1.06 - - - -

Zhuo et al. [42] 0.305 0.104 - 0.525 0.838 0.962

Li et al. [20] 0.232 0.824 - 0.621 0.886 0.968

Liu et al. [22] 0.230 0.824 - 0.614 0.883 0.975

Eigen et al. [6] 0.215 0.907 0.285 0.611 0.887 0.971

Eigen & Fergus [5] 0.158 0.641 0.214 0.769 0.950 0.988

Laina et al. [19] 0.127 0.573 0.195 0.811 0.953 0.988

Xu et al. [38] 0.121 0.586 - 0.811 0.954 0.987

Li et al. [20] 0.113 0.821 - 0.621 0.886 0.968

Fu et al. [7] 0.115 0.509 - 0.828 0.965 0.992

Our VGG-16 BN 0.101 0.412 0.160 0.868 0.958 0.986

Table 3: Performance on NYU DEPTH v2.

that is, the type of supervision may not only influence the

performance but also reveal the useful information in the

images for depth estimation.

Supervision method study In order to find out whether

different supervision methods use image information dif-

ferently and which supervision method is the best, we com-

pare direct supervision, supervision by stereo, supervision

by video, and their combinations. The supervision methods

are compared in the same setting with the image resolution

of 128 × 416. We use �1 loss as the loss for direct super-

vision and the loss as in Godard [12] as the loss for self-

supervised training. Comparison with a common encoder

architecture of pre-trained VGG-16 with batch normaliza-

tion is given in Table 4. Among all four different super-

vision methods, combination of video and stereo training

with direct supervision fine-tuning gives the best result. Di-

rect supervision reports the second best result, followed by

stereo and monocular video. These results suggest that di-

rect supervision performs better than self-supervision. On

the other hand, self-supervision does learn different but use-

ful information for depth estimation as the combination of

self-supervision and direct supervision outperforms only di-

rect supervision.

Method
rel rms rms log δ1 δ2 δ3

lower is better higher is better

Direct Sup. 0.105 4.537 0.186 0.873 0.959 0.983

Video(VGG) 0.116 4.850 0.192 0.871 0.959 0.982

Stereo(VGG) 0.109 4.942 0.207 0.861 0.949 0.976

Video & Stereo(VGG) 0.108 4.773 0.197 0.869 0.955 0.980

Video & Stereo(VGG) → Direct 0.104 4.475 0.181 0.877 0.962 0.985

Table 4: Comparison of different supervised setting.

Sup.: supervised, Video: monocular video supervision, →:

finetune

Direct supervision loss study We experimentally exam-

ine the performance of different supervision losses and

identify the optimal one. With direct supervision, the losses

are evaluated with DispNet based on pre-trained VGG-16

with batch normalization. For the deep ordinal regression

network (DORN), we have a classification layer taking the

input from the output of DispNet and we set the interval

number as 80. According to Table 5, Berhu loss performs

the best and �1 the second. It is observsed that both �1 and

Berhu losses often result in smaller errors for low resid-

ual pixels while the other loss with square calculation does

not address such errors well. Overall, Berhu loss is recom-

mended as the best loss.

Method
rel rms rms log δ1 δ2 δ3

lower is better higher is better

L1 0.105 4.537 0.186 0.873 0.959 0.983

L2 0.114 4.508 0.183 0.857 0.960 0.986

Berhu 0.105 4.486 0.183 0.873 0.960 0.984

Scale Inv. 0.112 4.468 0.182 0.858 0.960 0.986

DORN 0.107 4.514 0.184 0.867 0.961 0.985

Table 5: Comparison of different unitary loss under

original DispNet. Scale Inv.: scale invariant loss.

Multi-scale direct supervision study As the DispNet de-

coder outputs depth estimation in four different scales, we

study the influence of additional supervision on the lower

resolution output. We evaluate different multi-scale super-

vision methods under direct supervision using pre-trained

VGG-16 batch normalization and the weight of the loss for

lower resolution output is halved by each scale change. The

target data of the low resolution output are generated in or-

der to enforce supervision on the outputs of multiple scales.

In details, different low resolution target are generated us-

ing maxpooling, average pooling and bilinear interpolation

and are summarized in Table 6. According to Table 6, bi-

linear interpolation performs the best among all three gen-

eration methods and it also slightly improves the results of

the single supervision. Given comparison about multi-scale

1095



supervision, we find that there is little difference between

multi-scale and single supervision since the loss on full res-

olution output has already penalized the side output predic-

tion. As suggested by Table 6, we recommend single direct

supervision over multi-scale direct supervision.

