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Abstract

Key recognition tasks such as fine-grained visual cate-

gorization (FGVC) have benefited from increasing atten-

tion among computer vision researchers. The development

and evaluation of new approaches relies heavily on bench-

mark datasets; such datasets are generally built primarily

with categories that have images readily available, omit-

ting categories with insufficient data. This paper takes a

step back and rethinks dataset construction, focusing on in-

telligent image collection driven by: (i) the inclusion of all

desired categories, and, (ii) the recognition performance on

those categories. Based on a small, author-provided initial

dataset, the proposed system recommends which categories

the authors should prioritize collecting additional images

for, with the intent of optimizing overall categorization ac-

curacy. We show that mock datasets built using this method

outperform datasets built without such a guiding frame-

work. Additional experiments give prospective dataset cre-

ators intuition into how, based on their circumstances and

goals, a dataset should be constructed.

1. Introduction

Exciting new developments in fine-grained visual cate-

gorization (FGVC) are being unveiled frequently [6, 11, 12,

23, 42, 48]. Researchers aim to find methods that will yield

the highest accuracy, and every tenth of a percent counts.

Performance of these efforts is measured primarily on a

few key benchmark sets, including FGVC-Aircraft (Air-

craft) [26], Caltech-UCSD Birds (CUB) [4, 41], Stanford

Cars (Cars) [22], Stanford Dogs (Dogs) [19], and Oxford

Flowers (Flowers) [27] datasets.

While standard dataset creation approaches (see Section

2) work fairly well for images collected from areas like

North America and Western Europe, where an abundance

of image data is accessible and available, they do not work

as well in other parts of the world. Consider iNaturalist.org

(iNat) [28], a web application where users (citizen scien-

tists) post images (observations) of various wildlife which

other citizen scientists with domain expertise then work to-

Figure 1. Bird observation distributions, from iNaturalist [28],

over two different regions, the US (top) and the northern por-

tion of South America (bottom). Darker shades of blue indi-

cate higher observation counts, showing the observation density

is much higher in the US than in the Amazon Rainforest.

gether to identify (label). Figure 1 clearly demonstrates that

iNat has large amounts of bird data for the United States

(US), but virtually no data for the more biodiverse Amazon

Rainforest.

The numbers provided in Table 1 help put this difference

into perspective. Almost half of the 1800 bird species in

Peru and Brazil, the countries containing the majority of the

Amazon, have no iNat observations at all. The US mean-

while, home to less than half as many species as Peru and

Brazil, has approximately 200× and 70× as many obser-

vations, respectively. It’s obvious then, that for birds from

these South American countries and from African nations

like the Democratic Republic of Congo and Kenya, there

isn’t sufficient citizen-curated data that could be used to

build a dataset with expert labels and annotations.

In situations like these, data augmentation methods [7,

10, 17, 35] and few-shot learning approaches [18, 33, 40,

43] can be helpful. However, even these techniques are

no substitute for additional data. The only way to build
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Country Rank iNat Obs iNat Species Species

Peru 2 8470 997 1858

Brazil 4 24786 1149 1813

Ecuador 5 20700 1157 1622

DR Congo 10 2522 491 1107

Tanzania 12 10548 676 1075

Kenya 13 8945 698 1058

United States 23 1.748M 10701 860

Spain 89 17914 384 382

France 98 23794 384 357

Italy 99 36792 414 355

Table 1. The number of iNaturalist observations and species by

Country; all verifiable, research-grade observations are included.

The right-most column indicates the total number of bird species

found in each country, as determined by Birdlife International [5].

The United States is highlighted (in italic) because it receives a

disproportionate amount of attention – over 52.5% of iNaturalist’s

global bird observations despite being home to only 7.7% of the

world’s bird species. Additionally, the USA/North America is the

focus of all three of the bird datasets commonly used for computer

vision, CUB [4, 41] Birdsnap [2], and NABirds [37] datasets.

a sufficiently large dataset of Amazonian or Kenyan birds

would be to organize an expedition to one of those areas to

take photographs, gathering brand-new data. This would,

no doubt, be incredibly time-consuming and expensive.

