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Abstract

Monocular depth estimation has gained increasing at-
tention in recent years, and various techniques have been
proposed to tackle this problem. In this work, we aim to pro-
vide a comprehensive study on the techniques widely used
in monocular depth estimation, and examine their individ-
ual influence on the performance. More specifically, we
provide a study on: 1) network architectures, including dif-
ferent combinations of encoders/decoders. 2) supervision
losses, including fully supervised losses and self-supervised
losses and 3) other practices such as input resolution. The
experiments are conducted on two commonly used public
datasets, KITTI and NYU Depth v2. We also provide an
analysis on the errors produced by different models, to re-
veal the limitations of current methods. Furthermore, by
a careful redesign, we present a model for depth estima-
tion, which achieves competitive performance on KITTI
and state-of-the-art performance on NYU Depth v2. Our
code is publicly available at https://github.com/
zenithfang/supervised_dispnet.

1. Introduction

Monocular depth estimation is a fundamental task in
computer vision, which aims to estimate the depth of each
pixel for an input image. It is closely related to many
downstream applications, such as 3D modeling, robotics,
autonomous driving, etc.

Over the years, various techniques have been proposed
for monocular depth estimation. Early efforts mainly rely
on hand-crafted features and probabilistic models [31, 32],
while recent approaches [0, 7, 19, 20, 38] are mostly based
on convolutional neural networks (CNNs) due to the strong
performance of the learned representations. CNN-based
models typically formulate depth estimation as a per-pixel
regression problem which is then solved using fully con-
volutional networks (FCNs). In order to learn such net-
works, depth sensors are often used to collect the ground-

truth depth values. However, collecting such labels can be
costly in many cases. To alleviate the demand for ground-
truth labels, self-supervised methods have been proposed
to essentially leverage photometric error as the supervision
source, either between temporal frames [4, 4 1], or between
left and right images in the stereo setup [8, 10, 17].

Though these techniques have shown promising results
for monocular depth estimation, they are usually evaluated
with different configurations. This makes it arduous to di-
rectly compare the effectiveness of each component and
identify the limitation of the current methods. For example,
many works are trained with images of different resolutions
while the resolution itself may be an influential factor for
the benchmark performance.

Therefore, in this work, our aim is to provide an empiri-
cal analysis for each influential factor/component by decou-
pling the commonly used components in depth estimation
methods and then examining their individual influence with
controlled experiments.

Our contributions can be summarized as follows:

e We experimentally evaluate the influence of different
components/factors for monocular depth prediction.
For network architectures, we test different combina-
tions of encoders/decoders. We also examine the effect
of different supervision losses and other factors such as
input image resolution, number of training images efc.

e To reveal the limitations of the current models and pro-
vide insights on model design, we analyze the errors
made by different models. In more details, we perform
studies on distributions of image-wise and pixel-wise
error and also show the correlation on errors between
different models.

e Driven by our study, we present a model for monocu-
lar depth estimation which achieves the state-of-the-art
results on NYU Depth v2 and competitive results on
KITTL
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2. Related Works

