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Abstract

Estimating 3D hand pose from a single RGB image is a

challenging task because of its ill-posed nature (i.e., depth

ambiguity). Recently, various generative approaches have

been proposed to predict the 3D joints of an RGB hand im-

age by learning a unified latent space between two modal-

ities (i.e., RGB image and 3D joints). However, project-

ing multi-modal data (i.e., RGB images and 3D joints) into

a unified latent space is difficult as the modality-specific

features usually interfere the learning of the optimal la-

tent space. Hence in this paper, we propose to disentan-

gle the latent space into two sub-latent spaces: modality-

specific latent space and pose-specific latent space for 3D

hand pose estimation. Our proposed method, namely Dis-

entangled Cross-Modal Latent Space (DCMLS), consists of

two variational autoencoder networks and auxiliary com-

ponents which connect the two VAEs to align underlying

hand poses and transfer modality-specific context from RGB

to 3D. For the hand pose latent space, we align it with the

two modalities by using a cross-modal discriminator with

an adversarial learning strategy. For the context latent

space, we learn a context translator to gain access to the

cross-modal context. Experimental results on two widely

used public benchmark datasets RHD and STB demonstrate

that our proposed DCMLS method is able to clearly out-

perform the state-of-the-art ones on single image based 3D

hand pose estimation.

1. Introduction

Hand pose estimation [30, 5, 36, 24, 12, 8, 31, 28] has

been widely studied for various applications in augmented

reality, virtual reality and human machine interaction sys-

tems. Estimating 3D hand pose from a single image re-

mains a challenge because hands are highly deformable.

The challenging aspects such as complex hand gestures,

different viewpoints and hand articulations lead to further

difficulties in inferring precise joint positions in 3D space

[2, 28, 9]. Hand-crafted anatomical models were deployed

to address these issues. Many single depth image based

3D hand pose estimation methods [31, 30, 29, 23, 33, 32]

have been proposed with promising performance recently,

as depth information makes it easier to deal with cluttered

background. Due to the easy access to RGB data through

conventional cameras, 3D hand pose estimation task using

RGB images [43, 27, 22, 6, 15, 25] has attracted lots of at-

tentions. RGB-based methods attempt to recover 3D hand

poses directly from RGB images. Nevertheless, many addi-

tional issues are exposed such as context distractions (e.g.,

background and lighting configurations) and hand appear-

ance variations. Hence RGB-based 3D hand pose estima-

tion still remains an ill-posed problem due to the depth am-

biguities.

A recent work by Spurr et al. [27] extends the idea of a

depth based approach from Wan et al. [33], which learns a

latent space of 3D hand poses, and apply it to RGB based

pose estimation task by learning a single cross-modal la-

tent space between RGB modality to 3D hand pose modal-

ity. As a by-product, it jointly learns a mapping from the

input modality to the output modality. However, when per-

forming cross-modal generation as in [27], the single latent

space learnt from multiple modalities usually contains the

issues of balancing the shared representation and modality-

specific representation. In addition, the modality-specific

features usually interfere the learning of the shared latent

space. Modality context, for example captures background

details for 2D RGB images and 3D camera intrinsic for 3D

hand pose domain and those should not be encapsulated in

a shared representation space, while these modality specific

representation are essential and uniquely characterizes each

modalities.

However, directly capturing these representation are not

feasible since there is no clear boundary or a representation

set which could distinguish one modality from the other,

hence the alternative is to approximate them by exploiting

single modality self-reconstruction when having a shared

modality-shared representation set. To this end, we propose

to address these two issues by disentangling the shared la-

tent space and modality-specific latent space, and improve

each disentangled latent space by using different modules,

respectively.
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In this paper, we introduce a novel 3D hand pose es-

timation method, namely Disentangled Cross-Modal La-

tent Space (DCMLS), which learns better latent space by

hand pose representation disentanglement. Our model con-

sists of two variational autoencodesr (VAEs) [17] to extract

the latent representation of the two modalities. For each

modality, we decompose the latent representation into two

parts, including (1) shared hand pose representation and

(2) modality-specific context representation. To disentan-

gle and align the shared hand pose representation of the

two modalities, we train a hand representation discrimina-

tor to learn and update the encoders by using the adversar-

ial learning strategy [11]. Meanwhile, for modality-specific

context representation, apart from learning the individual

modality-specific representation by self-reconstruction, we

further learn a modality translator to map the cross-modal

context representation from one modality (i.e., RGB) to the

other (i.e., 3D). After recomposing the context representa-

tion with the hand pose representation, we acquire better

representation from both modality-specific and modality-

shared aspects, and as a result obtain improved performance

of estimating 3D hand joints.

