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Abstract

The task of fine-grained visual classification (FGVC)

deals with classification problems that display a small inter-

class variance such as distinguishing between different bird

species or car models. State-of-the-art approaches typically

tackle this problem by integrating an elaborate attention

mechanism or (part-) localization method into a standard

convolutional neural network (CNN). Also in this work the

aim is to enhance the performance of a backbone CNN such

as ResNet by including three efficient and lightweight com-

ponents specifically designed for FGVC. This is achieved

by using global k-max pooling, a discriminative embedding

layer trained by optimizing class means and an efficient

localization module that estimates bounding boxes using

only class labels for training. The resulting model achieves

state-of-the-art recognition accuracies on multiple FGVC

benchmark datasets.

1. Introduction

Fine-grained visual classification (FGVC) refers to clas-

sification tasks where the differences between the different

categories are very subtle. Examples of such tasks are the

classification of bird species or differentiating between dif-

ferent car models. The general appearance of the categories

is very similar (e.g. all birds have two wings and a beak,

cars typically have four wheels) and as result the inter-class

variation is small. On the other hand, the intra-class vari-

ation can be quite high (e.g. due to different poses). This

makes FGVC a very challenging problem that receives a lot

of attention in the research community. State-of-the-art ap-

proaches typically involve a backbone CNN such as ResNet

[11] or VGG [25] that is extended by a method that local-

izes and attends to specific discriminative regions. These

methods can become quite complex and sometimes require

multiple passes through the backbone CNN.

In this work we aim to improve the performance of a

given backbone CNN with little increase in complexity and

requiring just a single pass through the backbone network

during testing. Specifically, we propose the following three

steps:

• Global k-max pooling: For FGVC-models, the final

convolutional layer often still has a spatial resolution

of I × J (e.g. for a ResNet-50 with 448 × 448 input

images the resolution is 14 × 14). A single feature

vector describing the image can then be obtained by

using global average or global max pooling. However,

to approximate part-based recognition, we propose to

use global k-max pooling [14], where the average over

the k maximal activations is computed.

• Embedding layer: In a typical setup for face veri-

fication tasks, the test subjects (i.e. classes) are not

known during training, which means a standard soft-

max classifier can not be trained. CNNs are therefore

often used to train a discriminative embedding space

in which face images can be compared efficiently and

accurately. The embeddings are learned using specifi-

cally designed loss functions such as center loss [30],

triplet loss [23] or DFF [10]. We insert such an em-

bedding layer trained with a loss function similar to

[10] into the backbone CNN as penultimate layer. We

show that this greatly improves the performance of the

softmax classifier.

• Localization module: Using bounding boxes to crop

the input images typically improves the performance

of the classification model. In order to avoid having

to rely on human bounding box annotations we train

an efficient bounding box detector that can be applied

before the image is processed by the backbone CNN.

This localization module is lightweight and trained us-

ing only the class labels. Bounding box annotations

are not needed.
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We evaluate our model on three popular FGVC datasets

from different domains. The first dataset is CUB200-2011

[28] where the task is the classification of bird species.

The second dataset is Stanford cars [16] where different car

models are classified and the third is FGVC-Aircraft [21]

for the classification of different aircraft models. We obtain

very competitive results on all three datasets and to the best

of our knowledge state-of-the-art results for the latter two.

1.1. Related work

As mentioned in the introduction FGVC has received a

lot of attention in the research community. As a result, many

different approaches have been proposed. Especially using

some form of visual attention has been very popular lately

[37, 36, 34, 7, 32, 18, 27]. The work presented in [27] is

of particular relevance since here also an embedding loss is

used, but with the aim to guide the defined attention mech-

anism.

Spatial transformations that extract the discriminative

parts of the input can also be seen as a form of attention.

For example, the well known spatial transformer introduced

in [13] is capable of learning global transformations (e.g.

affine transformations), but is known to be difficult to train

and usually needs a second large network to estimate the

transformation parameters. In [33] a module to learn pixel-

wise translations is proposed. However, this module is ap-

plied very late in the network, possibly due to being reliant

on high-level features. As a result, only the last layers can

profit from the localized input. In [24] an ensemble of net-

works is learned sequentially, where each network is trained

based on a spatial transformation derived from the previ-

ous network. This means that each input image needs to be

passed through multiple networks. Our localization module

fits into the category of spatial transformations (limited to

scale and translation), but it is very lightweight and easy to

train while still being able to significantly boost the recog-

nition performance.

The work presented in [19] proposes to train a Gaussian

mixture model based on part proposals provided by selec-

tive search. However, this requires a looped training proce-

dure with the EM-algorithm.