Classical Monocular Depth Estimation Early efforts for
monocular depth estimation are mainly based on hand-
crafted features and probabilistic methods. Saxena et
al. [31, 32] proposed to use global features and multi-scale
features with Markov Random Field (MRF). Achanta et
al. [1] utilize constraint between neighboring pixels and Liu
et al. [21] fuse semantic information into depth estimation.
Supervised Monocular Depth Estimation Driven by the
efficacy of deep learning, the performance of depth estima-
tion has been significantly improved by CNN-based meth-
ods [6, 7, 19, 20, 38]. Such models are typically trained
with supervision signals from depth sensors [9, 27] or syn-
thetic datasets. Eigen et al. [6] introduce convolutional net-
works (CNN) to depth estimation with dense depth map
regression predicting target depth values. Specifically, the
architecture consists of two parts, a coarse prediction net-
work based on AlexNet [16] and a refinement network. The
approach is later improved by techniques such as Condi-
tional Random Fields (CRF) [23], hierarchical CRF refine-
ment [20] and multi-scale CRF method [38]. Better losses
are also proposed to improve the depth estimation, such as
reverse Huber (Berhu) loss [28, 43], and ordinal regression
loss [7]. Depth estimation can also be trained jointly with
other tasks such as semantic segmentation [3, 40].
Self-supervised Monocular Depth Estimation To address
the expenses and effort of label acquisition for depth su-
pervision, self-supervised methods are developed. Garg et
al. [8] propose to train models using the supervision from
image alignment with an encoder-decoder architecture. Par-
ticularly, the stereo image is warped according to the pre-
dicted depths such that an image alignment loss can be ob-
tained from the difference between the warped image and
the ground-truth. This method is further extended by Go-
dard et al. [10] with a loss calculated from both left and right
images. Unlike these methods, Zhou et al. [41] propose
to simultaneously predict both pose and depthand train the
network with an alignment loss computed from the warped
images for pose and depth. Kuznietsov ef al. [17] combine
the loss from supervised learning and unsupervised learn-
ing, and report further improvement on the prediction accu-
racy. Yang et al. [39] combine stereo training with video
training. Godard ef al. [12] propose a full resolution multi-
scale loss.

3. Methodology
3.1. Problem Formulation

Firstly, we briefly introduce the formulation of monoc-
ular depth estimation. Monocular depth estimation aims to
map an input image I € R7*W*C (o an output pixel-wise
depth map as Y € RF*W with H, W being the height and
width of the image and C' being the number of RGB chan-

nels. CNN-based methods typically establish such a map-
ping by learning a neural network F' such that Y = F(I).
To learn the parameters of such networks, direct supervision
losses L(Y) are applied on the output Y to approximate the
ground-truth depth map Y. Self-supervision losses L(Z, I )
are applied on the reconstructed image I which is synthe-
sized from Y and other source images to approximate the
target image 1.

In this work, we study several aspects involved in
monocular depth estimation. As for architecture, we re-
search the influence of the encoder and decoder choice
in terms of model performance. As for network parame-
ters, we investigate the supervision loss with those param-
eters learned from training progress. Generally, supervi-
sion loss L is typically categorized as direct supervision
loss L(Y,Y) and self-supervision loss L(I,I). Thus, we
first study different types of supervisions and their combi-
nations and then further study different direct supervision
loss functions L(Y,Y") which are typically computed from
YandY. Specifically, the supervision with multi-scale out-
put of DispNet and L(Y,Y) of different forms are studied.
In addition, we look into the influence of the input image
size (e.g. H and W) and dataset size. Lastly, we evaluate
the advantages, correlation and limitations of the methods
at both image- and pixel-wise level with mapping functions
F learned by different architectures and losses.

3.2. Network Architectures

Networks used for depth estimation typically follow an
encoder-decoder design. We compare the performance with
combinations of different encoder and decoder structures.
We base the empirical study on the architectures of Disp-
Net [26] and FCRN [19].

DispNet with ResNet-based and VGG-based encoders
DispNet [26] is one of the most widely used architectures
for depth estimation with the encoder-decoder structure,
skip connections and multi-scale intermediate predictions
as in Figure la. We adopt the original DispNet decoder
architecture and replace its original encoder with different
structures like VGG [34] and ResNet [14].

Unlike earlier works [10, 12, 17] that build DispNet with
ResNet, we apply different settings for the skip connection
and set the strides in the encoder as in Figure 1b. The en-
coder is based on VGG-16 [34] similarly to [13] and per-
forms a 5-time down-sampling in the spatial direction. The
decoder is symmetrical to the encoder with the same num-
ber of blocks and skip connections. Overall, VGG, VGG
with batch normalization and ResNet are implemented as
the encoder.

FCRN with ResNet-ASPP decoder Fully Convolutional
Residual Network (FCRN) is another prevalent architecture
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Figure 1: Architecture overview

proposed for depth estimation. The network comprises a de-
coder concatenated with a pre-trained ResNet-50. Specifi-
cally, the decoder has 4 up-convolution blocks with each
block mapping each entry into the top left corner of a 2 x 2
kernel. After this mapping, it performs a convolution with
initially a filter size of 5 x 5 and then 3 X 3, as well as a pro-
jection connection from the lower resolution feature map ss
shown in Figure lc. Note that FCRN is not equipped with
skip connections.

