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Abstract

Creating plausible virtual actors from images of real ac-

tors remains one of the key challenges in computer vision

and computer graphics. Marker-less human motion estima-

tion and shape modeling from images in the wild bring this

challenge to the fore. Although the recent advances on view

synthesis and image-to-image translation, currently avail-

able formulations are limited to transfer solely style and

do not take into account the character’s motion and shape,

which are by nature intermingled to produce plausible hu-

man forms. In this paper, we propose a unifying formu-

lation for transferring appearance and retargeting human

motion from monocular videos that regards all these as-

pects. Our method synthesizes new videos of people in a

different context where they were initially recorded. Differ-

ently from recent appearance transferring methods, our ap-

proach takes into account body shape, appearance, and mo-

tion constraints. The evaluation is performed with several

experiments using publicly available real videos containing

hard conditions. Our method is able to transfer both hu-

man motion and appearance outperforming state-of-the-art

methods, while preserving specific features of the motion

that must be maintained (e.g., feet touching the floor, hands

touching a particular object) and holding the best visual

quality and appearance metrics such as Structural Similar-

ity (SSIM) and Learned Perceptual Image Patch Similarity

(LPIPS).

1. Introduction

Humans start learning early in their lives to recognize hu-

man forms and make sense of what emotions and meaning

are being communicated by human movement. We are, by

nature, specialists in the human form and movement anal-

ysis. Even for a meticulous artist, it may be hard to cap-

ture in a purely manual approach the fine details of human

form and motion. Human form and motion estimation is at

the core of a wide range of applications including entertain-

(a) (b)

Figure 1: Overview of the motion and appearance transfer from

a target video to different videos. After reconstructing a model for

the target human (shown in (a)), we transfer his shape and motion

to different videos as shown in (b). Top row: video with the source

motion. Bottom row: New video with the retargeted motion and

appearance of the target human model.

ment, graphic animation, virtual and augmented reality, to

name a few.

Capturing human geometry and motion has been im-

proved over the decades through model-based and learning

techniques. Computer Vision and Computer Graphics com-

munities have progressively adopted learning techniques to

automate the modeling and animation process of articulated

characters. We have witnessed a variety of approaches used

to extract articulated character patterns and capture three-

dimensional motion, shape, and appearance [24, 17, 14, 10]

from videos and still images from real actors. Despite re-

markable advances in estimating 3D pose and shape, most

of these methods only provide 3D meshes from the outer

surfaces of objects, pose, and skeletons associated with

those meshes. Even techniques such as the works of Chan et

al. [10], Esser et al. [14], and Wang et al. [33] are limited to

only transfer the appearance/style from one actor to another.

In other words, these methods stretch or shrink the texture

of a target actor to fit the texture in the movement instead of

retargeting and fitting the motion into the actor (an alluring

example is depicted in Figure 2).
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Target person      Source motion          vid2vid                    Ours 
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Figure 2: Motion and appearance transfer using vid2vid [33] and

our formulation. From left to right: target person, source motion

video with a human of different body shape, vid2vid, and our retar-

geting results. Note that vid2vid stretched, squeezed and shrinked

the body forms whenever the transferring characters have different

morphologies.

In this paper, we propose a novel retargeting frame-

work that unifies appearance transfer with retargeting mo-

tion from video to video by adapting a motion from one

character in a video to another character. The proposed ap-

proach synthesizes a new video of a person in a different

context where this person was initially recorded. In other

words, given two input videos, we investigate how to syn-

thesize a new video, where a target person from the first

video is placed into a new context performing different mo-

tions from the second video. The proposed method is com-

posed of four main components: motion estimation in the

source video, body model reconstruction from target video,

motion retargeting with spatio-temporal constraints, and fi-

nally image composition. By imposing spatial and temporal

constraints on the joints of the characters, our method pre-

serves features of the motion, such as feet touching the floor

and hands touching a particular object. Also, our method

employs an adversarial learning in the texture domain to im-

prove textures extracted from frames and leverage details in

the visual appearance of the target person.

