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Abstract

Auto-Calibration is an important task in computer vi-

sion and is necessary for many visual applications. Meth-

ods like photogrammetry, depth map estimation, metrology,

augmented/mixed reality or odometry are strongly depen-

dent on well calibrated devices. While classical calibration

relies on tools like checkerboards or additional scene infor-

mation, auto-calibration only takes epipolar relations into

account. Classical calibration is often impractical, tends to

de-adjust over time and distributes the error over the en-

tire, limited working volume. Auto-calibration, on the other

hand, does not require any information other than the image

content itself, has a virtually unlimited working range and

usually achieves highest accuracy at the objects’ surfaces.

Unfortunately, auto-calibration methods are sensitive to er-

rors in the fundamental matrix and need good initialization

to converge to the global solution. In practice this leads to

difficulties if optical parameters like principal point or focal

length are unconstrained. In such situations, even state-of-

the-art auto-calibration methods tend to diverge and do not

yield a valid calibration.

This work assesses reasons for this behavior, in par-

ticular for the initialization method of Bougnoux [3] and

Lourakis’ state-of-the-art auto-calibration method [21].

Based on the analysis, a more stable method is proposed.

A continuous and smooth energy functional is introduced,

providing superior convergence properties. I.e. it can not

diverge, converges faster, and has a significantly enlarged

convergence region with respect to the global minimum.

Finally, a thorough evaluation has been conducted and

a detailed comparison with the state of the art is presented.

1. Introduction

Modern auto-calibration techniques aim to calibrate

multiple devices without any form of user interaction. Each

such calibration procedure is based on the computation of

epipolar relations between the devices, which are repre-

sented as fundamental matrices. The procedures described

in [32] and [15] solve these tasks sufficiently well for many

situations. Methods of higher accuracy such as [11] can

increase the chance of convergence of further calibration

steps, even more. The correction of distortions caused by

the optical system of the devices is another essential as-

pect. In [11] distortions are corrected while the fundamental

matrices are estimated. With this approach, further auto-

calibration steps no longer have to take distortions into ac-

count and also apply to cameras with a large field of view.

In order to extract the extrinsic parameters of the devices

(rotation and translation) from the fundamental matrices, as

described in [15], the intrinsic calibration parameters are a

necessary prerequisite. The most important intrinsics of an

optical device are the focal length and the principal point.

In order to compute Euclidean reconstructions, precise es-

timates are essential. In contrast, intrinsics like skew and

aspect ratio are of less importance nowadays, since modern

devices are equipped with square pixels. Since the entire

reconstruction process, except the estimation of the funda-

mental matrix, depends on the intrinsic parameters, their ac-

curate estimation is crucial and the most difficult and error-

prone part.

Most state-of-the-art methods rely on either calibration

tools such as checkerboards or additional scene information

like planar structures or parallel lines. Although the con-

sideration of this additional information works well, its use

in practice is cumbersome and time-consuming. An auto-

calibration procedure without these requirements is there-

fore preferable. Consequently, extensive research has been

carried out in this respect in recent decades and methods

have been discovered that enable intrinsic calibration di-

rectly on the basis on the fundamental matrix. Although

state-of-the-art methods are theoretically sound and valu-

able, their practical application is often not stable and fails

in many cases. Especially setups consisting of different

camera models and projectors, as in the case of active scan-

ning, can cause problems.
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Famous bundle-adjustment [29] or methods like [13]

have not been investigated because they are post-processing

methods that require already appropriate calibration.

In this work we continue research on auto-calibration

techniques. Our contributions are:

• Analysis of Bougnoux’s method regarding uncertain

focal length estimates (4.1)

• Proposal of a new energy functional (4.2)

• Qualitative comparison of Lourakis’ and the new func-

tional (4.4) regarding

– Focal length estimation (4.4.1)

– Principal point estimation (4.4.2)

• Quantitative comparison of the functionals (5)

In particular, the proposed method supports any number of

devices, the method has a significantly larger region of con-

vergence and is not biased towards larger focal lengths. In

addition, the minimized energy term is smooth and nearly

convex, which allows a stable estimation of the principal

points, even if they are far off the image center.