In light of the great expense associated with collecting

images from the wild and labeling them, it is essential for

the dataset creator to maximize the value added by each new

image. Rather than collecting as many images as possible

without a backward glance at which categories they come

from, we theorize that it would instead be helpful to gather

more images associated with the most difficult categories. It

would thus be critical, for the sake of maximizing classifi-

cation accuracy and minimizing the costs associated with

the dataset’s construction, to have a framework to guide

decision-making, as the dataset is built, on how many ad-

ditional images would be needed to represent each species.

As an example, suppose we have two images from each

of the species represented in Figure 2. If we had a bud-

get that allowed us to acquire just 6 more images, then

our approach would be to distribute those 6 new images

in the manner shown in Figure 2, where the “harder” cat-

egories to differentiate (the terns) receive the new images

and the easy category (the violetear) receives none. A pho-

tographic exploration into the Amazon could take a similar

approach, using a small initial dataset to determine which

species are most difficult to classify, then selecting locations

where those species are known to be found. In Section 4, we

1For the United States and others near the bottom of the table, iNatu-

ralist has more species observed than total species present in the country,

due to the observation of vagrant species, e.g. those blown in by storms.

Figure 2. This sample dataset illustrates how if we can only ac-

quire a fixed number of additional images, we would rather add

images for birds with high visual similarity like the Common tern

and Elegant tern, shown in the bottom two rows, than for readily-

distinguished birds like the Green violetear, shown at the top.

demonstrate that when done properly, this kind of approach

maximizes overall categorization accuracy.

In this paper, we explore how the creators of a fine-

grained dataset should approach image collection after

they’ve curated an initial dataset. With the intent of max-

imizing categorization accuracy, we propose the idea of in-

telligently determining which categories a dataset creator

should prioritize adding images to. We describe a method

that achieves higher accuracy than random selection. We

demonstrate the method’s robustness, power, and flexibil-

ity through a series of experiments simulating how it would

apply in the real world. We run additional experiments to

analyze the behaviors of our method across datasets, both at

the per-class and overall level. We thus frame dataset con-

struction as a compelling problem to solve and present an

original method for addressing it, whose success we prove

with overall categorization accuracy improvements.

2. Background and Related Work

Computer vision datasets are normally created in 3 main

steps. While this pattern is near universal, it is not without

its difficulties and shortcomings. The first step, obtaining

the images, is straightforward – large quantities of images in

the chosen fine-grained domain are gathered from Google,

Flickr, iNaturalist, or another online image source. How-

ever, the set of classes used in a dataset is almost always

driven by the classes for which images are readily available,

not by the set of classes that one might actually want to rec-

ognize. Some researchers have explored augmenting these

datasets with additional weakly/noisily labeled images from

online sources [21, 45].

The second step, assigning accurate category labels, is

done in one of two ways. Crowdsourcing – where each

image is labeled by a small number of non-expert work-

ers (e.g. five) via a service such as Amazon’s Mechanical

Turk [1] (see Sorokin, et al. [34]) – is by far the most com-

mon approach. However, the use of non-expert workers
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leads to subtle classification errors. For example, Van Horn,

et al. [37] found class label errors of at least 4% for CUB-

200 [41], the most widely-used FGVC dataset. Since SOTA

accuracies on CUB are now over 89%, this 4% error is quite

significant. Therefore, Van Horn, et al. instead advocate for

the use of subject domain experts for assigning category la-

bels. However, this comes at the high cost of finding and

compensating these experts.

The third step, obtaining detailed annotations such as

bounding boxes, part keypoints, or object silhouettes, is typ-

ically done via crowdsourcing. This can be costly, and un-

fortunately, as workers are paid by work unit, they often

rush to complete tasks, reducing annotation quality. Several

papers, e.g. [13, 25, 37, 38, 44], have proposed models to

improve annotator consistency and reduce cost.

Berg, et al. [3] identify properties of a good dataset in-

cluding variety, scale, precision, suitability, cost and rep-

resentativeness. While properties such as scale, precision

and cost are addressed above, criteria such as variety, suit-

ability and representativeness deserve additional attention.