Overall, the key contributions of our work can be sum-

marised as follows:

• To the best of our knowledge, this is the first study on

3D hand pose estimation which disentangles the hand

pose and context representation from different modal-

ity latent spaces without explicit supervision of the dis-

entangling factors.

• We propose a novel dual VAE structured network with

a cross-modal hand pose discriminator and a cross-

modal context translator to improve different modal-

ity latent spaces. The hand pose discriminator aligns

the shared hand pose representations across different

modalities. The context translator maps the context

representation from one modality image (e.g., RGB or

2D) to the other (e.g., 3D pose).

• We conduct comprehensive qualitative and quantita-

tive experiments to demonstrate the superiority of our

proposed DCMLS model on two public RGB datasets

(i.e., RHD and STB) against the state-of-the-art ones.

2. Related Work

In this section, we review the works relevant from our

topics, 3D hand pose estimation, modality transfer and dis-

entangled representation.

2.1. 3D Hand Pose Estimation

Estimating 3D hand pose has been researched intensively

in the past years. Traditional model-based approaches

[2, 9, 28] focus on converting the anatomical information

to tackle the hand deformation and occlusion issues. Depth

based approaches [4, 34, 21, 33, 10, 26, 1] have been well

studied where most methods have achieved precise predic-

tions [38] in recent years. For RGB-based task, many works

utilise the deep Convolutional Neural Networks (CNN) to

extract representation from the input RGB image. Based on

the model concept, these methods are sub-categorized into

mainly discriminative and generative approaches.

The discriminative methods normally detect 2D

heatmaps and then predict the overall 3D hand poses or

regress the depth of 2D keypoints. Recently, Zimmermann

et al. [43] proposed the first deep learning approach that

decomposed the 3D hand pose estimation task into three

steps. Inspired by [35], they first learned a hand mask

network in order to localize the hand region image, then

employed an encoder-decoder structured network to predict

2D heatmaps of hand joints, and finally predicted a canoni-

cal pose and orientation transformation matrix for 3D joints

prediction. In addition, in order to learn better hand prior

for segmentation and 2D to 3D lifting task, many methods

[6, 22, 4] have been proposed to use additional synthesized

RGB datasets with computer generated 3D annotations

to augment training. The task is then to focus more on

reducing the domain discrepancy between the real and

synthetic data from different datasets. Cai et al. [6] reduced

the discrepancy by introducing a network that predicts

2D depth images as additional regularization for weak

supervision. Mueller et al. [22] applied the image-to-image

translation techniques to transfer synthesized hand images

closer to the real domain and additionally added a SilNet

module to enable additional supervision from ground-truth

hand masks. The work in [4] however provided an alterna-

tive, which manipulated the viewpoints and shapes of 3D

skeletons (hand joints) and generated realistic synthesized

depth images from these augmented 3D hand poses.

Meanwhile, the generative methods normally learn a

generalized hand model by learning a latent space of hand

representation across various modalities. Previously, Wan

et al. [33] proposed to find potential mapping between the

latent spaces of hand poses and depth images. They pro-

posed a dual-generative network to learn the shared latent

space for pose configurations and depth images. While a

Variational Autoencoder was able to learn the latent distri-

bution of 3D hand representation, they adopted the Gener-

ative Adversarial Network [11] to synthesize depth images

from latent representation of the synthetic 3D labels. In-

spired by [33], Spurr et al. [27] suggested to generate a

statistic hand model by learning a unified latent space be-

tween any two modalities of the hand, such as RGB images

and 3D joints. They proposed a cross-modal VAE frame-

work, where encoders extracted modal-specific representa-

tion and decoders generated output in either modality from

a sampled latent representation of either input modality.

However, we argue that each modality input potentially en-

codes both hand pose representation, which is shared across
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Figure 1. Overview of our proposed DCMLS model. Our model consist of two parallel VAEs (VAERGB for RGB modality and VAE3D

for 3D modality. The VAE of each modality consists of an encoder E and a decoder G. For learning the latent space in each modality,

the embedded space of each modality zm is disentangled into hand pose space zmh and modality context space zmc . An extra discriminator

Dh connects these two VAEs by aligning the hand pose space. Lastly, we add a latent space translator T with an adversarial discriminator

D3D
c to transfer from one modality context to the other.

modalities, and modality specific representation, which in-

clude the context information (e.g., viewpoints and back-

grounds). Mapping both representations to a single cross-

modal latent will result in information loss from both rep-

resentations. Hence, we believe that the encoded latent rep-

resentation from either modality can be disentangled into

two parts to preserve both types of information, and spe-

cific modules can be used for learning each latent space ef-

fectively.