Atrous Spatial Pyramid Pooling (ASPP) is firstly pro-
posed in DeepLab v2 [2] for semantic segmentation, and
shows promising performance improvement. Due to the
success in modelling contextual information, we also test
ASPP module with the ResNet-based encoder.

With the addition of ASPP to the ResNet-50-based en-
coder, we use a dilation rate of 6, 12, 18 and 24 in the de-
coder. Meanwhile, the dilation is introduced to the encoder
to give a dense feature map for the ASPP module so that
no skip connection is required between the encoder and the
decoder.

3.3. Loss Functions

We categorize the proposed loss functions for depth esti-
mation into direct supervision losses which require ground-
truth depth and self-supervision losses which require no
ground-truth depth. We briefly describe the losses of each
type with the same notations as in subsection 3.1 and denote
a pixel-wise depth prediction Y and ground-truth Y for the
pixel 7 as y; and y;.

Losses for direct supervision To study the effect of di-
rect supervision losses, we adopt the following losses: 1)
scale invariant loss [6], 2) Berhu loss [28, 43], 3) ordinal
regression loss [7].

Scale invariant loss Motivated by the scale ambigu-
ity in depth prediction, scale invariant loss is defined as the
mean of scale invariant error and /5 error (Eq.(1)).

2
N 1 (&
YY)=- i—0i) = i — Ui 1
Lsi(Y,Y) n;(y i) =53 (;(y y)) (1)
Berhu loss Berhu loss is defined as Eq.(2). As the def-

inition shows, Berhu loss assigns large weights for samples

with large residuals. More explicitly, it behaves similarly as
{5 loss when the residual is above a threshold and equals ¢,
loss when the error is below the threshold which accounts
for more impact than /5 loss.

L YYAv_ |Y_Y/|7 |Y_}A/|§C 2
BerHu( s )— (Y71222+02, |Y—Y|>C’ (2a)
1
c= gmam(y} —Yi)- (2b)

Ordinal regression loss Ordinal regression loss em-
ploys a Space-Increasing Discretization (SID) to discretize
the depth. Given the depth interval [, 5] is discretized into
K intervals, SID is formulated as:

t = elog a+7l°g(ﬁléa)*i (3)
where t; is discretization threshold with ¢; € tg, %1, ..., tk.

To train with the ordinal regression loss, we obtain the
ordinal output D of size 2K with d; denoted as the i-th
component of D. 1In addition, [ € 0,1,..., K — 1 is the
discretized target label produced by SID. Ordinal regression
loss is defined as:

-1 K—-1

Lor(l,D) = — (Z log(P*) + ) log(1 — Pk)>(4a)
k=0 k=l
ed2k+1

P (4b)

ed2r 4 edak+t1

Losses for self-supervision Unlike direct supervision,
self-supervision loss is computed with image reconstruction
where the pixels in two images with similar RGB informa-
tion are assumed to be corresponding pixels. Within this
setting, it is desirable to have smooth changes in the output.
A smoothness loss can be incorporated prevent pixels from
matching to irregular positions. The smoothness can also
be imposed by an appearance matching loss by using a sim-
ilarity metric between the input image and warped image.

Smoothness loss In order to encourage smooth
changes in disparity, the smoothness loss is proposed in the
work [35]. The loss is configured as the sum of ¢; norm
of second-order gradient of disparity. Specifically, it is de-
fined in Eq.(5) where y; ; is the prediction, i is the row ordi-
nal number of y; ;, 7 is the column ordinal number of y; ;,
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n is the number of pixels and k is the scale ordinal which
represents final output when k& = 0.

3 8 Oy
k 0 1,5 '] R
(5)

ﬁSmoothness

Appearance matching loss In our unsupervised train-
ing, we adopt the combination of SSIM [36] and ¢; as in
previous works [11, 12] as the similarity metric in the ap-
pearance matching loss. The loss is formulated as Eq.(6),
where I; is the input image pixel, I; is the reconstructed
one and n is the number of pixels. Additionally, the SSIM
here is a 3% 3 block filter rather than a Gaussian one, and «
is set as 0.85.