We contend that existing datasets for natural domains lack

the sufficient variety (diversity) of suitabable, representa-

tive data needed for successful recognition in most locations

worldwide, particularly for species of interest (e.g. rare and

endangered species). Available data often has a long-tailed

distribution, whereas few datasets (iNaturalist [39] is one)

directly address this.

One important aspect for many domains is taxonomic or

hierarchical structure. The hierarchical structure may not

be critical to accuracy, in and of itself, but non-uniform

intercategory distances are inherent and fundamentally im-

portant – some categories are unique or highly distinctive

while others are nearly identical differing only by small

and/or subtle markings. Even datasets such as ImageNet

[8] that structure the data hierarchically, typically measure

error with a flat loss across the leaf nodes. This implies that

we are equally willing to misclassify a queried image of a

hummingbird as an eagle as we are to mistake it for another

species of hummingbird with very subtle differences. These

errors are tremendously different and, as a community, we

should be very unhappy about calling them equivalent. Two

notable exceptions to the flat loss are the works of Deng,

et al. [9], and Ordonez, et al. [29, 30]. Both focus on the

non-leaf nodes in the hierarchy, respectively trying to select

the level in the hierarchy with the greatest confidence and

to predict the word that humans most likely use to describe

an object (it’s “entry-level” category).

Another important area that’s closely related to this pa-

per’s goal – adaptive construction of image datasets – is the

adaptive learning of network models. The rapidly-growing

field of Neural Architecture Search [24, 36, 50] explores

novel paradigms for building/discovering high-performing

network architectures within the immensely broad space

of potential network architectures. Also related is Knowl-

edge Distillation [15, 46], which seeks to extract a larger

and more powerful network’s “expertise”, embedding it in

another, sometimes lighter-weight network. The ability

to deploy small mobile-scale networks will be critical for

promising fields of the future such as Edge-AI [32, 49].

3. Approach

As we explain our method for intelligent image collec-

tion, we first outline both the primary objective and a key

constraint in our investigation. The primary objective is to

maximize categorization accuracy. A key constraint is that

the model can only add images to half of the classes, and

it adds the same number of images to each of these classes.

We do not directly consider alternate goals, such as maxi-

mizing image diversity, or other policies, such as adding an

unequal amount of images to all categories.

In this section, we first describe our method step-by-step

(3.1). We then explain how a class’s ease of categorization

is evaluated (3.2). We conclude by explaining how we sim-

ulate the construction of a dataset (3.3).

3.1. Steps

First, our model begins with some initial dataset. In all of

our experiments, this starting dataset has the same number

of images for each class; however, this need not be the case.

In this paper, we refer to the number of images per class in

the initial dataset as the base number.

Next, CNNs pre-trained on ImageNet [47] are trained

and then evaluated on 5 folds of the dataset, each with a 60-

40 train-validation split. We use this cross-fold validation

approach instead of holding out a single fixed validation set

because it means each image can be used for both training

and testing (3 times for training, 2 for testing). This maxi-

mizes the amount of information gained from the images in

the initial set. This helps the model more accurately gauge

which classes should receive more images.

Last, the image-adding step is performed. To do this,

the model averages performance across the folds based on

a desired criterion (criteria are described in Section 3.2, be-

low). It then sorts the classes according to performance,

and identifies the half of the categories that performed the

worst. These are the categories that images will be added

to. In our experiments, the number of images added to each

class is referred to as the jump size.

3.2. Criteria

To determine which categories are most difficult and thus

need additional images, each model relies on a criterion

based on one of the following metrics: per-class accuracy,

precision, F1, loss, or KL-Divergence.

Criteria based on Accuracy, Precision, and F1 scores

work in a similar fashion. The model measures the average
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for each class across all folds, and adds images to those with

the lowest scores. Loss is the opposite – the model measures

the cross entropy loss corresponding to each class, and adds

images to the half of the dataset’s categories that have the

highest losses.