Another popular approach is based on bilinear models

[20] which can lead to issues with efficiency due to very

high dimensional features and multi-stream architectures.

Also other second-order pooling methods such as the work

in [17] can result in very high dimensional features.

Other approaches include learning global and patch

features in an asymmetric multi-stream architecture [29],

learning a complex sequence of data augmentation steps

from the data [3], deep layer aggregation [35] or the training

of very large networks (e.g. 557 million parameters) [12]. It

is also possible to boost the performance by obtaining more

training data [4, 15].

2. Overview

The goal of this work is to improve the performance of a

given backbone CNN (e.g. a ResNet [11]) with lightweight

components that do not require multiple passes through the

backbone CNN or significantly higher runtime or memory

usage during testing. We achieve this goal by adding three

components, a localization module, global k-max pooling

[14] and an embedding layer. An overview of the result-

ing model in the testing stage is given in Figure 1. The

input image that needs to be classified is forwarded through

the localization module which estimates the bounding box

of the object in the image and returns a cropped image.

This cropped image is then forwarded through the back-

bone CNN that contains global k-max pooling and the em-

bedding layer at the later stages. The classification result is

then given by a softmax classification layer.

In the training stage the model is trained jointly with

a standard cross-entropy LCE applied at the classification

layer and a specific loss function Le that is applied at the

embeddings layer:

L = LCE + λLe (1)

The localization module is trained separate training step

(c.f. Section 5).

3. Global K-Max Pooling

Often global max pooling (GMP) or global average pool-

ing (GAP) is used between the last convolutional layer and

the classification layer of a CNN. These pooling opera-

tions allow to break down the spatial dimension of the fi-

nal convolutional layer and obtain a single vector describ-

ing the image. For FGVC it has been shown that part-based

approaches (e.g. [37]) can boost the classification perfor-

mance. For this reason we propose to use global k-max

pooling [14] (GKMP). This two-step pooling procedure first

applies k-max pooling at the last convolutional layer which

is followed by an averaging operation over the K selected

maximal values in each feature map. This way the network

can learn features that activate at the K most important parts

of the image (during back-propagation the error gets prop-

agated through the K most important parts instead of just

one as with GMP or all of them as with GAP). This could

be seen as a very simple form of attention.

The global k-max pooling layer can be defined as fol-

lows. Given an input image x, let y ∈ R
D×I×J be the

output of the last convolutional layer of a CNN, where y

has a spatial resolution of I × J (in this work typically

14 × 14) and contains D feature maps. Further, given a

specific d ∈ {1, ..., D} the sorted vector Sd contains the
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Localization module

CNN D × I × J K-Max D × 1× 1 f(x) class scores

Global K-Max Pooling Embedding space

Figure 1. Overview of the proposed model including a lightweight localization module, global k-max pooling and an embedding layer.

values at yd sorted in descending order:

Sd = sorted desc({yd,i,j |i ∈ {1, ..., I},

j ∈ {1, ..., J}}) (2)

The global k-max pooling operation for a specified K is

then is then defined as:

GKMP (y)d =
1

K

K∑

k=1

Sd,k (3)

This definition corresponds to the pooling operation used

in [6], except in [6] also the K minimal activations are in-

cluded. However, preliminary experiments suggest that in-

cluding the minimal activations does not help the recogni-

tion performance in our case. Therefore we use global k-

max pooling as defined in Equation (3).

There are two special cases of GKMP that are worth

mentioning. If we select K = 1 then Equation (3) results

in the standard GMP, while a choice of K = I · J leads to

GAP. In this work we chose K = 4 in all experiments.

Note that GKMP is only used after the last convolutional

layer with the aim to summarize the image into one vec-

tor. It does not replace other pooling operations within the

backbone network.

3.1. Global k­max pooling with weighted averaging

GKMP can be extended to a global weighted k-max

pooling variant (GWKMP) by including weights in the av-

eraging operation in Equation (3) similar to [31]:

GKMP (y)d =
1

K

K∑

k=1

wk · Sd,k (4)

This formulation extends the network with only K parame-

ters that regulate the contribution of the K maximal activa-

tions to the averaging operation in each feature map.

4. Embedding layer

The embedding layer is inserted between GKMP or

GWKMP and the classification layer. The idea is to map the

images into a discriminative embedding space, where the

distances between images of the same class are small, while

the distances between images of different classes are large.

This concept is known from face verification [23, 30, 10]

and metric learning [22]. Different from those two tasks, we

do not compare images directly in the embedding space, but

use it as an intermediate layer (more specifically as penul-

timate layer). The classification is done by a standard clas-

sification layer trained on the embedding space with cross-

entropy. We argue that one of the advantages of this ap-

proach is that it can help mitigate the issue of limited train-

ing data that we often see in FGVC tasks (see Table 1).