In this context, several recent learning-based methods

have been proposed on synthesizing new pose from a source

image (e.g.,[19, 40, 22, 10, 14]). Unlike the methods

[10, 14, 33] that are built on learning approaches to work

in the image domain to transfer texture, our approach aims

at adapting the movement from one actor to another tak-

ing into account the main factors for a moving actor: body

shape, appearance and motion.

The main technical contributions of this paper are as fol-

lows: i) a marker-less human motion estimation technique

that takes into account both body shape and camera pose

consistencies along the video; ii) a generative adversarial

network for improving visual details that works directly

with texture maps to restore facial texture of human models;

and iii) a unified methodology carefully designed to transfer

motion and appearance from video to video that preserves

the main features of the human movement and retains the

visual appearance of the target character.

We demonstrate the effectiveness of our approach quan-

titatively and qualitatively using publicly available video

sequences containing challenging problem conditions, as

shown in Figure 1.

2. Related Work

3D human shape and pose estimation. Several works

have been proposed to estimate both the human skeleton

and 3D body shape from images. Sigal et al. [28] com-

pute shape by fitting a generative model (SCAPE [6]) to

the image silhouettes. Bogo et al. [8] proposed the SM-

PLify method, which is a fully automated approach for es-

timating 3D body shape and pose from 2D joints in images.

SMPLify uses a CNN to estimate 2D joint locations and

then fits an SMPL body model [21] to these joints. Lass-

ner et al. [20] take the curated results from SMPLify to

train 91 keypoint detectors. Some of these detectors cor-

respond to the traditional body joints, and others corre-

spond to locations on the surface of the body. Similarly,

Kanazawa et al. [17] used unpaired 2D keypoint annota-

tions and 3D scans to train an end-to-end network to infer

the 3D mesh parameters and the camera pose. Their method

outperformed the works [8, 20] regarding 3D joint error and

runtime. However, their bounding box cropping strategy,

which frees 3D pose regression from having to localize the

person in scale and image space, loses global information

and temporal consistency required in the motion transfer.

Retargeting motion. Gleicher seminal work of retarget-

ing motion [15] addressed the problem of transferring mo-

tion from one virtual actor to another with different mor-

phologies. Choi and Ko [11] pushed further Gleicher’s

method by presenting an online version based on inverse

rate control. Villegas et al. [31] proposed a kinematic neu-

ral network with an adversarial cycle consistency to remove

the manual step of detecting the motion constraints. In the

same direction, the recent work of Peng et al. [24] takes a

step towards automatically transferring motion between hu-

mans and virtual humanoids. Despite remarkable results in

transferring different movements, these methods are limited

to either virtual or textureless characters. Similarly, Aber-

man et al. [2] proposed a 2D motion retargeting using a

high-level latent motion representation. This method has

the benefit of not explicitly reconstructing 3D poses and

camera parameters, but it fails to transfer motions if the

character walks towards the camera or with a large varia-

tion of the camera’s point-of-view.

Synthesizing views. The past five years has witnessed

the explosion of generative adversarial networks (GANs)
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Figure 3: Overview of our retargeting approach that is composed of four main components: human motion estimation in the source video

(first component); we retarget this motion into a different target character model (second component), considering the motion constraints

(third component) and by last, we synthesize the appearance of the target character into the source video.

to new view synthesis. GANs have emerged as promis-

ing and effective approaches to deal with the tasks of syn-

thesizing new views, against image-based rendering ap-

proaches (e.g.,[18, 38, 27]). More recently, the synthesis

of views is formulated as being a learning problem (e.g.,

[30, 13, 36, 7, 14]), where a distribution is estimated to sam-

ple the new views. A representative approach is the work

of Ma et al. [22], where the authors proposed to transfer

the appearance of a person to a given pose in two steps.

Similarly, Lassner et al. [19] proposed a GAN called Cloth-

Net. ClothNet produces people with similar pose and shape

in different clothing styles given a synthetic image silhou-

ette of a projected 3D body model. In the work of Esser et

al. [14], a conditional U-Net is used to synthesize new im-

ages based on estimated edges and body joint locations.

