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Abstract

We propose an unsupervised protocol for learning a neu-

ral embedding of visual style of images. Style similarity is

an important measure for many applications such as style

transfer, fashion search, art exploration, etc. However,

computational modeling of style is a difficult task owing

to its vague and subjective nature. Most methods for style

based retrieval use supervised training with pre-defined

categorization of images according to style. While this

paradigm is suitable for applications where style categories

are well-defined and curating large datasets according to

such a categorization is feasible, in several other cases such

a categorization is either ill-defined or does not exist. Our

protocol for learning style based representations does not

leverage categorical labels but a proxy measure for form-

ing triplets of anchor, similar, and dissimilar images. Us-

ing these triplets, we learn a compact style embedding that

is useful for style-based search and retrieval. The learned

embeddings outperform other unsupervised representations

for style-based image retrieval task on six datasets that cap-

ture different meanings of style. We also show that by fine-

tuning the learned features with dataset-specific style la-

bels, we obtain best results for image style recognition task

on five of the six datasets.

1. Introduction

In visual arts, style is used as a primary apparatus to re-

late, organize and describe artworks. However, understand-

ing of style is highly contextual and vague. Depending on

the context, sense of style is attributed to time period, loca-

tion, culture, artist, technique, school of design, modality,

etc. depicted in Figure 1. A highly subjective construct like

style is hence, difficult to model computationally. In the

context of computer vision, Karayev et al. [11] presented

one of the early works for image style recognition with mul-

tiple datasets of photographic and painting images with dif-
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Watercolor Vector Art Oil Paint

Happy Peaceful Scary Gloomy

Early Renaissance
(Late 13th to early 

14th century)

Late Renaissance - 
Mannerism 

(Early 16th century)

Baroque 
(Early 17th century to 

mid 18th century)

Art Nouveau - 
Modern

(Late 19th century)

HDR NoirLong Exposure Depth of Field

Figure 1. Examples of image style categorization with different

meanings of style. Each row corresponds to a category based on a

particular understanding of style.

ferent types of visual style categorizations such as photo-

graphic techniques (Macro, HDR), moods (Serene, Melan-

choly), themes (Vintage, Romantic, Horror), artistic move-

ments (Renaissance, Post-modern). Later, Wilber et al.

[21] presented a large dataset of contemporary artworks –

the ‘Behance Artistic Media Dataset’ (BAM) with crowd-

sourced labels for media, emotions, and objects. Convolu-

tional Neural Networks (CNN) are found to be very use-

ful for gaining an implicit understanding of images from

vast amounts of data for many computer vision tasks. With

availability of these datasets and advances in neural learn-

ing, developing methods for computational understanding
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of style is becoming an interesting possibility.

Present methods related to style based representations

can be divided into two categories - implicit and explicit.

Unsupervised style transfer methods [4, 5] model style im-

plicitly as intermediate feature representations learned from

an unrelated supervised learning task such as object recog-

nition. Style, in this context typically describes the vi-

sual ‘look and feel’ (texture, tone, and colors) of an im-

age. These methods leverage Gram matrix features which

capture the correlation among feature maps extracted from

the many layers of a deep CNN (like VGG-19 [18]), typ-

ically pre-trained for object classification on a very large

dataset like ImageNet [3]. On the other hand, the popular

paradigm in computer vision community for explicit style

understanding is to treat it as a supervised classification

problem. Such methods generally use large datasets with

a fixed set of style labels to train a neural network for the

style classification task and use the learned feature maps for

style representation [1, 2, 8, 11, 21]. The representations

learned under this paradigm are effective and efficient for

task-specific retrieval but have practical limitations in terms

of generalization and scalability, the biggest one being the

need for manual curation of large training data. This en-

tire process is not only expensive and inefficient, but also

ill-suited for a subjective attribute like artistic style where

expert annotations are limited to a few significant works of

art, like famous paintings or gallery displays. In contrast,

Gram Matrix features are readily computable for any new

dataset and provide a specific measure of style disentangled

from content to some degree, but it is an inefficient repre-

sentation for search and retrieval due to high correlation and

very high dimensionality.