2. Related work

Research on intrinsic calibration from epipolar geom-

etry achieved a quantum leap by the theory of the abso-

lute conic used by Faugeras et al. to introduce Kruppa’s

Equations into computer vision in [10]. These equations

represent the basis of modern auto-calibration as they de-

scribe a direct connection between fundamental matrices

and the respective intrinsic calibration matrices. Bougnoux

[3] and Hartley [14] gave formulations for computing the

focal lengths of two uncorrelated views given their funda-

mental matrix. Both approaches depend on known princi-

pal points and epipoles. Since the epipoles are usually esti-

mated as the null-space of the fundamental matrix, they are

sensitive to small inaccuracies in the fundamental matrix.

This can lead to instabilities of the methods, even if correct

principal points are given.

To avoid these problems, Hartley reformulated Kruppa’s

equations in terms of the singular value decomposition

of the fundamental matrix to introduce epipole-invariant

Kruppa Equations in [16]. Based on Hartleys work, Sturm

[26] presented a more robust method for two views with

constant focal lengths and fixed principal points. White-

head and Roth [30] gave a more general approach for mul-

tiple devices with varying focal lengths, but still restricted

to given principle points.

Although high quality cameras can be assumed to have

the principal point close to the image center, this is not gen-

erally not the case. For optical components with interfaces

that are not orthogonal to the principal ray, e.g. in the case

of projectors, the principal point can even be outside the im-

age. Therefore, in many practical applications, said meth-

ods are not suitable for auto-calibration.

In order to estimate both focal lengths and principal

points, Pollefeys [23] presented a least-squares method

based on the absolute dual quadric supporting an arbitrary

number of devices. Gherardi and Fusiello [13] built on this

approach and introduced a more specific energy functional

with several regularizations. This method is based on a

given calibration and is essentially a post-processing. In

order to converge to the global minimum, both approaches

require good initialization and suitable regularizers. Finally,

Lourakis and Deriche [21] presented a method that mini-

mizes pairwise differences of the epipole-invariant Kruppa

equations from [16]. These differences are weighted by co-

variance matrices from the numerical optimization of the

fundamental matrix. This method represents the current

state of the art and can handle much coarser initializa-

tion than the two previous approaches. Nevertheless, this

method has some weaknesses, which will be addressed in

Section 3.1.2.

All three energy-based methods are likely to fail if the

principal points are far off the image center or in presence of

significantly differing focal lengths. The method proposed

here is based on an energy derived from epipole-invariant

Kruppa equations. It will converge to the global minimum

under almost all reasonable initial conditions and thus sig-

nificantly extends the practical applicability.

3. Background

The basis for auto-calibration was the development of

the theory of the absolute conic. The main idea is that any

quadric, captured by an optical device, is projected as a

conic onto the image plane and the respective epipolar lines

are tangential to this conic [15]. Furthermore, the dual of

the image of the absolute conic is independent of the cam-

era pose. Its computation is equivalent to the calculation

of the intrinsic calibration of the device. Given the epipo-

lar geometry between image planes Ii and Ij , represented

by a fundamental matrix Fij , Kruppa’s equations use this

knowledge to describe a direct connection between Fij and

the intrinsic calibration matrices Ki and Kj of the respec-

tive cameras Ci and Cj .