Despite the impressive results for several inputs, in most

cases, these methods fail to synthesize details of the hu-

man body such as face and hands. Recent works [1, 10]

applied an adversarial training to map a 2D source pose to

the appearance of a target subject. Although these works

employ a scale-and-translate step to handle the difference

in the limb proportions between the source skeleton and the

target, they have still clear gaps in the motion in the test

time when comparing with the motion in the training time.

Wang et al. [33] presented a general video-to-video synthe-

sis framework based on conditional GANs to generate high-

resolution and temporally consistent videos. Unfortunately,

these learning-based techniques transfer style and wrongly

distorts characters with different morphologies (proportions

or body parts’ lengths). Moreover, differently from our

method, these state-of-the-art approaches [1, 10, 33] are

dataset specific, i.e., they require training a different GAN

for each video of the target person with different motions

to perform the transferring. This training is computation-

ally intensive and takes several days on a single GPU. Our

method, for its turn, does not require a large number of im-

ages and powerful hardware for training, keeps visual de-

tails from the target character while preserving the features

of the transferred motion.

3. Retargeting Approach

Our method can be divided into four main components.

We first estimate the motion of the character in the source

video. Our motion estimation regards essential aspects to

obtain plausible character movements, such as of ensur-

ing a common system coordinate for all image frames and

temporal motion smoothness. Second, we extract the body

shape and texture of the target character in the second

video. Then, the retargeting component adapts the esti-

mated movement to the body shape of the target charac-

ter, while considering temporal motion consistency and the

physical interactions (constraints) with the environment. Fi-

nally, the image rendering and composition component ren-

ders the texture (appearance), extracted from the target char-

acter, into the background of the source video. Figure 3

shows a schematic representation of the method pipeline.

3.1. Human Body and Motion Representation

We represent the human motion by a set of translations

and rotations over time of joints that specify a human skele-

ton. This skeleton is attached to the characters body and is

defined as a hierarchy of 24 linked joints. Each joint pose

P
i (Pi ∈ SE(3) is the pose of the i-th joint) is given by

recursively rotating the joints of the skeleton tree, starting

from the root joint and ending in its leaf joints (i.e., the

forward kinematics denoted as FK). To represent the 3D

shape of the human body, we adopted the SMPL model

parametrization [21], which is composed of a learned hu-

man shape distribution M, 3D joint angles (θ ∈ R
72 defin-

ing 3D rotations of the skeleton joint tree), and shape coef-
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      frame k                   frame k+25

Figure 4: Schematic view of the motion reconstruction. Note the

change of the point of view between the virtual cameras (in red) for

a gap of 25 frames (showed by the different positions of the blue

and green boxes). This change is ignored by the bounding box

crop, producing temporally inconsistent pose and shape estimates.

ficients β ∈ R
10 that model the proportions and dimensions

of the human body.

3.2. Human Motion Estimation

We start estimating the actor’s motion in the source

video. Our method builds upon the learning-based SMPL

pose estimation framework of Kanazawa et al. [17]. The

human pose and shape are predicted in the coordinate sys-

tem of a bounding box around the person, where a weak-

perspective camera model is adopted as shown in Figure 4.

This bounding box normalizes the person in size and po-

sition, as also noted in [23], which frees 3D pose estima-

tion from the burden of computing the scale factor (between

the body shape to the camera distance) and the location in

the image. However, this incurs in a loss of temporal pose

consistency required in the motion transfer. This also often

leads to wrong body shape estimates for each frame, which

should be constant along the video.

In order to overcome these issues, we map the initial

pose estimation using virtual camera coordinates, as illus-

trated in Figure 4. For that, our motion estimation mini-

mizes an energy function with two terms:

E(θk, t) = λ1EJ(β
s,θk, t,K,J2D) + λ2Eθ(θ

s
k,θk),

(1)

where t ∈ R
3 is the translation, K ∈ R

3×3 is the cam-

era intrinsic matrix, J2D is the projections of the joints in

the reconstruction of [17], and λ1, λ2 are scaling weights.