2.2. Modality transfer

Our approach is also related to modality transfer. Modal-

ity transfer techniques [16, 42, 19, 18] have been intensively

utilized in the field of image-to-image translation, due to

the emergence of the Generative and Adversarial Network

(GAN) [11]. Generally, GAN learns the data distribution

from a Gaussian noise and generates new samples by using

a discriminator with the adversarial learning strategy. Based

on this adversarial learning strategy, different approaches

[20, 16, 42, 40, 41] which transfer the information between

different modalities have been proposed. Some approaches

utilising cross-modal networks [3, 14] to combine the infor-

mation in different data modalities have also been proposed

recently for various image generation tasks. Therefore, we

propose to learn 3D hand pose configurations by utilizing

the cross-modal transfer technique to map RGB modality to

3D modality. However, different from existing methods, we

disentangle the latent context factors of different modalities

when performing modality transfer, which is able to pro-

vide effective task specific modality transferring (i.e., 3D

hand pose estimation).

2.3. Disentangled representation

In addition, in order to maximize the controlling factors

for diverse and variational generation, disentangled repre-

sentation has been explored to decompose these factors.

While traditional GANs are unable to provide interpretable

latent representation and hence unable to semantically con-

trol the generated output, Chen et al. [7] proposed an Info-

GAN to disentangle meaningful representation from a uni-

fied latent space, such as hand writing styles for hand writ-

ten numbers. Recently, a disentangled CrossVAE structure

[37] was proposed to separate a number of human inter-

pretable latent factors for both image synthesis and pose

estimation task. However, instead of supervising each la-

tent factor, we exploit the cross modal data and propose a
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self-supervised approach by aligning the independent VAEs

with a discriminator to disentangle the hand pose space.

3. Methodology

As shown in Figure 1, our proposed DCMLS method

consist of four parts, (1) learning the single-modal latent

space by utilizing a variational autoencoder (VAE) based

self-reconstruction for each of the modalities (i.e., 2D, 3D

or RGB); (2) disentangling the latent space of each modal-

ity into two parts: modality-specific context latent space and

modality-shared hand pose latent space; (3) preserving the

hand pose consistency by aligning the shared hand pose rep-

resentation from the two modalities with a discriminator;

and (4) translating the rest of the modality specific repre-

sentation by context translator from RGB modality into 3D,

in order to recompose the disentangled latent space from

different modalities and generate the prediction of 3D hand

joints. The total objective function and overall training pro-

cedure of our DCMLS approach are introduced in Section

3.6.

3.1. Single­modal latent space learning

In general, to learn the corresponding latent space and

the feature representation of a single data modality, the

variational autoencoder (VAE) [17] can be effectively used.

Learning a VAE from a single data modality is based on the

objectives defined in [17], which is derived from maximiz-

ing the log probability (i.e., log p(x)) of the generated data

samples. The main objective of learning the latent space

of each modality is to maximize the reconstructed log-

probability meanwhile minimizing the distance between the

distribution of the latent representation and a Gaussian dis-

tribution. In the 3D hand pose estimation task, we define

a set of data modalities as M = {2D, 3D,RGB}. In our

DCMLS model, we train a general variational autoencoder

(VAE) model for each modality m ∈M , which individually

learns its corresponding latent space and feature representa-

tion. The VAE of each modality m takes their individual

modality data x
m as the input. The basic loss function for

each VAE of modality m can be defined as,

Lm
VAE= ‖(xm− x̂

m)‖
2
+ LKL(E(zm|xm)‖p(z)), (1)

where for each modality m, x̂
m = G(zm) is the cor-

responding reconstructed modality data, latent vector z is

sampled from a distribution z
m(µ, σ) by zm ∼ (µ, σ). E

and G are respectively the encoder and decoder, zm is the

corresponding latent vector, ‖·‖
2

is the l2 loss and LKL is

the KL divergence loss between the latent space distribution

and the Gaussian prior distribution p(z).

3.2. Disentangled latent space learning

In our approach, we propose to learn context-

independent hand pose latent space, at the same time keep

the modality context for reconstruction fidelity. As the re-

sult, in each modality m of our DCMLS model, we use a

similar but different approach to disentangle two defined la-

tent factors, which consist of the modality-specific context

and the modality-shared hand pose. Hence for a modality

m, we have: zm: (zmh , zmc ). To align with the original VAE

lower bound, in each modality m, we stochastically sample

two latent vectors zmc and zmh from the context and hand

pose latent distributions, denoted as zmc and z
m
h .