Lanr (L, L)

1 z": 1 — SSIM(I;, I;)
= — of—
2

(6)

+(1*Oé) 7*I~i

4. Experiments
4.1. Experiment Setup

We evaluate the methods on KITTI [9] and NYU Depth
v2 [27] to check the performance of the methods on both
indoor and outdoor scenes.

KITTI The KITTTI dataset contains outdoor scenes cap-
tured by cameras and depth sensors in a driving car, with
a typical image with a size of 375 x 1242. During train-
ing, we resize the images to 128 x 416. Due to the training
data requirement for different supervision methods, we use
different number of images for training while the difference
in data volume has no significant influence on the results
according to our study in subsection 4.4. We train the net-
work with 38564 samples and validate with 5164 samples
for the supervised training. For the monocular video train-
ing, we have 39810 monocular triplets for training and 4424
for validation. For the stereo training, we have 45200 train-
ing pairs and 1776 validation pairs. We clamp the depth
output to obtain a value range from 0 to 80 meters and eval-
uate the single-view depth performance on the 697 samples
on the Eigen test split [0].

NYU Depth v2 The NYU Depth v2 dataset contains in-
door scenes captured by Microsoft Kinect camera, with a
typical image of 480 x 640. The images are then resized to
284 x 392 and randomly cropped to 256 x 352 during train-
ing. We train the network with 69837 images and evaluate
the single-view depth performance on the 654 samples from
the Silberman test split [27].

Implementation details We implement the methods us-
ing the publicly available PyTorch framework [29]. Dur-
ing training, we use Adam optimizer [15] with 81 = 0.9,
B2 = 0.999, learning rate of 0.0001 and a mini-batch size
of 4. The iteration number should be set to 250K for KITTI
and 750k for NYU Depth v2.

4.2. Architecture Study and Comparison with
State-of-the-art

Despite the proposal of various architectures, the per-
formances of the proposed methods are often evaluated in
different settings. In order to understand the influence of
architecture design, we experimentally test different archi-
tectures in the same setting on KITTT dataset.

Architecture study The effectiveness of different en-
coders and decoders is studies in the setting of direct super-
vision. According to Table 1, VGG-16 with batch normal-
ization achieves the best result among all the encoders while
DispNet decoder outperforms the other two decoders. Ob-
serving such results, we recommend pre-trained VGG-16
with batch normalization as the encoder and DispNet de-
coder as the decoder.

— rel rms rms log 1 o d3
Comparison Method lower is better higher is better
Dispnet 0.139 5416 0.232 0.810  0.930 0.971

VGG-16 pt 0.109  4.583 0.190 0.867  0.958  0.982
VGG-16 BNpt  0.105  4.537 0.186 0.873  0.959  0.983

encoder ResNet-18pt  0.119 4921 0204 0847 0947 0978

ResNet-50 pt 0.111  4.762 0.197 0.861 0951  0.979

ResNet-101 pt ~ 0.118  4.880 0.201 0.849 0949  0.980

Dispnet 0.111  4.762 0.197 0.861 0.951 0.979

decoder FCRN 0.138  5.318 0.226 0.805 0934 0974
ASPP 0.119  4.801 0.196 0.846  0.953  0.982

Table 1: Comparison of different encoders and decoders.
Comparison of encoder is based on same Dispnet decoder
and comparison of decoder is based on same pretrained
ResNet-50 encoder. pt: using model weight pretrained on
ImageNet [30], BN: batch normalization.

Performance on KITTI In Table 2, our network trained
with ¢; loss in the direct supervision setting and its variant
are compared with the previous works on KITTI dataset.
Our network achieves the second best performance.

Performance on NYU Depth v2 In Table 3, our network
trained with ¢; loss under direct supervision setting is com-
pared with previous works on NYU Depth v2 dataset. Our
network obtains the best performance among all works.