Our other criterion utilizes KL-Divergence. The n-

dimensional vectors (where n is the number of classes) out-

put by the network during the testing of each fold are passed

through a softmax function. We represent each class as a

distribution in this n-dimensional space, fitting a multivari-

ate gaussian to the set of softmax output vectors for the im-

ages in the class. Taking the symmetric KL-Divergence be-

tween the gaussian distributions for pairs of classes yields a

square n×n matrix. The average value for each row is used

as a score for each class. Since the half of the classes with

the lowest scores are the ones with the greatest visual simi-

larity (the most easily confused), the model adds images to

those classes.

3.3. Mock Datasets

We utilize a framework that allows us to act as though

we were creating a new dataset. For a given domain, our

model takes a subset of the training portion of an existing

FGVC dataset as a “mock” initial dataset, and treats the rest

of the training portion as a bank of images. Once the model

decides which categories need more images, it adds images

to the mock dataset from that bank of images, simulating

the targeted collection of new images for a dataset. In our

experiments, additional networks are trained on the result-

ing dataset and tested against the standard test portion of

the FGVC dataset chosen. This measures the effectiveness

of our method, allowing comparison between our method

and a baseline (random selection of categories).

This is more easily understood with an example. For

Cars 10-base 10-jump (base number is 10, jump size is 10),

using the Accuracy criterion, the dataset starts with 10 im-

ages per class (1960 images total). The model then trains

and evaluates on 5 folds of that dataset, with a fold ratio of

0.6, meaning that 5 different train-test dataset splits will be

used, each with 6 images per class for training and 4 images

per class for evaluation. The per-class evaluation accuracies

are then averaged. The half of the categories (98 categories

for Cars) with the lowest average accuracies are each given

10 additional images (980 total). The viability of the class-

selection method is then tested by training on the resulting

dataset (1960 + 980 = 2940 images) and evaluating on the

standard, held-out test set (8041 images).

It is important to note that the test portion of the FGVC

dataset (Cars in the example above) is not presented to our

model while it is determining which half of the categories to

add images to. This means that we are accurately simulat-

ing the real-world application of our method by selecting

categories based on results from a limited initial dataset.

While there are valid concerns about dataset construction

beyond the per-class distribution of images, such as diver-

sity of images in the initial dataset (see Section 2), using a

“mock” dataset allows us to prove that such concerns do

not prevent our method from being demonstrably effective.

4. Experiments

This section thoroughly evaluates the proposed method via

the following set of targeted experiments:

• Simulation (4.1) proves the overall effectiveness of

the proposed approach.

• Architecture Swapping (4.2) indicates our approach

doesn’t overfit to the chosen network.

• Diversity Dilemma (4.3) establishes robustness

against lack of diversity in the initial dataset.

• Adaptive Jumps (4.4) shows the impact of determin-

ing the amount of images to add on a per-class basis.

• Oracle Performance (4.5) demonstrates viability for

various domains, base numbers, and jump sizes.

• Granular Analysis (4.6) examines the effects of our

method on the per-class accuracy distribution.

Dataset Classes # Images Accuracy

Aircraft 102 10200 84.68

Birds 200 11788 81.12

Cars 196 16185 89.91

Dogs 120 28580 82.36

NABirds 555 48000 78.71

Table 2. Baseline performance (averaged over 10 trials) of our

ResNet-50s on different FGVC datasets. This is not intended to

be competitive with SOTA results, but instead gives benchmarks

for our models. From this table onward, “Birds” refers to CUB.

Each experiment’s setup is described in the first para-

graph of its subsection. For all experiments, we use the

same network architecture – a ResNet-50 [14] pre-trained

on ImageNet (from PyTorch [31]). We use the Adam [20]

optimizer with cross-entropy loss. Unless otherwise stated,

our networks train for 50 epochs. A basic learning rate

scheduler is used, starting at 10−4 and ending at 10−7. Aug-

mentation during training includes random cropping, hori-

zontal flipping, and resizing to form batches of 16 images

of size 224x224. We show the baseline performance of this

architecture for different popular FGVC datasets in Table 2.