ẑm = zmh ⊕ zmc , (2)

where ⊕ is vector concatenation. The two decomposed

latent distributions of both modality are then individually

aligned with a Gaussian distribution by minimizing their

KL divergence. Hence, the loss function Lm
DL of learning

the disentangled latent space of each modality m is then de-

fined by:

Lm
D−VAE=‖(xm − x̂

m)‖
2
+LKL(E(zmh |x

m)‖p(z))

+LKL(G(zmc |x
m)‖p(z)),

(3)

where m stands for a specific input modality (e.g., RGB, 2D

or 3D) and LKL is the same KL divergence loss in Eq. (2).

In this way, the latent space of each modality is then

disentangled into two different streams, which can be both

trained independently using the two modules described in

the following two subsections.

3.3. Cross­modal hand pose alignment

While different modality features are captured by dif-

ferent modality-specific encoders, we consider to learn the

shared factor from different modalities, which corresponds

to the disentangled latent hand pose space. The concept of

adding an auxiliary discriminator is to connect the two par-

allel VAEs and aligns the latent hand pose spaces. Hence,

in our DCMLS model, we add a new discriminator Dh and

use the adversarial learning strategy proposed in [11] to

learn such embedding space shared by different modalities.

The objective of aligning the hand pose specific latent space

from different modalities can be achieved by optimizing (1)

the loss LDh
of training the discriminator Dh, which distin-

guishes the extracted representation from the two modalities

x (i.e., RGB, 2D) and y (i.e., 3D) with

LDh
=

1

2
LBCE(Dh(E

x(zxh|x)), 1)

+
1

2
LBCE(Dh(E

y(zyh|y)), 0),

(4)

and (2) the loss LEx,y of training the encoders px and py

of the two modalities, which are exploited by the inversely-

labelled feedback from the discriminator Dh as follows:

LEx,y =
1

2
LBCE(Dh(E

x(zxh|x)), 0)

+
1

2
LBCE(Dh(E

y(zyh|y)), 1),

(5)
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where LBCE is the common binary cross entropy loss. In

this way, the extracted hand pose features of one modality

can be learnt to align with that of the other modality.

3.4. Cross­modal context transfer

The latent context spaces (i.e., the modality specific la-

tent space) in different modalities are unique and quite dis-

tinct. To transfer the latent context space across modalities,

the goal is to find a constrained one-to-one mapping func-

tion F (F :zxc→z
y

c ), so that the mapping function can gen-

erate latent context space z
y

c of the target modality y (i.e.,

3D), given the latent space z
x

c of the input modality x (i.e.,

RGB or 2D). Due to the success of conditional image-to-

image translation in [16], we adopt their concept to trans-

fer the latent space across different modalities. We devise a

modality specific latent space translator T (·) with fully con-

nected layers as the latent space mapping function. In addi-

tion, we introduce a modality representation discriminator

Dc similar as in [16] to distinguish the modality specific la-

tent space from the original or generated modalities. Like-

wise, we exploit the inversely-labelled feedback of the dis-

criminator to train the modality specific latent space transla-

tor T to transfer the latent context space from input modal-

ity x to target modality y. The loss function of the overall

cross-modal latent context space transfer can be expressed

as follows:

LDc
=

1

2
LBCE(Dc(T (E

x(zxc |x)), 0)

+
1

2
LBCE(Dc(E

y(zyc |y)), 1),

(6)

LT = ‖(T (Ex(zxc |x)), E
y(zyc |y))‖

1

+
1

2
LBCE(Dh(E

x(zxc |x)), 1)

+
1

2
LBCE(Dc(E

y(zyc |y)), 0).

(7)

where LDc
is the loss for discriminating a real and trans-

lated context space, and LT is the adversarial loss for the

context translator T .

3.5. Hand Pose Estimation

As we have the translator from RGB to 3D in the latent

context space, we construct the 3D latent variable by con-

catenating the latent variable sampled from hand pose space

z
x
h and translated context space ẑ

y
c . Then, 3D data can be

generated using the decoder Gy from the 3D modality by

decoding the new 3D latent variables. Hence we can join

the components and train our model with an end-to-end loss

function:

LHPE=‖(y −Gy(zy))‖
2
+LKL(E

x(zxh|x)‖p(z))

+LKL(T (E
y(zxc )|y))‖p(z)).