The first term encourages the pose projections of the joints

to remain in the same locations into the common reference

coordinate system. The second term favors maintaining the

joints’ angles configuration, while reinforcing the adopted

character shape to have averaged shape coefficients (βs) of

the entire video. Finally, the human model pose in each

frame is then obtained with the forward kinematics (FK) in

the skeleton tree:

(
P

0
k P

1
k . . . P23

k

)
= FK(M,βs,θk), (2)

where P
k
i = [FK(M,βs,θs

k)]i is the pose of the joint ith

at frame k. Thus, we define the motion of each joint i as the

set of successive poses in the frames Mi = [Pi
1 P

i
2 ... P

i
n].

Motion Regularization. Since the character poses are es-

timated frame-by-frame, the resulting motion might present

some shaking motion with high-frequency artifacts in some

short sequences of the video. To reduce these effects, we ap-

ply a motion reconstruction to seek a new set of joint angles

θ̂s that creates a smoother character motion. We compute a

smoother configuration for the joints by minimizing the fol-

lowing cost of inverse kinematics (IK) in the joint positions

and end-effectors orientations Mi:

argmin
θ̂

(
Σ24

i=1||̂t
i − t

i||2 + γΣ5
i=1||R̂

i
R

iT − I||F

)
,

(3)

where P̂
i = [R̂i

t̂
i] is given by the forward kinematics

P
i
k = [FK(M,βs,θs

k)]i with unknown joint angles θs
k,

||.||F is the Frobenius norm of the orientation error, and

γ the scaling factor between the position of all joints and

orientation of the end-effectors (i.e., feet, hands, and head).

This reconstruction strategy removes high-frequency arti-

facts of the motion while maintaining the main movement

features of the body end-effectors.

3.3. Target 3D Human Body Model Building

This section presents our strategy to build the 3D model

and texture of the character that is transferred to the source

video (i.e., the target body model βt). Our target recon-

struction component starts with an initial 3D body model

from Alldieck et al. [5]. This produces a reasonable model

of people in clothing from a single video in which the

person is moving in an A-pose configuration. We remark

that any technique, capable of creating plausible 3D human

models, could be used to get this initial body model estimate

in our method (e.g., [4, 3, 26]). Although the good resulting

3D human model accuracy, the texture images were often

blurred and lacking of details. In the following, we discuss

how to mitigate the loss of detail by taking inspiration from

the recent advance in generative adversarial networks.

GAN Face Texture Restoration. According to Balakr-

ishnan et al. [7], humans are particularly good at detecting

facial abnormalities such as deformations or blurring. Un-

fortunately, when mapping textures into a target 3D model,

we lose important details mainly because of warping and

interpolation artifacts.

In order to reduce this effect, we exploit the capabil-

ity of generative adversarial networks (GANs) to denoise

images [16]. However, differently from previous works,
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Figure 5: Face texture enhancement strategy using a conditional

GAN. An example of the restoring results in the texture domain is

shown in the right column, side by side with the visualizations of

the textures in the human model.

we perform the learning directly in texture map images as

shown in Figure 5. This produced better restoration re-

sults probably due to smaller geometrical variability from

the texture maps compared to the appearance in the 3D

body mesh. We circumvent the problem of nonexistence

of a publicly available dataset of face textures, to train our

GAN model, by using 500 human face textures (real tex-

tures) from 3D.SK1. We augmented the training dataset by

adding noise, small rotations and blurring warped images.

For the training, we adopted the conditional GAN proposed

in [16] used for image-to-image translation. Some input im-

ages of the augmented dataset and the resulting restoration

can be seen in Figure 5 and in the supplementary material.