The experiments below are conducted on subsets drawn

from the Birds, Cars, and Dogs datasets. We keep all of the

categories in each dataset, but only use some of the images.

In all of these experiments, we use base numbers and jump

sizes as defined in Section 3.1.
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4.1. Simulation

Here, the model proves it outperforms random category

selection (Random), regardless of the criterion chosen. For

each jump size/criterion pair (each entry in Table 3), we run

5 trials whose results we average, where each trial proceeds

as follows. First, image adding is done as explained in Sec-

tion 3.1, where the criterion is used as explained in Section

3.2. Then, 5 networks are trained (differing only in batch

sampling and augmentation) on the resulting dataset (initial

set + added images). Finally, those networks are evaluated

on the corresponding FGVC test set.

Criteria 5-Jump 10-Jump 15-Jump 20-Jump

Simulation (Cars)

Random 70.32 73.45 75.85 76.82

Accuracy 70.58 74.38 76.89 78.20

Precision 70.23 73.72 76.46 78.12

F1 70.17 73.75 76.04 77.53

Loss 71.00 74.46 76.89 78.43

KLDiv 70.88 74.34 76.71 77.91

Simulation (Birds)

Random 70.12 72.16 72.77 73.53

Accuracy 70.71 72.69 74.04 74.73

Precision 71.02 72.78 74.16 74.98

F1 70.20 71.88 73.10 73.71

Loss 70.60 72.56 73.95 74.47

KLDiv 70.34 72.17 73.15 74.01

Architecture Swapping (Cars)

Random 70.32 73.45 75.85 76.82

Accuracy 70.69 74.25 76.59 78.02

Precision 70.25 73.79 76.10 77.49

F1 70.02 74.03 75.98 77.42

Loss 70.94 74.61 76.87 78.5

KLDiv 71.09 74.78 77.02 78.49

Diversity Dilemma (Birds)

Random 69.49 71.40 72.84 72.77

Accuracy 70.32 72.06 73.75 74.30

Precision 69.88 71.70 73.42 73.86

F1 69.78 71.57 73.04 73.78

Loss 70.51 72.18 73.64 74.19

KLDiv 69.98 71.96 73.24 73.84

Table 3. Presents 10-base accuracy results for Simulation (Section

4.1, top half of this table), Architecture Swapping (Section 4.2),

and Diversity Dilemma (Section 4.3, bottom fourth of this table).

The Simulation results (top half of Table 3) prove the ef-

fectiveness of our method. The criteria based on Accuracy

and Loss are in all tested cases demonstrably better than

randomly selecting which half of classes the images should

be added to. While the resulting dataset is not perfect (dis-

cussed in Section 4.5), due to potential issues like image di-

versity in the initial dataset (discussed in Section 4.3), this

experiment proves that our model is effective for making

recommendations based on an initial dataset.

4.2. Architecture Swapping

The clear success of our method invites questions about

its weaknesses and limitations. One such question is: does

the model select categories that are good in general, or only

categories that are good for the architecture making the se-

lections? To address this concern, we present the results of

an experiment on the Cars dataset where DenseNet-169 net-

works [16] are used (we choose this DenseNet because its

overall accuracy is similar to the ResNet-50) to obtain the

metrics and select the categories which receive additional

images, while a ResNet-50 is only used to train on the re-

sulting set and evaluate its performance on the test set.

The middle (third quarter) of Table 3 demonstrates that

this network-swapping approach not only matches the ef-

fectiveness of our initial approach (select and evaluate with

ResNet-50), but in many cases exceeds it. The maximum

accuracy achieved for each jump size is higher, includ-

ing major improvements for KL-Divergence. This pro-

vides convincing evidence, across all of our criteria, that the

model does not overfit to a specific network architecture.

4.3. Diversity Dilemma

Since our method begins with a small dataset, it is pos-

sible a “hard” category could be mis-identified as “easy”

simply because the 10 images for that category do not ac-

curately represent it. Since this kind of issue would be ex-

posed when testing on a comprehensive set (as seen in sec-

tions 4.1 and 4.2), it is clear that limitations in diversity do

not prevent our method from outperforming the baseline.