(8)

3.6. Training

Overall, the total objective of our DCMLS approach

combines the aforementioned loss functions in the previous

subsections, which can be written as follows,

min
T,Ex,y,Gx,y

max
Dh,Dc

Lx

D−VAE + Ly

D−VAE + LDh
+ LDc

LEx,y + LT + LHPE ,

(9)

where Lx

D−VAE and Ly

D−VAE are the two losses of the

disentangled latent space learning as in Eq. (3) for input

modality x (i.e., RGB or 2D) and target modality y (i.e.,

3D), respectively.

The training algorithm of our DCMLS approach is de-

scribed in Algorithm 1. For each sample x from modality

set X , we train the self-reconstruction pipeline with the dis-

entangled latent space learning according to our VAE ob-

jective funciton in Eq. (3). Note that such reconstruction

pipeline does not require extra labels for supervision. With

paired sample x and y, we extract the latent hand features

from each sample, and train the hand representation dis-

criminator according to Eq. (4). Meanwhile, the discrim-

inator DH guides the encoders to extract indistinguishable

hand representation from the two modalities by minimiz-

ing loss term defined in Eq. (5). In order to access the

cross-modal latent space during test, we train the modal-

ity representation translator module consisting of T and Dc

by using Eqs. (6 and 7). Eventually, our model combines

the sampled hand representation and the translated modality

representation to generate cross-modal outputs.

Algorithm 1 Disentangled Cross-Modal Latent Space.

1: Initialize: ε, θEX , θEY , θGX , θGY , θDh
, θT , θDc

2: for e← 1...ε epochs do

3: for (x,y) in T do

4: Train self-reconstruction of modality x, y by us-

ing Eq. (3).

5: Train discriminator with hand representation

encoded from both modalities x,y by us-

ing Eq. (4)

6: Train encoders with discriminated feedback by

using Eq. (5)

7: Train context translator T by using Eqs. (6, 7)

8: Train cross-modal generation with transferred

context x,y by using Eq. (8)

9: end for

10: end for

4. Experimental Results and Discussions

4.1. Datasets

We conduct experiments on two widely used public

benchmarks: Stereo Hand Pose Tracking Benchmark (STB)

395



[39] and Rendered Hand Pose Dataset (RHD) [43].

STB is a large real dataset containing 18k frames cap-

tured with a multi-view binocular camera setup. Each frame

is at the resolution of 640×480, and was annotated with the

3D joint positions of palm and fingers. With the camera

intrinsic configurations provided, 2D joint positions which

are aligned to the hand images can also be obtained. Al-

though hand images were only collected from the same sub-

ject, they managed to introduce variations in terms of illu-

mination and background conditions. To evaluate the 3D

pose estimation accuracy of our model, we use the 15k/3k

training/test split as in [43].

RHD is a synthetic dataset of rendered hand images con-

taining 42k training and 2.7k testing rendered hand images

with resolution of 320×320. In this dataset, hand images

were taken from 20 different subjects with a total number

of 39 actions. Each image was annotated with 2D and 3D

joint positions. Corresponding hand mask and depth im-

ages are also available. We only used the images and their

corresponding 3D labels to train our model.

4.2. Experimental settings

Our model is implemented with Pytorch1 framework.

Similar as in our baseline [27], for RGB images, we utilise

random-initialized ResNet-18 [13] network as our image

encoder, and use several transposed convolution (ConvT)

layers, BatchNorm layers and ReLU layers as our image

decoder. For 2D and 3D joints, we utilise five stacks of

Fully-Connected (Linear) and ReLU layers, and add extra

dropout layers between each stacks as our 2D and 3D joints

encoders and decoders. For both of our latent hand and

modality space discriminators, we use 4 stacks of Fully-

Connected (Linear) and ReLU layers with a Sigmoid layer

at the end to acquire the normalized probabilities. For our

latent modality translator, we also adopt the simple struc-

ture with 5 stacks of Fully-Connected (Linear) and ReLU

layers. We train our model using ADAM optimizer with the

initial learning rate of 10−4 and the batch size of 64. The

dimensionality of the total latent vector and each sub-latent

vector is set to 30 and 15, respectively. Details of selecting

the dimensionality will be discussed in Section 4.4.

4.3. Evaluation metrics

There are two popular evaluation metrics available for

3D hand pose estimation: 1) Mean Joint Error (i.e., EPE)

and 2) Percentage of Correct Keypoints (i.e., PCK).

EPE is the error defined by the average Euclidean dis-

tance between estimated and ground truth joint in millime-

ter (mm). In general, EPE is reported and compared with

numbers in tables.

PCK is the joint success rate which is validated by the

joints falling in a given threshold range of the Euclidean

1https://github.com/pytorch/pytorch

Figure 2. Comparison of 3D PCK performance on the RHD dataset

on different baselines models to explore the effectiveness of dis-

entangling modality context in learning a shared hand pose latent

space.