One of the key motivations of this paper is to investigate

the quality of understanding of style that can be achieved

by an unsupervised approach which does not rely on cat-

egorical labels of style. To this effect, we evaluate state-

of-the-art representations and their variants for style-based

retrieval. We further propose a protocol for unsupervised

learning of style representation by leveraging a proxy mea-

sure that provides a loose grouping of images. Our proxy

measure is based on Gram matrix features popularized by

style transfer methods. These features capture the ‘look and

feel’ of an image by measuring the correlation among fea-

ture maps produced by different convolutional layers of a

CNN and hence are a good choice for discerning different

visual styles. We train a Siamese CNN [20] for learning a

style embedding that is relevant for style based search and

retrieval. However, instead of leveraging the style class la-

bels specified for a dataset, we do this in an unsupervised

fashion for many datasets. We first divide a dataset into k

clusters using Gram matrix features and then use the clus-

ter labels for learning the embedding by (i) directly mini-

mizing a cross-entropy loss for cluster label classification,

and (ii) minimizing a triplet loss for maximizing the dis-

tances between stylistically (look and feel wise) similar and

dissimilar samples. The training with a triplet loss further

reinforces the stylistic similarity which is depicted in Fig-

ure 2. This is of large interest as the unsupervised protocol

can be used on unlabelled (no supervision) data for learn-

ing stylistically useful representations and help understand

a highly subjective concept like style (look and feel) better.

a.) b.)

c.) d.)

FC2 4096-D Gram 4096-D

B-CE 256-D B-Tri 256-D

Figure 2. t-SNE [19] visualizations of BAM dataset images based

on following feature representations: (top row) FC2 features and

PCA-reduced Gram features computed from pre-trained VGG19,

(bottom row) embeddings learned using our protocol. It can be ob-

served that using triplet loss (B-Tri) further reinforces the stylistic

similarity in comparison to other features (refer to Table 1 and

Figure 3 for more details on the representations).

We evaluate the performance of style representations

learnt using these unsupervised training protocols across

6 datasets with distinct categories of styles and compare

against other known style representations. The triplet loss

based unsupervised protocol outperforms other representa-

tions for most datasets and our experiments reveal many in-

teresting insights. We also introduce 2 new datasets consist-

ing of curated ‘Wall Art Sets’ and ‘Contemporary Drawings

and Paintings’.

To summarize, our contributions are two-fold:

• First, we propose an unsupervised protocol for learn-

ing a deep neural embedding of visual style of images
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by leveraging a proxy measure that provides a loose

grouping of stylistically similar images.

• Second, we present a comprehensive comparison with

other unsupervised frameworks for image style repre-

sentation and evaluate the effectiveness of the learned

embedding for retrieval and recognition tasks on a va-

riety of datasets, including 2 new datasets. We show

that our the proposed approach achieves best overall

results across datasets for the retrieval task and best

overall results on 5 out of 6 datasets for the recogni-

tion task, when compared with several baselines.

To the best of our knowledge, ours is the first work that pro-

vides a comprehensive review and evaluation of style repre-

sentations in an unsupervised setting.

2. Related Work

In recent years, style understanding has become an active

field of research in computer vision. In this section, we

summarize some of the key works in this area and place our

work in context of the state of the art.

Supervised style classification Karayev et al. [11] use

many hand-crafted features and features extracted from

deep CNNs pre-trained for object recognition task to train

linear classifiers in a supervised manner and evaluate recog-

nition performance on three datasets, each with a different

meaning of style categories. Aesthetic classification and

rating of photographic images has also been explored in

[14, 15] using attributes such as depth of field and expo-

sure. Recent methods on style-aware image retrieval and

image inpainting [2, 8] use Siamese Networks [20] with a

triplet loss for learning style representations and to disten-

tangle style from content. Our choice of triplet loss and

some design choices are inspired by success of [2], how-

ever the focus of their work is on supervised style retrieval.

Recently, Chu and Wu [1] investigated the effectiveness of

learned deep correlation features for style classification of

paintings and photographs. They use correlation within and

across different feature maps (outputs of different convolu-

tional layers) of a pre-trained CNN and train another shal-

low network on top of these features for dataset-specific

style classification.

Representations for automatic style transfer Use of

deep correlation features for style representation in [1] is

inspired by the seminal work of Gatys et al. [4, 5] for tex-

ture synthesis and style transfer. Texture of an image as

characterized by deep correlation representation like Gram

matrix of feature maps and is shown to disentangle content

and style by capturing details like brush strokes, angular ge-

ometric shapes, patterns and transition between colours [7].

Lin and Maji [13] also evaluate the efficacy of deep tex-

ture representations on texture and scene recognition bench-

marks. While style transfer is still an active field of re-

search, in our method we leverage Gram Matrix features

as a proxy measure for style similarity.