4.3. Supervision Study

Besides the architectures, the type of supervision is an-
other key factor in depth estimation methods. Different su-
pervision methods make use of different image information,
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rel rms rms log 81 0o O3

Method supervision lower is better higher is better

Saxena et al. [33] direct 0.280 8.734 0.361 0.601  0.820  0.926
Eigen et al. [6] direct 0.203  6.307 0.282 0.702  0.890  0.958
Liu et al. [23] direct 0.201  6.471 0.273 0.680  0.898  0.967
Zhou et al. [41] video 0.208  6.856 0.283 0.678  0.885  0.957
Fueral. [7] direct 0.072 2.727 0.120 0932 0984 0.994
Luo et al. [25] stereo 0.127  5.008 0.209 0.841 0946 0979
Godard et al. [12] stereo 0.109  4.960 0.209 0.864 0948 0975
Watson et al. (high reso) [37] stereo 0.096 4.393 0.185 0.890 0962  0.981
Kuznietsov et al. [17] DS 0.113  4.621 0.189 0.862  0.960  0.986
Guoetal. [13] DS 0.105  4.422 0.183 0.874  0.959  0.983
Our VGG-16 BN direct 0.105  4.486 0.183 0873  0.960  0.984
Our VGG-16 BN (high reso) direct 0.098  4.075 0.174 0.889  0.963  0.985
Our VGG-16 BN (high reso) DMS 0.096 3966 0167 0.893 0.969 0.987

Table 2: Performance on KITTL 6, : § < 1.25°. DS:
direct and stereo supervision. DMS: monocular video and
stereo supervision with direct supervision finetuning. High
reso: the model is trained with image being 1024 x 320
pixels in size. Best results in each category are in bold;
second best are underlined.

rel rms rms log 01 02 03

lower is better higher is better
Ladicky et al. [18] - - - 0542  0.829 0.941
Liu et al. [24] 0.335 1.06 -

Method

Zhuo et al. [42] 0.305  0.104 - 0.525  0.838  0.962
Lietal. [20] 0232 0824 - 0.621  0.886  0.968
Liu et al. [22] 0.230 0.824 - 0.614 0.883 0.975
Eigen et al. [0] 0.215  0.907 0.285 0.611 0.887 0971
Eigen & Fergus [5]  0.158  0.641 0.214 0.769 0950  0.988
Laina et al. [19] 0.127  0.573 0.195 0.811 0953  0.988
Xu et al. [38] 0.121  0.586 - 0.811 0954  0.987
Liet al. [20] 0.113  0.821 - 0.621  0.886  0.968
Fuetal. [7] 0.115  0.509 - 0.828  0.965  0.992

Our VGG-16 BN 0.101 0412 0.160 0.868 0958 0.986

Table 3: Performance on NYU DEPTH v2.

that is, the type of supervision may not only influence the
performance but also reveal the useful information in the
images for depth estimation.

Supervision method study In order to find out whether
different supervision methods use image information dif-
ferently and which supervision method is the best, we com-
pare direct supervision, supervision by stereo, supervision
by video, and their combinations. The supervision methods
are compared in the same setting with the image resolution
of 128 x 416. We use ¢; loss as the loss for direct super-
vision and the loss as in Godard [12] as the loss for self-
supervised training. Comparison with a common encoder
architecture of pre-trained VGG-16 with batch normaliza-
tion is given in Table 4. Among all four different super-
vision methods, combination of video and stereo training
with direct supervision fine-tuning gives the best result. Di-
rect supervision reports the second best result, followed by
stereo and monocular video. These results suggest that di-
rect supervision performs better than self-supervision. On
the other hand, self-supervision does learn different but use-
ful information for depth estimation as the combination of

self-supervision and direct supervision outperforms only di-
rect supervision.

rel rms rms log o1 02 03
Method lower is better higher is better
Direct Sup. 0.105  4.537 0.186 0.873 0959  0.983
Video(VGG) 0.116  4.850 0.192 0.871 0959  0.982
Stereo(VGG) 0.109  4.942 0.207 0.861 0949  0.976
Video & Stereo(VGG) 0.108  4.773 0.197 0.869 0955  0.980