γz 0.2 0.4 0.5 0.6 0.8

3D EPE 0.861 0.870 0.887 0.862 0.860

Table 1. Effectiveness of different latent space capacity for modal-

ity specific context and cross-modal hand pose. We compare the

3D PCK on both datasets. A greater γz means a larger capacity

for cross-modal hand pose latent space.

distance. In general, PCK is reported and compared by the

area under the curve (AUC) using figures.

4.4. Ablation study

Modality context disentanglement. We compare our

proposed DCMLS approach with following baselines on

the RHD dataset: (1). Unified latent space (ULS) method

proposed by [27]; (2). Unified latent space + RGB con-

text disentanglement; (3). Full model: Unified latent space

+ RGB context disentanglement + 3D context disentangle-

ment. Our results in Figure 3 illustrates and proves that

the RGB modality context affects the learning of a modality

shared hand pose latent space, hence baseline (2) surpasses

baseline (1) from 0.849 to 0.871. While RGB modality con-

text is disentangled, our full model which further disentan-

gles 3D context from 3D modality latent space yields fur-

ther improvements to achieve the best performance (0.887).

Adversarial modules. We explore different settings for

our aforementioned architecture designs: (i.e. latent space

disentanglement, adversarial learning for cross-modal hand

pose space alignment and modality context translation). As

summarized in Figure 2, our full model with both Discrimi-

nator Dh and D3D in additional to our proposed latent space

disentanglement method yields the best result.

Dimensionality of sub-latent vectors. We also discuss
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Figure 3. Comparison of 3D PCK performance on the RHD dataset

with respect to our proposed architecture designs namely, latent

space disentanglement, shared latent space discriminator Dh, con-

text translator discriminator D3D .

the dimensionality of the sub-latent vectors, which is con-

trolled by the capacity ratio of the disentangled represen-

tation of hand pose and context. We use γz to denote the

capacity ratio of the two sub-latent vectors. The greater the

ratio, the larger the dimensionality of the hand pose sub-

latent vector. Taking the RGB→ 3D prediction task of hand

joints on the RHD dataset as an example, we conduct exper-

iments with the capacity ratio of 0.2, 0.4, 0.5, 0.6 and 0.8,

respectively. As shown in Table 1, we observe that when

γz = 0.5, the performance of the 3D hand pose estimation

is the highest, which is 0.887. As the result, we choose

γz = 0.5 for our model in all settings, where the dimen-

sionalities of the sub-latent hand pose and context vectors

are set to be the same.

4.5. Performance comparison

We compare our method with several recent studies us-

ing both EPE and PCK.

EPE Evaluation. In Table 2, following [43] and [27],

we first summarize and compare the results of our DCMLS

method with CPose [43], ULS [27], and D-VAE [37] in

terms of the average 3D EPE. The second column stands

for 3D prediction from 2D key points, which maps the 2D

keypoints space into the 3D hand pose configuration on the

RHD dataset. The third column predicts 3D keypoints from

RGB hand images on the RHD dataset. The fourth col-

umn is the 3D keypoints prediction from RGB hand im-

ages on the STB dataset. From the results in Table 2 where

the figures of existing methods are excerpted from [27], our

DCMLS method achieves the best performance on all three

tasks using EPE evaluation, which demonstrates the effec-

tiveness of our method on both 2D to 3D and RGB to 3D

tasks.

2D→ 3D

RHD

RGB→ 3D

RHD

RGB→ 3D

STB

CPose [43] 22.43 30.42 8.68

ULS [27] 17.14 19.73 8.56

D-VAE [37] / 19.95 8.66

Ours 15.45 17.11 7.27

Table 2. Mean EPE comparison with related works.

Figure 4. 3D PCK on the RHD dataset

Figure 5. 3D PCK on the STB dataset

PCK Evaluation. In addition, in Figure 4 and Figure

5, we compare our proposed method DCMLS with three

more existing works[22, 6, 15] by computing the PCK curve

within a fixed thresholds, for the RHD and STB datasets,

respectively. As shown in Figure 4, our DCMLS method

achieves the best performance among all the methods. In

addition, our DCMLS method clearly outperforms our di-

rectly related baseline method [27] from 0.983 to 0.996

on the STB dataset and reaches the state-of-the-art per-

formance. Similarly, DCMLS largely surpasses [27] from
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Figure 6. A latent walk in learnt latent spaces. The left-most and right-most images are reconstructed from two input images. The

interpolated hand pose representation were then used to reconstruct the corresponding RGB images and 3D poses. This shows that our

model learns a meaningful and continuous latent space for hand representation.