3.4. Retargeting using Spacetime Constraints

After computing the source motion (Mi, θs) and the tar-

get human 3D model (βt), we proceed to the motion retar-

geting component. The retargeting is essential to guarantee

that some physical restrictions are still valid during the tar-

get character animation. In this paper, we assume that the

target character has a homeomorphic skeleton structure to

the source character, i.e., the main geometric differences are

in terms of bone lengths or proportions. Our first goal is to

retain the joint configuration of the target as close as possi-

ble of the source joint configurations, i.e., to keep the pose

error ek = θt
k − θs

k small and then preserve the appearance

of the motion whilst respecting movement constraints. A

secondary objective is to keep a similar movement style in

the retargeted motion over time. Thus, we propose a predic-

tion error in 3D space to maintain the style from the original

character motion:

CP =

i+n∑

k=i

(
FK(M,βt,θt

k+1)− FK(M,βt,θt
k)

−
(
FK(M,βs,θs

k+1)− FK(M,βs,θs
k)
))

. (4)

1https://www.3d.sk/

Rather than considering a full horizon cost (total number

frames), we leverage only the frames belonging to a neigh-

boring temporal window of n frames equivalent to two sec-

onds of video. This neighboring temporal window scheme

allows us to track the local temporal motion style producing

a motion that tends to be natural compared with a realistic

looking of the estimated source motion. Only considering a

local neighboring window of frames also results in a more

efficient optimization.

Spatial Motion Restrictions and Physical Interactions.

The motion constraints are used to identify key features

of the original motion that must be present in the retar-

geted motion. The specification of these constraints typi-

cally involves only a small amount of work in comparison

with the task of creating new motions. Typical constraints

are, for instance, that the target character feet should be

on the floor; holding hands while dancing or while grab-

bing/manipulating an object in the source video. Some ex-

amples of constraints are shown in Figures 6 and 7, where

the characters are placing their left hand in a box or over a

cone object.

Our method is capable of adapting to such situations in

terms of position by constraining the positioning of the end-

effectors to respect a set of constraints in the frame k given

by the joint poses PR =
(
P

j
P

m . . . Pn
)

as:

CR = Σi

(
[FK(M,βt,θt

k)]i − [PR]i
)
. (5)

Space-time Cost Error Optimization. The final motion

retargeting cost combines the source motion appearance

with the different shape and restrictions of the target char-

acter using equations (4) and (5):

e
∗ = argmin

e

(
α2
1

2
CT

P (e)WPCP (e)+

+
α2
2

2
CT

R(e)WRCR(e) +
α2
3

2
e
T
We

)
, (6)

where e = (ek+1, . . . , ek+n)
T , n the number of frames

considered in the retargeting, α1, α2 e α3 are the contribu-

tions for the different error terms and, WP ,WR and W are

diagonal matrices of weights for the prediction, restrictions

and motion similarity terms. Each of these weight matri-

ces are set such as to penalize more the errors in joints that

are closer to the root joint. We minimize this cost function

with a gradient-based NLSQ iterative optimization scheme,

where the Jacobians are computed using automatic differen-

tiation for each degree of freedom. The optimization stops

when either the error tolerance or the maximum number of

iterations are reached. An example of the retarget motion
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Figure 6: The left hand’s trajectory on the y-axis when transfer-

ring the motion of pick up a box between two differently sized

characters: original motion (blue line), a naive transfer without

constraints at the person’s hand (red line) and with constraints

(green line). Frames containing motion constraints are located be-

tween the red circles.

trajectory of the left hand of our approach is shown in Fig-

ure 6. Note the smooth motion adaptation produced by the

retargeting with the restrictions in frames 47 and 138 (green

line) when the character’s hand was touching the box.

3.5. Model Rendering and Image Compositing

The last step of your framework composed the rendered

target character and the source background. For that, we

first segment the source image into a background layer us-

ing, as a mask, the projection of our computed model with a

dilation. Next, the background is filled with the method pro-

posed by Criminisi et al. [12] to ensure temporal smooth to

the final inpainting. We compute the final pixel color value

as the median value between the neighboring frames. Fi-

nally, the background and our render of the model are com-

posed using Poisson blender [25] to illumination adjust-

ment. We remark that we tested different inpainting formu-

lations, comprising deep learning-based methods presented

in [37, 32]. Our experiments showed that although these

deep learning-based methods synthesize plausible pixels for

each frame, the adopted inpainting strategy has better re-

sults considering the visual and spatio-temporal consistency

between the frames. Furthermore, [32] requires a static

mask in the video and this is too restrictive to our problem.