Method
rel rms rms log δ1 δ2 δ3

lower is better higher is better

maxpool 0.108 4.541 0.188 0.868 0.958 0.983

avgpool 0.106 4.652 0.190 0.867 0.956 0.982

bilinear 0.106 4.428 0.183 0.873 0.959 0.983

L1 0.105 4.537 0.186 0.873 0.959 0.983

Table 6: Comparison of different methods to produce

ground truth data of different scales for direct supervi-

sion

4.4. Data Property Study

Due to the architecture difference and supervision re-

quirement, existing works use different training resolutions

and different numbers of images. However, such data prop-

erties may affect the estimation performance. We now

present an analysis of such data properties to indicate their

influences,

Training resolution study For monocular depth training,

we use the images of different resolutions as input. The

images are down-sampled by Antialias filter and fed into

the model based on pre-trained VGG-16 with batch nor-

malization. The model is trained with �1 loss under dif-

ferent supervision in Table 7. The training of resolution

1024× 320 is first performed on a resolution of 640× 192
for 10 epochs and then fine-tuned on the original resolution

1024 × 320 for 5 epochs. The results in Table 7 show that,

under all four different settings, the model performance im-

proves with higher resolution. It could be that, the train-

ing with high resolution images preserves more useful in-

formation than training with low resolution images and also

leads to more accurate high resolution prediction. There-

fore, training with high resolution data is recommended if

computing power allows.

Data amount study The training results can also be af-

fected by the difference in data amount. Here, we study this

factor on the KITTI dataset using pre-trained VGG-16 with

batch normalization and �1 loss for direct supervision under

different supervision in Table 8. As is observed in Table 8

and Figure 2, the performance gradually degrades as fewer

data is used. Moreover, the data amount does not signifi-

cantly influence the performance but does affect the train-

ing time. Given these results, it is more efficient to search

for the optimal networks and losses on a small partition of

the full dataset and then train on the full dataset with the

Method
rel rms rms log δ1 δ2 δ3

lower is better higher is better

D 416 × 128 0.105 4.537 0.186 0.873 0.959 0.983

D 640 × 192 0.099 4.227 0.175 0.885 0.963 0.985

D 1024 × 320 0.098 4.075 0.174 0.889 0.963 0.985

S 416 × 128 0.109 4.942 0.207 0.861 0.949 0.976

S 640 × 192 0.104 4.719 0.201 0.875 0.954 0.977

S 1024 × 320 0.102 4.598 0.199 0.877 0.955 0.977

M 416 × 128 0.116 4.850 0.192 0.871 0.959 0.982

M 640 × 192 0.111 4.660 0.186 0.884 0.962 0.982

M 1024 × 320 0.109 4.581 0.185 0.890 0.964 0.983

MS 416 × 128 0.108 4.773 0.197 0.869 0.955 0.980

MS 640 × 192 0.101 4.512 0.188 0.881 0.961 0.981

MS 1024 × 320 0.099 4.461 0.188 0.883 0.961 0.981

DMS 416 × 128 0.104 4.475 0.181 0.877 0.962 0.985

DMS 640 × 192 0.097 4.134 0.170 0.891 0.967 0.986

DMS 1024 × 320 0.096 3.966 0.167 0.893 0.969 0.987

Table 7: Comparison of different resolution input

data. D: direct supervision, M: monocular video supervi-

sion, MS: monocular video and stereo supervision, DMS:

monocular video and stereo supervision with direct super-

vision finetuning

optimal choice. The results also indicate that it is beneficial

to use a dataset with more diverse scenes rather than a large

set of similar scenes.

Method
rel rms rms log δ1 δ2 δ3

lower is better higher is better

D 100% 0.105 4.537 0.186 0.873 0.959 0.983

D 50% 0.110 4.705 0.192 0.861 0.955 0.982

D 25% 0.111 4.765 0.196 0.858 0.953 0.980

D 12.5% 0.116 4.607 0.193 0.859 0.955 0.981

D 6.25% 0.118 4.608 0.194 0.850 0.953 0.982

D 3.125% 0.126 4.763 0.205 0.841 0.949 0.980

S 100% 0.109 4.943 0.207 0.861 0.949 0.976

S 50% 0.111 4.929 0.207 0.860 0.948 0.976

S 25% 0.112 4.950 0.207 0.860 0.948 0.976

S 12.5% 0.116 5.011 0.207 0.848 0.947 0.977

S 6.25% 0.122 5.091 0.210 0.834 0.944 0.977

S 3.125% 0.128 5.227 0.212 0.823 0.940 0.977

M 100% 0.116 4.850 0.192 0.871 0.959 0.982

M 50% 0.119 4.896 0.195 0.866 0.958 0.981

M 25% 0.117 4.784 0.192 0.865 0.958 0.982

M 12.5% 0.125 4.900 0.197 0.849 0.955 0.982

M 6.25% 0.132 4.957 0.201 0.836 0.952 0.982

M 3.125% 0.147 5.318 0.215 0.800 0.942 0.981

Table 8: Performance on different percentage of KITTI

training data

4.5. Error Analysis

Only quantitative results might not be sufficient to ex-

plain all the differences among different methods. We addi-

tionally perform an analysis of model correlation to clarify
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Figure 2: Performance on different percentage of KITTI

training data. X-axis is set as the binary logarithm of data

percentage and absolute relative error is chosen as the per-

formance metric.

the advantage of each method on an image-wise and pixel-

wise level. The errors on typical image are also visualized

in plots for comparison.