3.1. Kruppa equations

Let ei and ej be the left and right epipoles computed

from the left and right null-space of Fij and w∗
i = KiK

T

i

and w∗
j = KjK

T

j the duals of the absolute conic. Then

Kruppa’s equations read:

[ej ]×w
∗

j [ej ]× = Fijw
∗

i F
T

ij (1)

⇔ [ei]×w
∗

i [ei]× = FT

ijw
∗

jFij (2)

[·]× denotes the cross-product matrix. However, solving

these equations is not practicable due to the strong depen-

dence on in generally error-prone epipole estimates.
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3.1.1 Epipole-invariant Kruppa equations

Hartley [16] expressed the equations by avoiding dependen-

cies on the epipoles:

σ2
1v

T

1w
∗
i v1

uT

2w
∗
ju2

︸ ︷︷ ︸
=: ρ1

=
σ1σ2v

T

1w
∗
i v2

−uT

2w
∗
ju1

︸ ︷︷ ︸
=: ρ2

=
σ2
2v

T

2w
∗
i v2

uT

1w
∗
ju1

︸ ︷︷ ︸
=: ρ3

(3)

with

Fij = USV T = (u1, u2, u3)





σ1 0 0
0 σ2 0
0 0 0









v1
v2
v3



 (4)

Numerators and denominators of the terms in equations (3)

describe the tangent lines of the image of the absolute conic

in the different views. These must be identical up to scale

and are therefore considered relatively. These equations are

the basis of Lourakis’ method [21], which is known to be

the state of the art. Since the method derived in this paper

addresses weaknesses of the method, we will shortly intro-

duce its main idea.

3.1.2 State of the art: Method of Lourakis

Lourakis et al. [21] proposed a nonlinear approach for ap-

proximating equations (3). The least-squares energy to be

minimized is defined by

argmin
Kl, l ∈ {1, ..., C}

∑

(i, j) ∈ DF

(u, v) ∈ DK

(ρiju − ρijv )
2

σ
ij
uv

2 , (5)

where Kl denotes the intrinsic calibration matrices, DF the

set of device pairings and DK the set of combinations of

Kruppa terms. σuv are confidence measures calculated by

estimating the fundamental matrices.

This method extends the two-view case from Section

3.1.1 to any number of C devices by considering
C(C−1)

2
pairwise fundamental matrices. Each of them provides two

independent constraints, which limits the number of com-

putable camera parameters to C(C − 1). The number of

determinable parameters per device is sufficient for most

applications and increases with the number of devices used,

as explained in more detail in Section 5.

The method is known to work well for three or more

devices, assuming high quality epipolar relations and good

initialization of the principal points and focal lengths. Nev-

ertheless, the method may fail in many practical situations

for the following reasons:

• Weak initialization of focal lengths or principal points.

• Significantly differing focal lengths.

• Bias towards larger focal lengths.

• Significantly off-center principal points.

• Singularities of the energy.

3.2. Assumptions

For all modern devices, zero skew and square pixels can

be assumed. Thus the dual of the absolute conic can be

written as

w∗

l = KlK
T

l =





f2
l + x2

pl
xpl

ypl
xpl

xpl
ypl

f2
l + y2pl

ypl

xpl
ypl

1



 , (6)

where fl denotes the focal length and cpl
= (xpl

, ypl
, 1)T

the principal point of any device Cl.

4. Improving the state of the art

A new robust energy functional is proposed. Compared

to Lourakis’ it has the following beneficial properties:

• Focal lengths of different scales are treated homoge-

neously and unbiasedly.

• The multidimensional energy field is smooth and has

no discontinuities or singularities.

• A significantly larger region of convergence to the

global minimum, which is finite and uniquely defined.

• The energy function is quasi-symmetric with respect

to the Kruppa curves (13), and convex with respect to

the principal point.

This greatly increases the stability of the numerical opti-

mization as well as the likelihood of convergence.