Video & Stereo(VGG) — Direct  0.104  4.475 0.181 0.877 0962 0.985

Table 4: Comparison of different supervised setting.
Sup.: supervised, Video: monocular video supervision, —:
finetune

Direct supervision loss study We experimentally exam-
ine the performance of different supervision losses and
identify the optimal one. With direct supervision, the losses
are evaluated with DispNet based on pre-trained VGG-16
with batch normalization. For the deep ordinal regression
network (DORN), we have a classification layer taking the
input from the output of DispNet and we set the interval
number as 80. According to Table 5, Berhu loss performs
the best and ¢; the second. It is observsed that both ¢/; and
Berhu losses often result in smaller errors for low resid-
ual pixels while the other loss with square calculation does
not address such errors well. Overall, Berhu loss is recom-
mended as the best loss.

rel rms rms log o1 0o 03
Method lower is better higher is better
L1 0.105  4.537 0.186 0.873 0959 0.983
L2 0.114  4.508 0.183 0.857  0.960  0.986
Berhu 0.105 4.486 0.183 0.873 0960 0.984

ScaleInv.  0.112  4.468 0.182 0.858  0.960  0.986
DORN 0.107 4514 0.184 0.867 0961 0.985

Table 5: Comparison of different unitary loss under
original DispNet. Scale Inv.: scale invariant loss.

Multi-scale direct supervision study As the DispNet de-
coder outputs depth estimation in four different scales, we
study the influence of additional supervision on the lower
resolution output. We evaluate different multi-scale super-
vision methods under direct supervision using pre-trained
VGG-16 batch normalization and the weight of the loss for
lower resolution output is halved by each scale change. The
target data of the low resolution output are generated in or-
der to enforce supervision on the outputs of multiple scales.
In details, different low resolution target are generated us-
ing maxpooling, average pooling and bilinear interpolation
and are summarized in Table 6. According to Table 6, bi-
linear interpolation performs the best among all three gen-
eration methods and it also slightly improves the results of
the single supervision. Given comparison about multi-scale
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supervision, we find that there is little difference between
multi-scale and single supervision since the loss on full res-
olution output has already penalized the side output predic-
tion. As suggested by Table 6, we recommend single direct
supervision over multi-scale direct supervision.

rel rms rms log 01 do 03
lower is better higher is better
maxpool 0.108  4.541 0.188 0.868  0.958  0.983
avgpool 0.106  4.652 0.190 0.867 0.956  0.982
bilinear 0.106  4.428 0.183 0.873 0959 0.983
L1 0.105  4.537 0.186 0873 0959  0.983

Method

rel rms rms log o1 02 03

Method lower is better higher is better

D 416 x 128 0.105  4.537 0.186 0.873  0.959 0.983
D 640 x 192 0.099  4.227 0.175 0.885 0963  0.985
D 1024 x 320 0.098  4.075 0.174 0.889  0.963  0.985
S 416 x 128 0.109  4.942 0.207 0.861 0.949  0.976
S 640 x 192 0.104  4.719 0.201 0.875 0954 0977
S 1024 x 320 0.102  4.598 0.199 0.877 0955 0.977
M 416 x 128 0.116  4.850 0.192 0.871  0.959  0.982
M 640 x 192 0.111  4.660 0.186 0.884 0.962  0.982
M 1024 x 320 0.109 4.581 0.185 0.890 0.964 0.983
MS 416 x 128 0.108  4.773 0.197 0.869  0.955  0.980
MS 640 x 192 0.101  4.512 0.188 0.881 0.961 0.981

MS 1024 x 320 0.099 4.461 0.188 0.883  0.961 0.981

Table 6: Comparison of different methods to produce
ground truth data of different scales for direct supervi-
sion

4.4. Data Property Study

Due to the architecture difference and supervision re-
quirement, existing works use different training resolutions
and different numbers of images. However, such data prop-
erties may affect the estimation performance. We now
present an analysis of such data properties to indicate their
influences,