Figure 7. Predicted 3D estimation outputs on STB and RHD. The middle column is our predictions and the right columns are the ground

truth.

0.849 to 0.887 on the RHD dataset and reaches the top

among all the methods compared. This clearly shows the ef-

fectiveness of our disentangled latent spaces for cross modal

hand pose estimation.

Qualitative Evaluation. In Figure 6, we show the result

of an experiment on a random walk of the hand pose latent

space to visualize the synthesized images and correspond-

ing 3D hand poses by using two input image samples (i.e.,

the left-most and right-most images). We interpolate the in-

between representation from the hand pose latent space and

keep the context representation fixed. This indicates that

meaningful latent representations can be learned through

our model. Figure 7 visualizes some predictions from both

STB and RHD. Our model predicts precise 3D hand joint

locations. Some predictions such as the samples at the 2-th

column even show more reasonable or accurate hand pose

than the ground truth.

5. Conclusion

In this paper, we present a novel DCMLS model for 3D

hand pose estimation from RGB images by distangling a

latent space of an input data into modality specific latent

space and hand pose specific latent space and formulat-

ing the pose estimation task as a hand-pose specific cross-

modal learning task. In order to guide the encoders to learn

cross-modal features, we add a novel hand pose represen-

tation discriminator which learns to distinguish hand fea-

tures of different modalities while feedback is utilized to

improve the encoders so that they encode hand representa-

tion without modality context. Meanwhile we make use of

the modality context representation to learn a cross-modal

translation for pose estination. We conducted comprehen-

sive experiments to demonstrate the improvements of our

proposed DCMLS method in learning modality invariant

hand representation for improved 3D hand pose estimation.

398



References

[1] M. Abdi, E. Abbasnejad, C. P. Lim, and S. Nahavandi.

3d hand pose estimation using simulation and partial-

supervision with a shared latent space. In British Machine

Vision Conference (BMVC), 2018.

[2] V. Athitsos. Estimating 3d hand pose from a cluttered im-

age. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2003.

[3] Y. Aytar, L. Castrejon, C. Vondrick, H. Pirsiavash, and

A. Torralba. Cross-modal scene networks. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (T-

PAMI), 40(10):2303–2314, 2018.

[4] S. Baek, K. In Kim, and T.-K. Kim. Augmented skele-

ton space transfer for depth-based hand pose estimation. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018.

[5] A. Boukhayma, R. d. Bem, and P. H. Torr. 3d hand shape

and pose from images in the wild. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019.

[6] Y. Cai, L. Ge, J. Cai, and J. Yuan. Weakly-supervised 3d

hand pose estimation from monocular rgb images. In Euro-

pean Conference on Computer Vision (ECCV), 2018.

[7] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,

and P. Abbeel. Infogan: Interpretable representation

learning by information maximizing generative adversarial

nets. In Advances in neural information processing systems

(NeurIPS), pages 2172–2180, 2016.

[8] Y. Chen, Z. Tu, L. Ge, D. Zhang, R. Chen, and J. Yuan.

So-handnet: Self-organizing network for 3d hand pose es-

timation with semi-supervised learning. In The IEEE Inter-

national Conference on Computer Vision (ICCV), October

2019.

[9] M. de La Gorce, D. J. Fleet, and N. Paragios. Model-based

3d hand pose estimation from monocular video. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (T-

PAMI), 33(9):1793–1805, 2011.

[10] L. Ge, Y. Cai, J. Weng, and J. Yuan. Hand pointnet: 3d

hand pose estimation using point sets. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems (NeurIPS), pages 2672–2680, 2014.

[12] A. Harsh Jha, S. Anand, M. Singh, and V. Veeravasarapu.

Disentangling factors of variation with cycle-consistent vari-

ational auto-encoders. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 805–820, 2018.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016.

[14] J. Hoffman, S. Gupta, J. Leong, S. Guadarrama, and T. Dar-

rell. Cross-modal adaptation for rgb-d detection. In IEEE In-

ternational Conference on Robotics and Automation (ICRA),

2016.

[15] U. Iqbal, P. Molchanov, T. Breuel, J. Gall, and J. Kautz. Hand

pose estimation via latent 2.5d heatmap regression. In Euro-

pean Conference on Computer Vision (ECCV), 2018.

[16] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-

image translation with conditional adversarial networks. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), July 2017.

[17] D. P. Kingma and M. Welling. Auto-Encoding Variational

Bayes. arXiv e-prints, page arXiv:1312.6114, Dec 2013.

[18] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H.