4.1. Kruppa curves of focal lengths

Using the notation of Section 3.1.1 and assumptions of

Section 3.2, the terms of (3) can be written as

ρ1 =
f2
i σ

2
1(v

2
11 + v212) + σ2

1(c
T

pi
v1)

2

f2
j (u

2
21 + u2

22) + (cTpj
u2)2

(7)

ρ2 =
f2
i σ1σ2(v11v21 + v12v22) + σ1σ2(c

T

pi
v1)(c

T

pi
v2)

−f2
j (u11u21 + u12u22)− (cTpj

u1)(cTpj
u2)

(8)

ρ3 =
f2
i σ

2
2(v

2
21 + v222) + σ2

2(c
T

pi
v2)

2

f2
j (u

2
11 + u2

12) + (cTpj
u1)2

, (9)

where ukl and vkl denote the l-th entries of vectors uk and

vk. With the explicit formulations of (7), (8) and (9), equa-

tions (3) of any fundamental matrix Fij can be written in

the form

f2
i ai1 + bi1

f2
j aj1 + bj1

=
f2
i ai2 + bi2

f2
j aj2 + bj2

=
f2
i ai3 + bi3

f2
j aj3 + bj3

(10)
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with coefficients




ai1
ai2
ai3



 =





σ2
1(v

2
11 + v212)

σ1σ2(v11v21 + v12v22)
σ2
2(v

2
21 + v222)



 ,





bi1
bi2
bi3



 =





σ2
1(c

T

pi
v1)

2

σ1σ2(c
T

pi
v1)(c

T

pi
v2)

σ2
2(c

T

pi
v2)

2









aj1
aj2
aj3



 =





u2
21 + u2

22

u11u21 + u12u22

u2
11 + u2

12



 ,





bj1
bj2
bj3



 =





(cTpj
u2)

2

(cTpj
u1)(c

T

pj
u2)

(cTpj
u1)

2



. (11)

For fixed principal points, the equations define curves,

known as Kruppa curves, which describe direct relations

between the focal lengths. For each fundamental matrix Fij

we define coefficient vectors:

dijuv :=







aiuajv − aivaju
aiubjv − aivbju
biuajv − bivaju
biubjv − bivbju







for (u, v) ∈ DK (12)

Each equation from (11) defines a two-dimensional para-

metric curve that can be represented by the one-dimensional

functions Kij
1,uv and Kij

2,uv:

Kij
1,uv(fj) := −

f2
j d

ij
uv,3 + d

ij
uv,4

f2
j d

ij
uv,1 + d

ij
uv,2

(13)

Kij
2,uv(fi) := −

f2
i d

ij
uv,2 + d

ij
uv,4

f2
i d

ij
uv,1 + d

ij
uv,3

(14)

The curves Kij
1,uv(fj) and Kij

2,uv(fi) and the coefficients

dijuv are obtained by resolving equations (11) with respect

Figure 1. Top view of Lourakis’ (5) (top) and the presented energy

function from (15) (bottom) for several fundamental matrices. The

color coding indicates a rather high energy (yellow) up to a low

energy (blue) in logarithmic scale. For each fundamental matrix,

the three nearly coinciding Kruppa curves are plotted in green.

to fi and fj . Figure 1 shows the Kruppa curves for three

independent fundamental matrices (from left to right), plot-

ted as green lines. State-of-the-art two-view techniques

such as Bougnoux [3] determine the intersections of the

curves to estimate the focal lengths. Having said that, Boug-

noux and similar methods fail in the many cases where the

Kruppa curves nearly coincide. Moreover, the curves are

plotted into visualizations of the top views of the energies

of Lourakis (top) and the proposed method (bottom) to il-

lustrate relationship of the methods. The color coding in-

dicates a rather high energy (yellow) up to a low energy

(blue). This may give an idea of how the methods behave

during minimization.

4.2. Energy as relative distances to Kruppa curves

In order to establish a suitable energy term, relative

Euclidean distances between focal length estimates and

Kruppa curves are used, which provide a scale invariance

with respect to largely different focal lengths. The new en-

ergy term reads

argmin
cpj

, fj
j ∈ {1, ..., C}

∑

(i, j) ∈ DF

(u, v) ∈ DK

(
f2

i −K
ij
1,uv(fj)

f2

i

)2

+
(

f2

j −K
ij
2,uv(fi)

f2

j

)2

.