Nevertheless, to fully investigate the effects of using this

method with a minimally-diverse dataset, we take a pose-

limited subset of Birds for an initial dataset. This set has

10 images per class, where the images gathered for each

class were nearly identical in terms of pose (as shown in

Figure 3). For each class, the 10 images with the smallest

pairwise Procrustes distance between keypoint “constella-

tions” (the CUB dataset provides 15 keypoint annotations

per image) are selected. We run the experiments from 4.1

again for a new baseline (random selection for adding to the

pose-limited set) and each criterion.

The results at the bottom of Table 3 confirm our hypothe-

sis. Random now performs worse than it did for the Simu-

lation experiments since the 10 initial images for each class

are less diverse. In spite of the lack of representativeness,

our method is still able to obtain the information necessary

to outperform the baseline, doing so by greater percent-

ages than before (in Simulation). These results suggest our

method is not only robust to situations where diversity is

limited, but that it may be even better in such scenarios.
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Figure 3. Shows example images from the diversity-lacking, pose-

clustered initial dataset described in Section 4.3. From top: green

violetear, laysan albatross, mockingbird, red-bellied woodpecker.

Notice, for example, that only one of the woodpecker images

shows its distinctive, faint red belly.

4.4. Adaptive Jumps

In our other experiments, the number of images added

to each class is fixed, specified by the jump size. Here, we

use the jump number only to determine the total number of

images to add to the chosen categories – the jump size times

the number of selected categories (98 for Cars). The exact

number of images to add for each class is chosen adaptively,

adding a number of images proportional to a class-assigned

weight. For Accuracy, Precision, F1, and KL-Divergence,

a class’s weight is calculated by subtracting the respective

metric for that class from the maximum observed across all

classes. For Loss, the weight is the category’s loss. This

way, the classes with worse performance (based on the se-

lected criterion) receive more images. Figure 4 shows the

resulting image distributions for our 10-base experiments

with weights determined using the Loss criterion.

Cars Birds

Criteria 5-Jump 10-Jump 5-Jump 10-Jump

Random 70.32 73.45 70.12 72.16

Accuracy 70.36 74.53 70.65 72.56

Precision 70.73 74.46 70.30 72.37

F1 70.85 74.67 70.40 72.32

Loss 70.39 74.44 70.52 72.79

KLDiv 69.97 73.89 70.49 72.61

Table 4. Presents 10-base accuracy results for Adaptive Jumps

(Section 4.4).
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Five-Jump, Not Adaptive
Ten-Jump, Not Adaptive
Five-Jump, Adaptive with Loss
Ten-Jump, Adaptive with Loss

Figure 4. Distributions of per-class image counts (averaged over 5

trials) for the 98 Cars categories that receive images.

Comparing these Adaptive Jumps results (in Table 4) to

those in Table 3 shows that this approach matches the effec-

tiveness of adding a fixed number of images to each class.

The Accuracy, Loss, and F1 criteria seem to be particularly

well-suited to adding images this way. These results also

make clear that intelligent category selection has a much

greater effect on accuracy than the modest difference that

may result from adaptively varying the exact number of im-

ages added to each selected category.

4.5. Oracle Performance

These experiments, unlike those in previous subsections,

are not intended to mimic the real-world application of our

method. Previously, we limited the evaluation of the met-

rics/criteria to the test parts of each fold. In this experiment,

the networks are trained on the complete initial dataset (a

subset of the training portion of an FGVC dataset) and the

metrics/criteria are evaluated on the complete test portion

of the FGVC dataset, similar to an Oracle. By allowing the

model to use this extra information to make its recommen-

dations, we demonstrate the extent to which intelligently

selecting categories boosts performance.

Two different methods are compared: Random, which

serves as a baseline, and Intelligent. For Random, the half

of categories that images are added to is chosen randomly.