Automatic discovery of styles Wynen et al. [22] propose

an unsupervised learning method to automatically discover,

summarize, and manipulate artistic styles from large col-

lections of paintings. They use archetypal analysis on deep

image representations (Gram Matrix features [4]) from a

collection of artworks, to learn a dictionary of archetypal

styles, which are used to characterize a new image by local

statistics of deep features. While similar in spirit of unsu-

pervised learning, our work focuses on learning style rep-

resentation/embedding for retrieval and evaluates it across

datasets with different meanings of style.

3. Training Protocol and Data Construction

Instead of leveraging the style class labels specified for

a dataset, we learn style representations in an unsupervised

manner using data clusters formed using Gram matrix [4, 5].

The details of the training procedures are given later in this

section. We first explain the clustering and data construc-

tion.

3.1. Training Data Construction

We describe the feature based clustering and triplet for-

mulation which is used later for training a Triplet Network

for learning the style representations.

3.1.1 Gram Matrix features based clustering

Feature Extraction As mentioned previously, we wish to

learn a style representation without label supervision and

use similarity in Gram Matrix as a proxy for loose group-

ing of dataset images. We use VGG-19 CNN architecture

[18] pre-trained for object recognition and localization [16]

tasks and extract Gram matrix features as described in [4, 5].

An image is first passed through the CNN and the activa-

tions for each layer in the network are computed (shown as

Conv1 through Conv5 in Figure 3). As explained in [5]

each convolutional layer in the network acts as a non-linear

filter bank, and their activations in response to an input im-

age form a set of filtered images referred to as feature maps.

A convolutional layer l with Nl distinct filters has Nl fea-

ture maps each of size Ml (Ml = Hl ×Wl; where Hl and

Wl are the height and width of the feature maps in layer

l respectively). The responses in layer l can be stored as

a matrix F l ∈ RNl×Ml , where F l
i,j is the activation of

the ith filter at position j in layer l. Gram matrix features

for layer l are computed as Gl
i,j =

∑
k F

l
i,kF

l
k,j . Gram
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Figure 3. Different feature layers of VGG-19 based CNN used for our experiments.

Matrix features Gl ∈ RNl×Nl are extracted for five layers

(Conv1 through Conv5) of the VGG-19 network (shown as

G1 through G5 in Figure 3).

The resulting Gram Matrix feature vector captures in-

formation critical for style texture [6], but has a very high

dimensionality (typically of size ∼ 200k). To make the fea-

ture space more compact and computation more efficient,

we apply Principal Component Analysis (PCA) to the Gram

Matrix style representations and reduce the number of di-

mensions to 4096 while preserving more than 99% of the

variance as shown in [5, 22].

Clustering PCA reduced Gram Matrix features are com-

puted for each image in the training set, followed by soft K-

means clustering. The optimal number of clusters for each

dataset are determined using elbow method as explained in

[9]. Clustering on the reduced dimensional Gram Matrix

features creates clusters with stylistically similar images

coming together. We leverage this style-aware grouping to

construct triplets.

3.1.2 Triplet Formulation

Triplet loss tries to enforce a margin between anchor-

positive distance and anchor-negative distance in the

learned embedding space. Before the training of the

Siamese network begins, for every sample in the training

data as anchor, K positive and K negative candidates are

chosen in an offline pre-processing step as explained below.

While training, for each anchor image in a mini-batch, a

triplet is formed by randomly selecting a positive and a neg-

ative sample for every iteration, from K candidates chosen

in the offline process. This procedure is illustrated in Fig-

ure 4. This strategy shows a notable improvement in per-

formance than simply pre-selecting the triplets in an offline

process.

For selecting positive candidates for an anchor, we pick

K nearest neighbors (K-NN) in PCA reduced Gram matrix

space (with K = 40). Similarly, negative candidates can be

selected by picking K furthest neighbors (K-FN). However,

due to presence of outliers, this naı̈ve selection strategy re-

sults in negative samples with little or no variation irrespec-

tive of the anchor image (see last row of Figure 5). For suc-

cessful learning, we need to mine diverse and informative

triplets. Hard negative mining can bring more diversity and

relevance to this process [10]. We implement the following

two strategies for selecting a diverse pool of negative can-

didates, but empirically observe the cluster distance based

sampling to yield more diverse candidates across queries

and datasets.