(15)

By setting up the Jacobians J
ij
uv,1 and J

ij
uv,2 for each

pair of energies, we can solve (15) by applying truncated

Levenberg-Marquardt, with system matrix

A =
∑

(i, j) ∈ DF

(u, v) ∈ DK

J
ijT

uv,1J
ij
uv,1 + J

ijT

uv,2J
ij
uv,2 (16)

and inhomogenity

b =
∑

(i, j) ∈ DF

(u, v) ∈ DK

J
ijT

uv,1

(

1 +
f2
j d

ij
uv,3 + d

ij
uv,4

f2
i f

2
j d

ij
uv,1 + f2

i d
ij
uv,2

)

(17)

+ J
ijT

uv,2

(

1 +
f2
i d

ij
uv,2 + d

ij
uv,4

f2
i f

2
j d

ij
uv,1 + f2

j d
ij
uv,3

)

.

4.3. Computational effort

Since both Lourakis’ method and the proposed one are

based on the singular value decomposition of
C(C−1)

2 fun-

damental matrices, the energy functions can be set up with

the same computational effort. The minimization of the

energies with Levenberg-Marquardt consistently led to a

faster convergence of the proposed method compared to

[21], which can be explained by better condition numbers

of the system matrices of the new method. Appropriate

preconditioning may improve the convergence rate in both
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Figure 2. Kruppa curve distance energies computed from the fundamental matrix for several combinations of focal lengths

f1, f2 ∈ [1000, 8000] of devices with fixed principal points. The upper corresponds to Lourakis’ and the lower row to the proposed

method. Note that the new energy is quasi-symmetric with respect to the Kruppa curve, while the state of the art is sloped unfavorably.

Plots are given in logarithmic scale.

cases. Since the running time in both cases is short and

negligible compared to other calibration steps, no further

investigations were performed.

4.4. Discussion

In this section we present the advantages of the proposed

approach by means of visualizations of the minimized en-

ergy functional and compare it to the state of the art.

4.4.1 Case: Individual focal lengths per device

In real scenarios, the focal lengths of the devices often differ

significantly. If these differences become too large, state-

of-the-art methods are likely to fail if initialization is not

close to the true values. Another disadvantage is the uneven

slope of the gradient of Lourakis’ energy in vicinity of the

Kruppa curve: For small focal lengths, the slope is signifi-

cantly smaller than for large ones. Therefore, a Levenberg-

Marquard update will always prefer the gradient direction

of the larger to the smaller focal lengths when optimizing

such a system. Due to the gradient slope, the method gener-

ally tends to overestimate to focal lengths. Figure 2 com-

pares Lourakis’ energy functional (5) (top row) with the

proposed one (15) (bottom row) for several combinations

of focal lengths f1, f2 ∈ [1000, 8000] from different per-

spectives. In particular, in the right subimage, the increase

of the slope can be observed when increasing the values of

the focal lengths. Due to the relative Euclidean distances

used in (15), the new energy functional is much more ho-

mogeneous.

Moreover, it is quasi-symmetric with respect to the

Kruppa curves, which avoids the preference of a particular

direction over others.

Figure 3. Energies of Lourakis (left) and the proposed Kruppa

curve distance energies (right) with respect to the principal point

position. While the top row shows an overview, the second row

is a close-up of the area around the sought solution. Note that the

location of the solution coincides for both energies. In the third

row a top view of the energies of the first row is given. The region

beyond the discontinuity is colored in dark blue. Please observe

that the contour lines indicate significantly improved convergence

properties. Plots are given in logarithmic scale for visualization.
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4.4.2 Case: Principal point far off the image center