For Intelligent, images are added using the Accuracy cri-

terion (from Section 3.2), with classes chosen for each do-

main based on the results of 10 networks that are trained

on the initial dataset (which has the base number of images

per class) and evaluated on the full FGVC test set. For a

given jump number, after the appropriate number of images

are added to the chosen half of the classes, 10 networks are

trained (representing 10 trials) on the resulting dataset and

evaluated on the full corresponding FGVC test set.
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Imgs/Class Birds Cars Dogs

B+J # Images Random Intelligent Diff. Random Intelligent Diff. Random Intelligent Diff.

5+0 980 51.02 - - 34.38 - - 56.90 - -

5+5 1470 58.84 59.79 +0.95 50.33 50.87 +0.65 59.86 60.95 +1.09

5+10 1960 61.56 63.55 +1.99 56.56 59.23 +2.67 61.07 62.58 +1.51

5+15 2450 62.93 65.27 +2.34 60.24 63.48 +3.24 60.75 62.46 +1.71

5+20 2940 63.77 66.69 +2.92 63.33 66.96 +3.63 60.85 62.36 +1.51

10+0 1960 67.52 - - 63.89 - - 65.91 - -

10+5 2450 70.07 71.17 +1.10 69.70 70.79 +1.09 67.36 67.90 +0.54

10+10 2940 71.89 73.146 +1.57 73.41 75.01 +1.60 67.78 68.44 +0.66

10+15 3430 72.92 75.23 +2.31 75.75 77.99 +2.24 68.37 68.66 +0.29

10+20 3920 73.56 75.90 +2.34 77.27 79.89 +2.62 68.39 68.71 +0.32

Table 5. Shows 5-base and 10-base results for Oracle Performance (Section 4.5). B+J refers to the base number and jump size for the

chosen classes. # Images gives the number of images in the resulting dataset. Diff gives the difference between Intelligent and Random.
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Figure 5. The difference in accuracy between Intelligent and Ran-

dom (from Table 5) for each base number and each jump size.

Intelligent is superior for all cases.

Table 5 demonstrates that major improvements are seen

where the model applies the “intelligent” approach instead

“random.” A great example is Cars, 5-base, 20-jump, where

the difference in categorization accuracy is huge: 3.63%.

These improvements are much greater than what we ob-

serve in previous sections. This could mean that since the

model uses the final test set to make recommendations, it

is simply overfitting to the test set (this was not possible

in previous subsections where the experimental setup was

different). However, we believe it is more likely that the

recommendations result in higher accuracy on the final test

set because they were made based on more information –

evaluating the chosen criterion, Accuracy, on 30+ images

per class instead of different folds of the same 10 images.

While an Oracle may be unrealistic in practice, it clearly

demonstrates that the potential of our method is even higher

than indicated by the earlier experiments.

Figure 5 highlights two key findings. One is that the dif-

ferences are greater for 5-base than for 10-base. This is

because, by virtue of having only half as many training im-

ages, the 5-base datasets have lower starting accuracies than

10-base, so there is more room for improvement. The other

is that the advantage of Intelligent over Random is greater

with Cars than with Birds, and greater with Birds than with

Dogs. This could be due to the differences between intrinsic

qualities of cars as opposed to birds and dogs (e.g. cars are

rigid), dataset quality, or another factor.

4.6. Granular Analysis

Here, we analyze the effects of adding images to certain

classes on the resulting per-class accuracy distributions. We

do this in a granular fashion by targeting eighths (octiles) of

the categories instead of halves. In these experiments, we

identify the effects of adding images to the categories in

each of the 8 octiles, not just the octile corresponding to

the “hardest” categories. We train and test 10 networks af-

ter adding images to a given octile, averaging performance

across them. In other regards, the experimental setup is the

same as in Section 4.5.

Table 7 provides evidence that adding images to the

“hardest” octile of categories (Octile 1) results in higher

overall accuracy than adding images to any other octile. As

in Section 4.5, differences are greater when the jump size

is larger. Figure 6 shows that the improvements in accuracy

are almost entirely driven by the categories that received

more images. This means that dataset creators can target

weak classes earlier on and gather more images to boost

their performance. This will help them use their image bud-

get more effectively, enabling them to include more cate-

gories in their datasets.