4. Experiments and Results

Video Sequences. The selected videos cover a variety of

representative conditions to the problem, such as different

types of motion, lighting conditions and background, actors

morphologies and videos used by previous works. All four

sequences contain different subjects and types of motion

constraints that should be taken into account in order to syn-

thesize plausible videos. A short description of these videos

is as follows: i) alfonso-ribeiro2: This video has strong

illumination changes and fast character motions, with a

2https://www.youtube.com/watch?v=pbSCWgZQf g

1.67 meters height male character dancing. The restric-

tions are mostly in the dancers’ feet; ii) joao-pedro: Video

with moderate speed motions and with a static background,

where a 1.80 meters height male character is walking and

interacting with a cone in the floor. The motion constraints

are in the feet and hands; iii) tom-cruise3: This video con-

tains motions with moderate speed but with displacements

in all directions in the scene, where a 1.70 meters height

male character is pretending to sing while dancing. The mo-

tion restrictions are in the dancer’s feet; iv) bruno-mars4:

Video with fast motions where a 1.65 meters height male

character is dancing, with partial occlusions of arms and

feet. The restrictions are in the dancer’s feet. This sequence

was also used by [10].

In order to build the target person shape and appearance,

we used videos of People-Snapshot dataset [5] and videos of

actors recorded with a Point Grey camera. These sequences

were captured with the camera fixed at a distance of three

meters from the characters.

Parameters Setting and GAN Training. We set λ1 =
10−6 and λ2 = 10−2 in the motion estimation. In the recon-

struction and retargeting steps, we used γ = 10, α1 = 10,

α2 = 5 and α3 = 1. Our textured dataset augmentation

process was performed applying random small pixel trans-

lations (between −15 and 15 pixels) and random rotations

(between −25 and 25 degrees) for the same image. Each

original texture map was replicated twenty times with ran-

dom transformations resulting in a training set of 10, 000
images. As suggested by Isola et al. [16], our training loss

is a traditional GAN loss combined with a L1 loss to re-

duce including visual artifacts. We used a factor λ = 500
(conversely to λ = 100 employed in [16]) in order to avoid

including visual artifacts. The other remaining training pa-

rameters were the Adam solver with learning rate of 0.0002
and momentum β1 = 0.5, β2 = 0.999.

Baseline and Metrics. We used the V-Unet proposed by

Esser et al. [14] as a baseline. The baseline choice follows

two main reasons: i) Most of the related work to our ap-

proach are in the area of image-to-image translation using

conditional GANs and the V-Unet is a recent state-of-the-art

technique that represents this class of approaches; ii) Recent

state-of-the-art techniques such as [1, 10, 33] are dataset

specific, i.e., they need to train a GAN for each video where

the target subject is performing a large set of different poses.

This training has a consequent computational effort, which

can last several days. Furthermore, they did not provide the

code or training data making the comparison impractical.

Lastly, we recall that these methods are limited to transfer

solely style and suffers from the structure issue previously

discussed in Section 2 and shown in Figure 2.

3https://www.youtube.com/watch?v=IUj79ScZJTo
4https://www.youtube.com/watch?v=PMivT7MJ41M
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Table 1: Visual quantitative metrics of our method and V-Unet.

Video sequence SSIM1 LPIPS2 Missed detections3

V-Unet Ours V-Unet Ours V-Unet Ours

alfonso-ribeiro 0.834 0.837 0.137 0.126 0.554 0.342

joao-pedro 0.980 0.987 0.018 0.009 0.596 0.513

tom-cruise 0.986 0.988 0.013 0.008 0.867 0.832

bruno-mars 0.950 0.962 0.044 0.035 0.245 0.301
1Better closer to 1. 2Better closer to 0. 3Better closer to 0.