If the principal point of a device is not close to the im-

age center, all known methods are likely to fail. In case

of Lourakis’ functional, the energy surface corresponding

to the principal point positions has been analyzed and two

main issues have been identified depicted in Figure 3 (left):

The sought minimum of the energy is almost completely

surrounded by a discontinuity, so that initialization beyond

the discontinuity cannot converge (top left); Even initial-

ization on the plateau, convergence cannot be guaranteed

because the entire plateau is inclined. (top left). In con-

trast, the proposed energy functional is globally continuous,

smooth and convex (Figure 3 top right). Comparing the sec-

ond row of Figure 3 demonstrates that the sought minimum

of both methods coincide. Although it can be assumed that

the principal point of modern cameras is close to the im-

age center, optical systems in industrial setups often have

a displaced principal point. Reasons for this include ad-

ditional lens assemblies, obstacles such as glass plates or

liquids, and periscopic systems. Also for projection sys-

tems, e.g. used in active scanning solutions, it is not unusual

for the principal point to be completely outside the image.

Initialization of the principal point with the image center

will often be outside the convergence plateau of Lourakis’

method. The third row of Figure 3 shows slightly enlarged

top views of Lourakis’ and the proposed energy functional

of the first row. The contour plots give a good indication of

the improved convergence properties of the newly proposed

functional.

5. Application and evaluation

Both the state-of-the-art method and the proposed ap-

proach, are based on Kruppa’s equations. These equations

provide two independent constraints for each fundamental

matrix. Therefore, the number of computable parameters is

determined by the number of devices (see Table 1). For two

devices, only two parameters can be estimated based on the

single fundamental matrix. This case is the most basic and

most frequently examined system setup. With four or more

devices, the problem of intrinsic calibration is well defined

and theoretically all parameters can be estimated. Neverthe-

# Devices # Basic Equations Computable Parameters

2 2 f1, f2 or xpl
, ypl

3 6 f1, f2, f3, xp1
, yp1

4 12 fl,xpl
, ypl

, l = 1, ..., 4
...

...
...

C C(C − 1) fl,xpl
, ypl

, l = 1, ..., C

Table 1. Overview of degrees of freedom in terms of the number

of devices and useful calibration parameters that can be computed.

less, even the calibration of four devices in practice can still

be a challenge. A particularly interesting case is the use of

three devices, such as two cameras and a projector, as found

in most active scanning setups. For all three devices, the fo-

cal length can be estimated. With the remaining constraints,

the principal point of the projector can be estimated, which

is usually far off the image center.

For the evaluation we consider three cases, i.e. two, three

and four devices. In order to investigate the stability of the

methods, we calculate probability maps that visualize the

convergence chances for different initializations and thus

represent the convergence regions of the methods. To calcu-

late these probability maps we used fixed setups with two,

three and four devices and fixed extrinsic and intrinsic pa-

rameters. A total of 16 different scenes were recorded with

these setups. The scenarios were selected in such a way

that they cover a multitude of different practical application

scenarios. From the different scenes, fundamental matrices

have been computed using the technique described in [11].

The matches used for the computations were previously val-

idated to avoid falsification by outliers. Consequently, the

resulting 16 fundamental matrices per setup approximate

exactly the same epipolar relations with uncorrelated nu-

merical errors because they are computed from different

matches from different scenes. Applying the methods under

investigation on a fundamental matrix for all combinations

of initial focal lengths f1, f2 ∈ [1, 10000] leads to a binary

map, which indicate whether the method converged or not.

The binary maps of all the fundamental matrices have been

combined into probability maps depicted in Figures 4, 5 and

7. Therefore, the percentage at which convergence has been

achieved color-codes the maps. Green indicates a very high

probability of convergence, while red indicates either diver-

gence or convergence to an incorrect value. Yellow depicts

regions with approximately 50% chance to converge to the

correct value.

Since the probability maps are not dependent on individ-

ual scenes, correspondences, or fundamental matrices, they

are meaningful indicators for the convergence behavior of

the procedures.