Training resolution study For monocular depth training,
we use the images of different resolutions as input. The
images are down-sampled by Antialias filter and fed into
the model based on pre-trained VGG-16 with batch nor-
malization. The model is trained with ¢; loss under dif-
ferent supervision in Table 7. The training of resolution
1024 x 320 is first performed on a resolution of 640 x 192
for 10 epochs and then fine-tuned on the original resolution
1024 x 320 for 5 epochs. The results in Table 7 show that,
under all four different settings, the model performance im-
proves with higher resolution. It could be that, the train-
ing with high resolution images preserves more useful in-
formation than training with low resolution images and also
leads to more accurate high resolution prediction. There-
fore, training with high resolution data is recommended if
computing power allows.

Data amount study The training results can also be af-
fected by the difference in data amount. Here, we study this
factor on the KITTI dataset using pre-trained VGG-16 with
batch normalization and ¢; loss for direct supervision under
different supervision in Table 8. As is observed in Table 8
and Figure 2, the performance gradually degrades as fewer
data is used. Moreover, the data amount does not signifi-
cantly influence the performance but does affect the train-
ing time. Given these results, it is more efficient to search
for the optimal networks and losses on a small partition of
the full dataset and then train on the full dataset with the

DMS 416 x 128 0.104  4.475 0.181 0.877  0.962  0.985
DMS 640 x 192 0.097 4.134 0.170 0.891  0.967 0.986
DMS 1024 x 320  0.096  3.966 0.167 0.893  0.969 0.987

Table 7: Comparison of different resolution input
data. D: direct supervision, M: monocular video supervi-
sion, MS: monocular video and stereo supervision, DMS:
monocular video and stereo supervision with direct super-
vision finetuning

optimal choice. The results also indicate that it is beneficial
to use a dataset with more diverse scenes rather than a large
set of similar scenes.

rel rms rms log 01 02 03
lower is better higher is better

D 100% 0.105  4.537 0.186 0.873  0.959  0.983
D 50% 0.110  4.705 0.192 0.861 0955 0.982
D 25% 0.111  4.765 0.196 0.858  0.953  0.980
D 12.5% 0.116  4.607 0.193 0.859  0.955 0.981
D 6.25% 0.118  4.608 0.194 0.850  0.953  0.982
D3.125%  0.126  4.763 0.205 0.841  0.949  0.980

S 100% 0.109  4.943 0.207 0861 0949 0976
S 50% 0.111  4.929 0.207 0.860 0.948 0.976
S 25% 0.112 4950 0.207 0.860 0.948 0.976
S12.5% 0.116  5.011 0.207 0.848 0947 0977
S 6.25% 0.122  5.091 0.210 0.834 0944 0977
S 3.125% 0.128  5.227 0.212 0.823 0940 0977

M 100% 0.116  4.850 0.192 0.871  0.959  0.982
M 50% 0.119  4.896 0.195 0.866  0.958  0.981
M 25% 0.117 4.784 0.192 0.865 0.958  0.982
M 12.5% 0.125  4.900 0.197 0.849 0955 0.982
M 6.25% 0.132  4.957 0.201 0.836 0952  0.982
M3.125% 0.147  5.318 0.215 0.800 0.942  0.981

Method

Table 8: Performance on different percentage of KITTI
training data

4.5. Error Analysis

Only quantitative results might not be sufficient to ex-
plain all the differences among different methods. We addi-
tionally perform an analysis of model correlation to clarify
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Figure 2: Performance on different percentage of KITTI
training data. X-axis is set as the binary logarithm of data
percentage and absolute relative error is chosen as the per-
formance metric.

the advantage of each method on an image-wise and pixel-
wise level. The errors on typical image are also visualized
in plots for comparison.

Image-wise performance study In this section, we study
whether different models and supervision methods would
influence the performance of a certain scene. Specifically,
we choose the absolute relative error as the comparison met-
ric. The control group uses the same model with supervi-
sion initialized with different seeds. According to the Fig-
ure 3c and Figure 3d, different encoders under direct super-
vision produce highly correlated results. As for supervision
method comparison in Figure 3a and Figure 3b, stereo and
monocular video supervision give better results than direct
supervision in some specific scenes but their performance
is still correlated with direct supervision. Thus we suppose
that learning under different supervision gives limited dif-
ferent insight for our model.