Image-wise performance study In this section, we study

whether different models and supervision methods would

influence the performance of a certain scene. Specifically,

we choose the absolute relative error as the comparison met-

ric. The control group uses the same model with supervi-

sion initialized with different seeds. According to the Fig-

ure 3c and Figure 3d, different encoders under direct super-

vision produce highly correlated results. As for supervision

method comparison in Figure 3a and Figure 3b, stereo and

monocular video supervision give better results than direct

supervision in some specific scenes but their performance

is still correlated with direct supervision. Thus we suppose

that learning under different supervision gives limited dif-

ferent insight for our model.

Distribution of pixel-wise performance Since image-

wise performance is highly correlated, we further study

the pixel-wise performance under the same setting as sec-

tion 4.5. We also use the absolute relative error as the per-

formance metric. Out of the approximately 17k valid pixels

in a single test image, we randomly choose 100 pixels and

plot the histogram of absolute relative errors within 0 to 0.5

to represent the distribution of error. As shown in Figure 5a

and Figure 5c, direct and video supervision have histograms

of similar shapes where most pixels have small errors and

the probability drops faster as the error goes larger. For the

absolute value, the probability of direct model is larger in

the low error area. As shown in Figure 5b, stereo based

supervision has more pixels lying in the area about 0.05 in

terms of the metric. We suppose that direct supervision has

more low error pixels and the unsupervised training results

Figure 3: Comparison of the image-wise performance

of different supervision and architectures. X-axis repre-

sents the absolute relative errors under direct supervision �1
loss and VGG model. Y-axis represents their performance

under different supervision methods and neural networks

tend to be focused on relative low error area which may

be caused by the error in the stereo method. The good re-

sults of video-based method in low error area implies the

positive effect of depth median scaling. Such distribution

of pixel performance implies the complementarity between

the direct supervision and self-supervision.

Study of pixel-wise performance with supervision

Having observed the distribution of all pixels, we further

study pixel-wise performance with different supervision.

As it is difficult to evaluate on all pixels in a single im-

age, we select only 100 pixels in each image to visualize

this supervision comparison. As Figure 6a shows that the

scatter points are mostly placed above the diagonal line,

which confirms that direct supervision results in better per-

formance than stereo. Figure 6b shows that the video super-

vision performs worse than the direct one by a small mar-

gin. Since the training with video supervision requires me-

dian scaling during evaluation, the good performance may

be attributed to the median scaling instead of the supervi-

sion itself.

Pixel-wise visual study Besides quantitative results, we

reveal drawbacks of different supervision methods by plot-

ting images and marking large errors in red. According to

the images of the first three rows in Figure 4, neither of

three supervision methods performs well for moving objects

where video supervision performs worse than the other two

supervision methods with its assumption for static scenes

on moving camera. As for the last three rows in Figure 4,

neither of three supervision methods is good at predicting

porous objects such as the guarding rails and blocking nets.

Such objects may exhibit rapid and large depth change,

making them difficult to learn. In general, the dynamic ob-
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(a) Input (b) Direct error (c) Stereo error (d) Video error (e) groundtruth

Figure 4: Image visual comparison. Pixels with absolute relative error larger than 0.3 are denoted by red markers

(a) Histogram of direct supervision (b) Histogram of stereo supervision (c) Histogram of video supervision

Figure 5: Distribution of pixel-wise performance
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(a) Direct vs stereo

���� ���� ���� ���� ���� ���� ���� ����

������

����

����

����

����

����

����

����

����

�
��
�
�

(b) Direct vs video

Figure 6: Comparison of pixel-wise performance of dif-

ferent supervision methods. The heat map are represented

by the scatter points where the x-axis represents the pixel-

wise absolute relative errors under direct supervision and

y-axis represents the errors under stereo or video supervi-

sion.

jects are highly challenging for depth prediction even under

direct supervision.

5. Conclusion

In this paper, we have presented a study on various fac-

tors for monocular depth estimation, including architec-

tures, supervision losses and other aspects such as reso-

lution, data property and data size. An error analysis is

also conducted aiming to provide further insight for model

design. Lastly, we have introduced an improved encoder

architecture which achieves competitive performance on

KITTI and state-of-the-art performance on NYU Depth v2.

The empirical results in work can be used as a guideline for

more efficient depth estimation model design and training.
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