In the following, the focal lengths are given in terms of

sensor pixel size. For typical devices, a plausible range

would be in [500, 15000]. Depending on the sensor size,

this would correspond to approximately [18mm, 50mm].
the principal points are given in terms of image pixel size,

depending on the resolution.

5.1. Two­view focal length estimation

In the case of two cameras, the principal points are usu-

ally assumed to be in the image centers. Therefore, in most

cases only the focal lengths are computed. Bougnoux [3]

gave a famous formula to calculate the focal lengths di-
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rectly:

f1 =

√
√
√
√−

cTp2
[e2]×ĨF12cp1

cTp1
FT

23cp2

cTp2
[e2]×ĨF12ĨF

T

12cp2

(18)

f2 =

√
√
√
√−

cTp1
[e1]×ĨFT

12cp2
cTp2

F23cp1

cTp1
[e1]×ĨFT

12ĨF12cp1

(19)

where cpl
and el denote the principal points and epipoles

of camera l in homogeneous coordinates. [.]× denotes the

cross-product matrix and Ĩ = diag(1, 1, 0) is the embed-

ding of the two-dimensional identity matrix. Unfortunately,

this formula fails in many practical situations, as already

mentioned in Section 4. Although it is not well suited for

auto-calibration, it can still be used as initialization for iter-

ative methods in case it is not degenerated.

For the two camera case, Bougnoux’s, Lourakis’ and the

proposed method should be compared. Bougnoux’s method

is a direct one and therefore does not depend on initializa-

tion. Therefore, no region of convergence can be deter-

mined and visualized in the following. Having said this,

Bougnoux’s method failed in most cases during our tests,

while the iterative methods could still converge when ini-

tialized accordingly.

For the current investigation, the focal lengths of the de-

vices were chosen to be approximately equal in order to re-

semble the practical case of manually adjusting the cameras.

Despite that, exactly the same focal lengths would lead to

a degeneration that would be perfectly captured by Sturm’s

method [26]. However, this special case rarely occurs in

practice.

Inspecting Figure 4 for the two camera case with similar

focal lengths, it can be observed that the proposed method

converges for nearly all initializations, while Lourakis’

method only converges in a region of radius of approxi-

mately 1500 pixels relative to the true solution.

Figure 4. Comparison of the convergence behavior in the two-view

case with similar focal lengths. Colors visualize the probability of

successful convergence to the correct solution for different combi-

nations of initial focal lengths. Left: Lourakis’ method, right: the

proposed method.

5.1.1 Strongly differing focal lengths

In the case of strongly varying focal lengths, even more ben-

efits can be achieved. Figure 5 shows the convergence prob-

ability map of a similar configuration as in Figure 4. While

the method of Lourakis converges in a region with a radius

of only 500 pixels, the proposed method converges in al-

most all cases.

Figure 5. Comparison of the convergence behavior for focus opti-

mization in the two-view case for dissimilar focal lengths. The

axes represent the respective focal lengths. Left: Lourakis’

method, right: the proposed method.

5.2. Three­view intrinsic calibration

The most interesting case for practical application is a

three device setup. According to Table 1 the focal values

plus the position of the principal point of one device can

be estimated. This allows the calibration of setups consist-

ing of two cameras and one projector, which is of practical

importance, as it is common for modern structured light se-

tups. In this case, it is assumed that the principal points of

the cameras are in the image center, while their focus val-

ues can be very different. The projector is assumed to have

a completely independent focal length and an extreme posi-

tion of the principal point, usually near the image border.

We again have a system setup with fixed extrinsics and

intrinsics. Fundamental matrices are computed from 16

scenes similar to the previous test. Now that we have

three devices, the respective probabilistic convergence maps

would be three-dimensional. In order to achieve an expres-

sive visualization in two dimensions, the focal length of the

projector was initialized by f3 ∈ {1, 10, 100, 1000, 10000}
and the resulting maps averaged. Figure 7 depicts the con-

vergence regions for Lourakis’ method on the left and the

proposed method on the right. As can be clearly observed,

Lourakis’ method does not provide a secure convergence re-

gion, i.e. a region of focal length selections that converges

for an arbitrary principal point.