The embedding space is trained using a specific loss

function Le applied directly to output of this intermediate

layer. In this work we use a formulation based on opti-

mizing class means [30, 10] since this is easy to integrate

into the training and does not require any specific batch

construction schemes (unlike tuple-based losses such as the

triplet loss [23] or the N-Pair loss [26]). For each class c a

feature vector is computed (and updated online during train-

ing) that describes the class mean µc within the embedding

space. The goal of the loss function Le is to minimize the

distance of each image within a batch to its respective class

mean, while maximizing the distance between means of dif-

ferent classes.
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The loss function is composed of two parts:

Le = Lw + Lb (5)

The first part Lw is the within-class (intra-class) loss that

minimizes the distances of the images to their class means,

while the second part Lb is the between-class (inter-class)

loss that maximizes the distances between class means.

4.1. Within­class loss

We use the same formulation for the within-class loss

as in [10] (which is derived from the center-loss proposed

in [30]) including an additional l2-normalization. Given

classes c ∈ {1, ..., C} and a batch of images xn with

n ∈ {1, ..., N} let f(xn) be the normalized output of the

embedding layer. Assuming we are currently in training it-

eration t the first step is to update the class means using the

data points in the current batch and the class means from

the previous iteration t− 1

µt
c = µt−1

c − α∆µt−1
c (6)

where the hyper-parameter α can be considered the learning

rate of the class means. The term ∆µt−1
c is defined as

∆µt−1
c =

N∑

n=1
δ(cn, c)(µ

t−1
cn

− f(xn))

1 +
N∑

n=1
δ(cn, c)

(7)

and δ(cn, c) is the Kronecker-function:

δ(cn, c) =

{

1 c = cn

0 c 6= cn
(8)

Note that this update creates a functional dependence be-

tween the class means and their corresponding images

within the batch which has to be considered during back-

propagation [10].

The within-class loss function is then defined as

Lw =
1

2N

N∑

n=1

‖f(xn)− µt
cn
‖22 (9)

4.2. Between­class loss

The between-class loss maximizes the distances between

the updated class means:

Lb =
γ

4|P |

∑

(k,c)∈P

max
(
m− ‖µt

k − µt
c‖

2
2, 0

)2
(10)

The terms µt
k and µt

c are the new class means updated with

the features f(xn) from the current batch as computed in

Equation (6). The margin m defines a threshold for the dis-

tances to be penalized and γ controls the contribution of

the between-class part to the embedding loss Le. The set

P with cardinality |P | contains all class-pairs in the current

batch.

To see why squaring the maximum in Equation (10) is

important we have a look at the gradient with respect to

f(xn):

∂Lb

∂f(xn)
=

∑

(k,c)∈P

{

0 m ≤ ‖µt
k − µt

c‖
2
2

grad(m,µt
k, µ

t
c) otherwise

(11)

with

grad(m,µt
k, µ

t
c) =

(m− ‖µt
k − µt

c‖
2
2)

︸ ︷︷ ︸

d(m,µt

k
,µt

c
)

∂

∂f(xn)

(
γ

2|P |
‖µt

k − µt
c‖

2
2

)

(12)

The squared maximization leads to the appearance of

the term d(m,µt
k, µ

t
c) in the gradient. As a result the gra-

dient gets larger if the distance between two class means

gets smaller which encourages the model to focus more

on improving the distance of class-pairs with very close

means. This should help to reduce classification errors due

to the confusion of images from class-pairs with close class

means.

While the formulation of the between-class loss defined

above is close to [10], the appearance of d(m,µt
k, µ

t
c) in

the gradient is a key difference, since in [10] the maximiza-

tion in the between-class loss is not squared. In addition

there are two more differences. First, in this work the cen-

ters are based on l2-normalized features, which makes the

choice for the margin m easier, since distances between l2-

normalized vectors are restricted by a certain range. The

second difference is that in [10] the set P contains a sam-

pled subset of all class-pairs in the current batch. Since we

work with much smaller batch sizes (see Section 6) com-

pared to [10], we use all pairs within a batch.

The embedding layer as defined above is also closely re-

lated to the attention regulation proposed in OSME-MAMC

[27]. The latter uses a metric learning loss to learn correla-

tions between the output of different attention branches. If

the multiple attention branches were replaced by a single

fully connected layer then this method would be equivalent

to training an embedding layer in our framework with the

N-Pair loss [26].