Also of note is that some per-class accuracies don’t im-

prove even when those classes receive the additional im-

ages. This suggests that some categories may be inherently

very challenging to classify. Adding images to Octile 1 re-
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Accuracy Diffs Random Octile 1 Octile 2 Octile 3 Octile 4 Octile 5 Octile 6 Octile 7 Octile 8

Images Added 20.22 34.75 23.44 22.07 16.46 13.07 11.98 10.50 9.80

Remained the Same 2.68 2.33 5.00 4.00 4.19 5.19 4.93 4.38 4.42

Table 6. Gives results for the Cars 10-base 20-jump Granular Analysis (Section 4.6). The “Images Added” row shows the average

accuracy improvement resulting from adding more images for the classes that receive those images, while “Remained the Same” shows the

accuracy difference for the classes that did not receive those images. For Octile 1, the 24 classes with the lowest categorization accuracy

received 20 additional images. For Octile 2, the next worst 24 received the images, and so forth.

Octile 5-Jump 10-Jump 15-Jump 20-Jump

Random 65.54 66.35 67.37 68.26

1 66.04 67.33 68.20 69.03

2 65.67 66.73 67.98 68.04

3 65.44 67.07 67.53 67.95

4 65.71 66.47 67.53 67.90

5 65.86 66.75 67.99 68.93

6 65.51 66.91 67.15 67.66

7 65.32 65.87 66.49 67.48

8 65.11 65.71 66.67 66.93

Table 7. The average categorization accuracies for the Cars 10-

base Granular Analysis. For Octile 1, images are added to the 24

categories corresponding to the lowest accuracy, for Octile 2 the

next 24, etc. For Random, the 24 categories are chosen randomly.

sults in less improvement for “Remained the Same” than

adding to any other Octile, as shown in Table 6 – adding

to any other octile in a concentrated manner results in sig-

nificant accuracy improvements for the classes that didn’t

receive additional images, with Octile 5’s improvement for

those classes nearly doubling that of Random. This sug-

gests our method may be successful because it focuses on

specific segments of the accuracy distribution, not just be-

cause it focuses on low-accuracy segments.

Additional insight comes from comparing adding to oc-

tiles versus adding to halves. Consider that octiles 10-base

20-jump and halves 10-base 5-jump both start and end with

the same number of images – 1960 and 2450. However,

intelligently spreading images out through the whole worst

half yielded an accuracy of 70.97%, while adding to Octile

1 was limited to 69.03%. In fact, at 69.70%, even adding 5

images to a random half of the categories is better for over-

all accuracy than adding to Octile 1. What this indicates is

that there is a significant advantage in distributing the im-

ages more evenly, instead of adding only to a few classes.

These challenges and trade-offs could affect any ap-

proach. Adding images to a specific category, while help-

ing the network accurately label images from that cate-

gory, could negatively impact performance in a few differ-

ent ways. First, adding those extra images could start to

bias the network towards the class that received the images.

Second, while performance on the chosen class may be en-

hanced, the potential of greater accuracy improvement for
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Figure 6. Moving averages for class-wise categorization accura-

cies for the 10-base 20-jump Granular Analysis. Each of the

octile lines refer to the 24 classes to which images were added,

where Octile 1 refers to the 24 corresponding to the lowest accu-

racy. Random refers to adding 20 images to 24 randomly selected

classes. 10-base shows the accuracies before adding 480 images.

other classes (if the extra images had been added to them)

is lost. Third, some classes are so intrinsically challenging

that adding more images to them may not even significantly

improve network performance.

5. Conclusion

As FGVC grows in prominence, researchers will be in-

creasingly keen to apply it on the Edge (as opposed to in

the Cloud), and it will be important to establish a smart

approach for building datasets in the wild. In this paper,

we proposed a model that maximizes accuracy for a dataset

building task. We proved its ability to generalize across

different domains, architectures, and dataset qualities. We

conducted analysis which provides intuition for adapting

our method for uses beyond those addressed here. This

work helps enable FGVC applications to extend to domains

where images have historically not been “easy” to acquire.
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