Random sampling across clusters Given N clusters of

training data, for each anchor : (i) randomly sample K im-

ages from each cluster except its own, (ii) from the initial

set of (N − 1)K samples, randomly select K samples as

negative candidates.

Cluster distance based sampling Given N clusters of

training data, compute a distance between every pair of

cluster centers, with Di
min being the nearest cluster distance

and Di
max being the furthest cluster distance for cluster i.

Let γ denote a value between (0, 1). For an anchor belong-

ing to cluster i, we sample negative candidates as per Gaus-

sian probability distribution with mean (µ) at γ×
Di

min

Di
max

and

standard deviation (σ) as 2% of (Di
max −Di

min).

3.2. Training Protocol

We now explain the two training protocols used for style

representation learning. The cluster labels are used for

learning the embedding by (i) minimizing a cross-entropy

loss for cluster label classification, and (ii) minimizing a

triplet loss for maximizing the distances between stylisti-

cally similar and dissimilar samples.

3284



Training Images

VGG-19
Anchor

Negative (-)

Extract PCA reduced 
Gram matrix features from 

pre-trained CNN Clustering

K Positive 
Candidates

K Negative 
Candidates

Anchor Image

Triplet Construction Pre-process During Training

      Anchor

Random 
Selection

( a,    p,    n)
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Figure 5. Example triplets sampled with explained procedure in Section 3.1.2 (Cluster distance based sampling). Notice poor diversity for

K-FN based negative selection (last row).

Training with cross-entropy loss We train a CNN with

VGG-19 architecture [18] augmented by a 256-dimensional

bottleneck layer (shown in Figure 3) for 30 epochs and min-

imize cross-entropy loss for multi-class classification. The

use of bottleneck layer results in an improvement in perfor-

mance for style recognition and retrieval as shown in [2].

During this stage, we simply use the cluster ID for each im-

age as its class label.

Training with triplet loss We train a three branch

Siamese network similar to [20] with the same network ar-

chitecture as above for each branch and minimize a triplet

loss similar to [17]. We initialize the network branches with

weights from the above protocol and further train the net-

work by minimizing the triplet loss for 50 more epochs.

For training a Siamese Network with triplet loss we need

triplets (a, p, n) of anchor image a, positive image p (stylis-

tically similar to anchor) and negative image n (stylistically

dissimilar) which are sampled as explained in section 3.1.2.

The triplet loss is defined as L(a, p, n) = max(0, [m +
|f(a)−f(p)|2−|f(a)−f(n)|2]), where m is a margin pro-

moting convergence. The network describes a function f(.)
by minimizing the triplet loss defined in equation above.

Adam [12] optimization algorithm is used during training of

both stages. We will release the network models and train-

ing codes along with the paper for ease of reproduction.

4. Datasets

To evaluate our learning protocol and representations

across varied style definitions, we use various datasets with

diverse media and style categories. We introduce these

datasets briefly here and additional details are given in sup-

plementary material.

Behance Artistic Media Dataset (BAM) This dataset by

[21] consists of images from Behance1 - a portfolio website

1 https://www.behance.net/
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for professional and commercial artists. The dataset is an-

notated in a semi-supervised (human-in-the-loop) manner

for 7 artistic medium categories (3D renderings, comics,

pencil/graphite sketches, pen ink, oil paintings, vector art,

watercolor), and 4 emotion categories (happy, gloomy,

peaceful, scary). We use a subset of BAM dataset with

121K images (sampled similar to Behance-Net-TT 110K

set in [2]) balanced across media and emotional styles, and

with a Train, Validation and Test split as 80:5:15.

AVA Style Dataset Introduced in [15, 11], AVA dataset

comprises of 14 photographic style labels on 14K images

such as Complementary Colors, Duotones, HDR, Image

Grain, Light On White, Long Exposure, Macro, Motion

Blur, Negative Image, Rule of Thirds, Shallow DOF, Sil-

houettes Soft Focus, Vanishing Point. Train:Val:Test split is

85:5:10

Flickr This dataset, introduced in [11] captures several

different aspects of visual style in photographic images, in-

cluding photographic techniques (Macro, HDR), composi-

tion styles (Minimal, Geometric), moods (Serene, Melan-

choly), genres (Vintage, Romantic, Horror), and types of

scenes (Hazy, Sunny). There are 20 visual styles available

on 80,000 images. The Train:Val:Test split is 60:20:20, sim-

ilar to [11].

Wikipaintings A dataset [11] of paintings annotated with

historical art style labels, ranging from Renaissance to

Modern Art. We select 25 different styles, and har-

vest a subset of 25,000 images balanced in style labels.