Due to the lack of ground truth data for retargeting be-

tween two different video subjects, we adopted the same

quantitative visual evaluation metrics of [10]. Thus, we

measure the appearance quality using Structural Similarity

(SSIM) [34] and Learned Perceptual Image Patch Similarity

(LPIPS) [39] between consecutive frames. For a fair com-

parison, the final image composition of the V-Unet uses the

same background inpainting and post-process used in our

method. We also report the average number of missed 2D

joints’ detections from OpenPose [9, 29, 35] in the produced

videos. Table 1 shows the quantitative appearance metrics

and Figure 8 depicts some frames for all video sequences.

4.1. Discussion

Visual Appearance Analysis. It can be seen from the

quantitative and qualitative results for all sequences that

the proposed method leads the performance in both SSIM

and LPIPS metrics. Furthermore, Figure 8 shows that our

method presents a much richer and detailed visual appear-

ance of the target character than when using V-Unet. One

can easily recognize the person from the target video (top

left image) in the samples of the retargeting video (third

rows for each video).

To assets in which extent our texture denoising con-

tributes to the success of our approach in retaining the visual

appearance of the target, we tested our network restoration

in several face textures from People-Snapshot dataset [5]

and in our generated target human models. Figure 5 shows

some results after applying the denoising GAN to improve

the texture for typical faces. We provide some additional

denoising results in the supplementary material.

Shape and Motion analysis. We show in Figure 8 some

resulting frames for all four video sequences. Since V-Unet

uses a global pose normalization, it resizes the source image

to approximate scale and location of the target person and,

then, it was not able to maintain the length of the limbs dur-

ing the transferring. As a result, the limbs were stretched

to fit the source shape. Conversely, the proposed approach

did not stretch or shrink the body forms because it regards

shape, appearance as well as the motion constraints to de-

fine the form of the retarget character.

In terms of motion reconstruction, our method also out-

performed V-Unet. For instance, V-Unet clearly failed to

place the target’s feet on the right position in the last frame

Figure 7: Video sequence results with motion constraints. Top

row: source video. Middle row: results using a naive transfer-

ring without retargeting constraints. Bottom row: obtained results

with our method considering the motion retargeting constraints.

of alfonso-ribeiro results shown in Figure 8. Due to the

temporal reconstruction, our method was able to transfer

the target to the correct pose. Additionally, these results

reinforce the capability of our method to impose different

space-time constraints to the retargeting motion. As shown

on the frames of Figure 8, different motions are adapted to

fit the proportions of the target person and to keep the con-

straints of the motion, such as of placing the hand on cone

object, as illustrated in the results from the sequence joao-

pedro in Figures 7 and 8 for two distinct target characters.

We provide additional results in the supplementary material.

5. Conclusions

In this paper, we proposed a complete retargeting frame-

work that incorporates different strategies to extract and to

transfer human motion, shape, and appearance between two

real characters in monocular videos. Differently from clas-

sic retargeting methods that use either appearance or mo-

tion information, the proposed framework takes into ac-

count simultaneously four important factors to retargeting,

i.e., pose, shape, appearance, and features of the motion.

We performed real transferring experiments on publicly

available videos. Our approach outperforms V-Unet in

terms of both appearance metrics (SSIM and LPIPS) and

number of missed joints’ detections when estimating the

skeleton. Our results suggest that retarget strategies based

on image-to-image translation are not powerful enough to

retarget motions while keeping the desired constraints of

the motion and shape/appearance. Future work directions

include automatically detecting the retargeting motion con-

straints in the videos, as well as improving the appearance

restoration and transferring beyond the face texture maps.

Another interesting topic would be to improve the scene

compositing (e.g., estimating the scene illumination) for a

more realistic rendering.
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Figure 8: Qualitative retargeting results using video sequences with different types of motion, lighting conditions, background and actors

morphologies. In each sequence: First row: target person and motion source; Second row: V-Unet result; Third row: Our method.
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