Yang. Diverse image-to-image translation via disentangled

representations. In European Conference on Computer Vi-

sion (ECCV), September 2018.

[19] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-

image translation networks. In Advances in neural informa-

tion processing systems (NeurIPS), pages 700–708, 2017.

[20] M. Mirza and S. Osindero. Conditional Generative Adversar-

ial Nets. arXiv e-prints, page arXiv:1411.1784, Nov 2014.

[21] G. Moon, J. Yong Chang, and K. Mu Lee. V2v-posenet:

Voxel-to-voxel prediction network for accurate 3d hand and

human pose estimation from a single depth map. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018.

[22] F. Mueller, F. Bernard, O. Sotnychenko, D. Mehta, S. Srid-

har, D. Casas, and C. Theobalt. Ganerated hands for real-

time 3d hand tracking from monocular rgb. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018.

[23] M. Oberweger, G. Riegler, P. Wohlhart, and V. Lepetit. Ef-

ficiently creating 3d training data for fine hand pose estima-

tion. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[24] M. Oberweger, P. Wohlhart, and V. Lepetit. Generalized

feedback loop for joint hand-object pose estimation. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(T-PAMI), pages 1–1, 2019.

[25] P. Panteleris, I. Oikonomidis, and A. Argyros. Using a sin-

gle rgb frame for real time 3d hand pose estimation in the

wild. In 2018 IEEE Winter Conference on Applications of

Computer Vision (WACV), pages 436–445. IEEE, 2018.

[26] G. Poier, D. Schinagl, and H. Bischof. Learning pose spe-

cific representations by predicting different views. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018.

[27] A. Spurr, J. Song, S. Park, and O. Hilliges. Cross-modal

deep variational hand pose estimation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018.

[28] B. Stenger, P. R. S. Mendonca, and R. Cipolla. Model-based

3d tracking of an articulated hand. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Dec

2001.

[29] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun. Cascaded hand

pose regression. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2015.

[30] D. Tang, J. Taylor, P. Kohli, C. Keskin, T.-K. Kim, and

J. Shotton. Opening the black box: Hierarchical sampling

399



optimization for estimating human hand pose. In IEEE Inter-

national Conference on Computer Vision (ICCV), December

2015.

[31] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time

continuous pose recovery of human hands using convolu-

tional networks. ACM Transactions on Graphics (ToG),

33(5):169:1–169:10, Sept. 2014.

[32] C. Wan, T. Probst, L. V. Gool, and A. Yao. Self-supervised

3d hand pose estimation through training by fitting. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 10853–10862, 2019.

[33] C. Wan, T. Probst, L. Van Gool, and A. Yao. Crossing nets:

Combining gans and vaes with a shared latent space for hand

pose estimation. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), July 2017.

[34] C. Wan, T. Probst, L. Van Gool, and A. Yao. Dense 3d regres-

sion for hand pose estimation. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2018.

[35] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016.

[36] L. Yang, S. Li, D. Lee, and A. Yao. Aligning latent spaces

for 3d hand pose estimation. In The IEEE International Con-

ference on Computer Vision (ICCV), October 2019.

[37] L. Yang and A. Yao. Disentangling latent hands for image

synthesis and pose estimation. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2019.

[38] S. Yuan, G. Garcia-Hernando, B. Stenger, G. Moon,

J. Yong Chang, K. Mu Lee, P. Molchanov, J. Kautz,

S. Honari, L. Ge, J. Yuan, X. Chen, G. Wang, F. Yang,

K. Akiyama, Y. Wu, Q. Wan, M. Madadi, S. Escalera, S. Li,

D. Lee, I. Oikonomidis, A. Argyros, and T.-K. Kim. Depth-

based 3d hand pose estimation: From current achievements

to future goals. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018.

[39] J. Zhang, J. Jiao, M. Chen, L. Qu, X. Xu, and Q. Yang.

3d hand pose tracking and estimation using stereo matching.

arXiv e-prints, page arXiv:1610.07214, 2016.

[40] W. Zhang, W. Ouyang, W. Li, and D. Xu. Collaborative and

adversarial network for unsupervised domain adaptation. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018.

[41] W. Zhang, D. Xu, W. Ouyang, and W. Li. Self-paced col-

laborative and adversarial network for unsupervised domain

adaptation. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (T-PAMI), 2019.

[42] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In IEEE International Conference on Computer Vi-

sion (ICCV), Oct 2017.

[43] C. Zimmermann and T. Brox. Learning to estimate 3d hand

pose from single rgb images. In IEEE International Confer-

ence on Computer Vision (ICCV), Oct 2017.

400