In order to assess the convergence behavior of both meth-

ods, a second test set was carried out. Therefore, three de-

vices (two cameras and a projector) with focal lengths of

4000, 5600, and 5800 were selected. All principal points
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Figure 6. Comparison of the convergence behavior in the three-view case (first Louraki’s, second the proposed method) and four-view

case (third Louraki’s, fourth the proposed method) with extreme intializations of the principal points and the focal lengths outside the

convergence regions of the methods. While the state of the art diverges, the proposed method gracefully converges towards a nearby

local minimum in the three-view case, providing at least a reasonable estimate for further calibration steps like bundle-adjustment. In the

four-view case the newly proposed method always converges to the correct solution, while Lourakis’ method may still fail.

were initialized at the image centers. The principal points

of the cameras were fixed, while the principal point of the

projector was subject to optimization. All devices were ini-

tialized with the same focal lengths between 1 and 10000.

For initial values less than 4000, both methods fail. While

the proposed method gracefully converges towards a nearby

local minimum, the state of the art diverges (see Figure 6).

These results have inspired us to devise an algorithm

that allows stable auto-calibration of three-device setups in

nearly any practical case. It is based on Bougnoux’s method

for initialization and exploits the newly proposed method

for stable optimization of the intrinsic camera parameters.

The algorithm is outlined in the appendix.

Figure 7. Comparison of the convergence behavior for focus op-

timization in the three-view case. The axes represent two of the

three focal lengths, the third one is visualized as a mean projection

along the third coordinate axis. Left: Lourakis’ method, right: the

proposed method.

5.3. Multi­view intrinsic calibration

In the multiview case of four or more devices, the prob-

lem is much easier to solve. Theoretically, it is possible to

fully calibrate all devices, including focal lengths and prin-

cipal points. In practice, we find that Lourakis’ method does

not converge if the focal lengths are initialized far too small,

while the proposed method converges in all situations.

However, we find that the focal lengths must be so small that

this case can be neglected (see Figure 6 for visualization).

In the case of five or more devices, the stability of the

convergence of each procedure increases. Due to the inher-

ent difficulty of visualizing multi-dimensional data and the

fact that both methods perform well in practice, we omit

respective visualization.

6. Conclusions

In this paper we presented a method for robust intrinsic

camera calibration from epipolar geometry of setups with

at least two devices. Contrary to the state of the art, the

method converges to the global solution for nearly all rea-

sonable initializations and enables the calibration of pro-

jectors and low quality devices. It therefore has a major

impact on active scanning techniques that can now be cal-

ibrated from scratch, including the active element. It has

been shown that and why the applicability of the state-of-

the-art method is subject to systematic limitations.

Algorithm 1 Stable Intrinsic Calibration of Structured

Light Systems with Two Cameras and a Projector

Input: Fundamental matrices FP,C1, FP,C2 and

FC1,C2 between projector (P) and cameras (C1,C2).

1: Initialize focal lengths f init
P = f init

C1 = f init
C2 := 1000 and

principal points cinit
pP

, cpC1
, cpC2

to image centers.

2: Apply (18) and (19) to FC1,C2.

If successful (plausible results in range [1; 100000]) up-

date f init
C1 and f init

C2, otherwise skip.

3: Solve (15) with fixed f init
C1, f init

C2 to update f init
P and cinit

pP
.

4: Solve (15) to get refined values fP , fC1, fC2 and cpP
.

5: Build intrinsic calibration matrices Kl for l ∈ {1, ..., 3}
from computed focal lengths and principal points.

Output: Refined intrinsic calibration matrices Kl.
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