Train:Val:Test split is 85:5:10.

DeviantArt Dataset DeviantArt2 is a website similar to

Behance for amateur artists, with different art style labels.

We harvest a dataset of 6500 images from this website for

Traditional Art and Digital Art categories. These are further

divided into Paintings, Drawings and Mixed Media leading

to 5 style classes. Train:Val:Test split is 85:5:10.

WallArt Dataset Wall Art dataset is scraped by us from

a home accessories marketplace website Junique3. The site

features handpicked wall art sets each of 2 or 3 artworks that

go well together, selected by their in-house curators. Each

set is also categorized into one of 13 broader style/theme

labels by the curators such as, Country Living, Fashion-

ista, Minimal Monochrome, Fine Art Photography, New

Romantic, Shades of Summer, Abstract & Colourful, etc.

We mainly use this dataset for qualitative evaluation of re-

trieval due to the interesting 2-level hierarchy of style rele-

vance (within each set and within each theme).

2 https://www.deviantart.com/ 3 https://www.juniqe.com/wall-art/inspiration

5. Experiments and Results

Abbreviation Feature Dimension Loss/Training

GM-L Gram PCA 1 4096 Pretrained

GM-S Gram PCA 2 256 Pretrained

F×C Fusion×Content[11] 4000 Pretrained

FC2 Fully Connected[18] 4096 Pretrained

B-Tri Bottleneck 256 Triplet

B-CE Bottleneck 256 Cross-entropy

Table 1. Details of feature representations used for performance

evaluation and comparison. Refer to Figure 3 for depiction of

these representations.

In this section, we evaluate performance of the style rep-

resentations learned using our proposed approach against

other known representations such as PCA-reduced Gram

Matrix features and features of [11] on datasets discussed

in the previous section. Table 1 provides a summary list

of these features with abbreviations for brevity. We use

these representations in two ways to establish their effec-

tiveness, (i) for retrieval tasks, to retrieve stylistically sim-

ilar images in the nearest neighbor sense (ii) for recogni-

tion tasks, where we train a softmax classifier on top of the

learned representations for image style recognition.

5.1. Retrieval Task

We use the learnt representation to perform retrieval of

stylistically similar images on 6 datasets. To evaluate the

retrieval performance, we form query sets for each dataset

by randomly sampling 10% of the images from the test par-

tition of each dataset (denoted by #Q in Table 2). For ev-

ery query, we sort the test split samples based on L2 dis-

tance in individual representation space and calculate Aver-

age Precision (AP) using dataset specific class labels. The

mean Average Precision (mAP) for each dataset and fea-

ture representation is provided in Table 2. A Combined

Dataset Score (CDS) is computed for each feature, which

is the weighted average (in terms of number of queries) of

the mAP across datasets. These results demonstrate that the

proposed unsupervised learning protocol improves retrieval

performance across all but one dataset over pre-trained fea-

tures. The triplet loss based representation B-Tri does bet-

ter than cross-entropy based representation B-CE over all

datasets as expected, with B-CE being the 3rd best overall.

For Wall Art dataset, training was done using a subset of

BAM samples due to small size.

Since we do not use class labels for training but use 4096

dimensional PCA reduced Gram features (GM-L) as proxy

measure for clustering images, we were initially expecting

the 256-dimensional learned representation to at best do as

well as GM-L representation. However, B-Tri shows no-

table improvement in mAP over GM-L. This improvement

is the result of the max-margin nature of triplet loss and di-

verse negative sampling, thus showing the effectiveness of
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Feat. Dim: ∼ 4096 Feat. Dim : 256

Dataset #Q Random F×C FC2 GM-L GM-S
B-CE

(Ours)

B-Tri

(Ours)

AVA Style 200 8.70 19.39 18.98 20.63 20.30 19.87 21.34

Flickr 2000 5.63 16.42 15.10 16.21 15.44 16.58 17.72

WikiPainting 250 4.56 15.72 15.64 16.99 15.20 17.10 19.22

BAM 1000 10.40 27.03 26.57 34.5 33.07 28.32 30.54

Deviant Art 100 21.33 35.51 32.82 36.00 35.12 38.80 40.17

WallArt 100 8.12 24.96 22.43 27.00 21.15 27.31 27.53

CDS (non-weighted) 9.78 23.17 21.92 25.22 23.38 24.66 26.09

CDS (weighted) 7.53 26.80 23.77 27.42 25.79 27.06 28.53

Table 2. mAPs computed for retrieval on different datasets and features. The learning procedure (Section 3) produces a compact represen-

tation B-Tri (256-D) which achieves best performance on 5 out of 6 datasets and best overall CDS. #Q indicate number of query images

and CDS indicate Combined Dataset Score (both weighted and non-weighted).