Distribution of pixel-wise performance Since image-
wise performance is highly correlated, we further study
the pixel-wise performance under the same setting as sec-
tion 4.5. We also use the absolute relative error as the per-
formance metric. Out of the approximately 17k valid pixels
in a single test image, we randomly choose 100 pixels and
plot the histogram of absolute relative errors within 0 to 0.5
to represent the distribution of error. As shown in Figure 5a
and Figure 5c, direct and video supervision have histograms
of similar shapes where most pixels have small errors and
the probability drops faster as the error goes larger. For the
absolute value, the probability of direct model is larger in
the low error area. As shown in Figure 5b, stereo based
supervision has more pixels lying in the area about 0.05 in
terms of the metric. We suppose that direct supervision has
more low error pixels and the unsupervised training results

direct vs video

direct vs stereo

0.3

0.2 A R
. Sy
R o

e

video

3 T T 57

direct with different seeds

0.3

o
W

different models
o o
-oN
s
.
diferent seeds

0.2 2t ¥

2 BLS " -
0.1

0.1 0.2 0.3 0.1 0.2 0.3
€ direct supervision d

Figure 3: Comparison of the image-wise performance
of different supervision and architectures. X-axis repre-
sents the absolute relative errors under direct supervision ¢y
loss and VGG model. Y-axis represents their performance
under different supervision methods and neural networks

tend to be focused on relative low error area which may
be caused by the error in the stereo method. The good re-
sults of video-based method in low error area implies the
positive effect of depth median scaling. Such distribution
of pixel performance implies the complementarity between
the direct supervision and self-supervision.

Study of pixel-wise performance with supervision
Having observed the distribution of all pixels, we further
study pixel-wise performance with different supervision.
As it is difficult to evaluate on all pixels in a single im-
age, we select only 100 pixels in each image to visualize
this supervision comparison. As Figure 6a shows that the
scatter points are mostly placed above the diagonal line,
which confirms that direct supervision results in better per-
formance than stereo. Figure 6b shows that the video super-
vision performs worse than the direct one by a small mar-
gin. Since the training with video supervision requires me-
dian scaling during evaluation, the good performance may
be attributed to the median scaling instead of the supervi-
sion itself.

Pixel-wise visual study Besides quantitative results, we
reveal drawbacks of different supervision methods by plot-
ting images and marking large errors in red. According to
the images of the first three rows in Figure 4, neither of
three supervision methods performs well for moving objects
where video supervision performs worse than the other two
supervision methods with its assumption for static scenes
on moving camera. As for the last three rows in Figure 4,
neither of three supervision methods is good at predicting
porous objects such as the guarding rails and blocking nets.
Such objects may exhibit rapid and large depth change,
making them difficult to learn. In general, the dynamic ob-
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(a) Input (b) Direct error

(c) Stereo error

(d) Video error (e) groundtruth

Figure 4: Image visual comparison. Pixels with absolute relative error larger than 0.3 are denoted by red markers

probability
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(a) Histogram of direct supervision
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(c) Histogram of video supervision

Figure 5: Distribution of pixel-wise performance
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(b) Direct vs video

(a) Direct vs stereo

Figure 6: Comparison of pixel-wise performance of dif-
ferent supervision methods. The heat map are represented
by the scatter points where the x-axis represents the pixel-
wise absolute relative errors under direct supervision and
y-axis represents the errors under stereo or video supervi-
sion.

jects are highly challenging for depth prediction even under

direct supervision.

5. Conclusion

In this paper, we have presented a study on various fac-
tors for monocular depth estimation, including architec-
tures, supervision losses and other aspects such as reso-
lution, data property and data size. An error analysis is
also conducted aiming to provide further insight for model
design. Lastly, we have introduced an improved encoder
architecture which achieves competitive performance on
KITTI and state-of-the-art performance on NYU Depth v2.
The empirical results in work can be used as a guideline for
more efficient depth estimation model design and training.
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