Feat. Dim : ∼ 4096 Feat. Dim : 256

Dataset
GM-L

(All Conv)

GM-L

(Conv 5)
F×C [11] FC2

B-Tri

(Ours)

B-CE

(Ours)

GM-S

(All conv)

AVA Style 48.32 46.96 58.10 57.90 53.86 40.74 38.19

Flickr 40.47 39.25 38.80 33.60 42.15 36.58 35.80

WikiPainting 51.02 50.92 47.30 35.60 52.36 44.37 36.47

BAM 87.81 86.20 82.40 80.10 89.30 84.21 80.76

Deviant Art 56.77 55.39 53.20 51.78 59.74 52.06 49.03

Table 3. mAPs computed for recognition task on different datasets by training a softmax classifier on top of the features. B-Tri (Ours)

performs best on all but the AVA Style dataset, improving the recognition mAP by at least 1.3.

the triplet training.

5.2. Recognition Task

Starting with different unsupervised representations

shown in Figure 1, we train a softmax max classifier on

the training splits of all datasets and evaluate style classifi-

cation performance on test splits. The mean Average Preci-

sion calculated across all style labels for all datasets is given

in Table 3. It can be seen that the triplet loss based unsuper-

vised representation (B-Tri) outperforms pre-trained feature

representations for all but the AVA Style dataset. This ex-

periment shows effectiveness of the learned representation

for task-specific fine tuning when labels are available.

For AVA Style dataset the Fusion×Content features

of [11] performs better. These features combine activa-

tions of independently trained content classifier with Fu-

sion features in outer product sense. Karayev et al. [11]

suggest that some style categories are inherently content-

dependent, hence combining content-classifier activations

improves performance. Since labelled data training is not

the main focus of this work, we did not pursue this reason-

ing with our representations.

Also, the combined Gram Matrix features (All Conv) per-

form better than standalone layers(Conv1 to Conv5). For

detailed information see the supplementary material.

5.3. Qualitative Results for Style based Search

Figure 6 shows the top 4 results for query images from

different datasets. As discussed before, style labels are often

contextual and convey a limited meaning of style. This in-

dicates that a low precision score does not necessarily imply

poor quality of visual similarity. The retrieved results that

are highlighted by a black box don’t have the same style

label as the query, despite obvious visual similarity. For

example, the first query (row1, left) belongs to style class

‘comic’ and retrieved results belong to the classes ‘Pen Ink’,

‘Graphite’, ‘Pen Ink’, ‘Gloomy’. We also observe that some

style classes are visually more similar as compared to other

classes. Figures 2 shows the t-SNE [19] visualisations of

the learned representations (B-CE and B-Tri) as compared

with pre-trained Gram Matrix features and FC2 features.

This further strengthens the fact that triplet based learning

improves the stylistic similarity (look and feel wise) after

training.

We provide more results and statistics such as confusion

matrix per dataset for retrieval task, feature visualizations,

clustering performance, and additional qualitative results in

the supplementary material.
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Figure 6. Retrieval results using the best performing representation B-Tri for example queries from different datasets. Images highlighted

by black border have style labels different from query style labels although they are visually similar.

6. Conclusion and Future Work

In this work, we proposed a protocol for unsupervised

learning of image style representation using Gram Matrix

(deep feature correlation map) as a proxy measure of stylis-

tic similarity. Since style is a context-dependent notion, we

evaluated performance of the learned representation on a

number of datasets with very different definitions of style

categorization. We showed that triplet loss based training

indeed learns an effective representation that outperforms

traditional representations despite being more compact. The

sampling scheme introduced for diverse negative sample

mining proves useful for improved training. We observed

that visual stylistic similarity or ‘look and feel’ notion of

style is not always correlated with style categorization and

showed this both qualitatively and quantitatively.

In future, we wish to explore the applications of our pro-

tocol with other proxy measures for style-aware grouping,

e.g. semantic descriptions for fashion image search. We

also wish to expand our unsupervised learning framework

such that hierarchies of styles or multiple notions of style

can be captured and represented simultaneously.
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