5. Localization module

It can be observed that cropping the images based on

bounding boxes of the objects that need to be recognized
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Figure 2. Min-max normalized activations of the last convolutional

layer of a trained model. The three images in the middle are the

activations in a specific feature map, while the last image shows

the mean over all feature maps.

can improve the classification performance. Since we do

not want to use any annotations apart from the class labels in

training (and of course no annotations at all during testing)

we need a way to obtain these localizations without any ad-

ditional annotations if we want to profit from the increased

performance the localizations can provide. We design such

a localization module based on the following observations.

The final convolutional layer of a trained classification

model typically contains higher activations in positions cor-

responding the discriminative areas of the image (see Fig-

ure 2). By computing the mean over all feature maps a quite

accurate heat map can be computed for the object in the im-

age. This heat map can the be used to find the boundaries of

the object within the final layer. A similar observation has

been made in [38], but in contrast to [38] we do not con-

sider class-specific heat maps due to the small inter-class

variations in FGVC.

The downside with this approach is that we obtain these

bounding boxes only at the final layer while the full im-

age needs to be forwarded through all previous layers. One

option would be to apply ROI-Pooling after the final layer

based on the estimated bounding box. However, this would

mean that only the fully connected layers following the last

convolutional layer would profit from focusing on the dis-

criminative area of the image. All other layers still have to

operate on the full image and we can not fully exploit the

potential from using the bounding boxes (see Figure 5). An

alternative would be to pass the image through the full back-

bone network, extract the bounding boxes and then train a

second, more precise model based on the bounding boxes

(similar to [24]). However, with this approach the image

would have to be passed through a full network twice, one

pass to obtain the bounding box and a second pass for clas-

sification. This is not very efficient. To avoid such a multi-

pass procedure we propose to train a very lightweight lo-

calization module that predicts the bounding boxes and is

integrated into the backbone network such that an image

can be processed in one pass.

The architecture of the localization module is equivalent

to the first few layers of a ResNet-50 (initialized from the

trained classification model) until the end of the first resid-

Mean
1× I × JCNN D × I × J

1× I × J

Localization
module

Fixed weights

LSL1

Figure 3. Training procedure for the localization module: The lo-

calization module learns to directly predict the heat maps gener-

ated by the backbone CNN.

Figure 4. True mean (middle) of the trained classification model

compared to estimated mean (right).

ual block including an initial down-sampling layer that re-

sizes the input to a spatial resolution of 64×64. The module

has only 220000 parameters and can be added to the classi-

fication model without taking up much runtime or memory.

The output is of the size 1 × I × J , the same as the mean

of the last convolutional layer of the trained classification

model. The localization module is trained by feeding an

input image through a trained classification model and the

localization module. The outputs are compared using the

smooth L1 loss [9] (see Figure 3). During back-propagation

the weights of the trained classification model are fixed and

only the localization module is trained. This way the local-

ization module learns to directly predict the heat maps.

Examples of the estimated heat maps are given in Figure

4. The localization module is able to predict the heat maps

very accurately, even though less focused on a specific part

of the bird (especially in the second and third row).

To obtain the final bounding box we process the heat

map using min-max normalization and binarization based

on a given threshold τ . The bounding box is then the small-

est rectangle containing all pixels where the heat map has a

value that is greater than τ .
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Name #Train #Test #Classes

images images

CUB200-2011 [28] 5994 5794 200

Stanford cars [16] 8144 8041 196

FGVC-Aircraft [21] 6667 3333 100

Table 1. Datasets used for the evaluation.

6. Experimental evaluation

We evaluate our proposed approach on three popular

datasets for fine-grained classification, CUB200-2011 [28]

for bird-species classification, Stanford cars [16] for the

classification of car models and FGVC-Aircraft [21] for the

classification of airplane models. The statistics of the three

datasets are given in Table 1. On all datasets we use only

the class label annotations. We do not use any additional

annotations such as bounding boxes or part annotations.

As backbone CNN we select ResNet [11] where we try

the two variants ResNet-50 and ResNet-101 (the analysis

in Section 6.2 and 6.3 is done using ResNet-50 as back-

bone CNN). The models are pre-trained on the ImageNet

[5] from which we remove all images that overlap with the

test sets of the three FGVC tasks used for this evaluation.

Since our added components are all lightweight and do

not occupy much memory we are able to train both ResNet

variants on a single NVIDIA GeForce R© GTX 1080 Ti GPU

with 11GB memory with a batch-size of 14 and input im-

ages with the spatial resolution 448 × 448. We use this

batch-size and input resolution for all experiments. The

models are trained with standard back-propagation for 90
epochs with momentum of 0.9 and weight decay of 0.001.

The starting learning rate is 0.003 which is reduced by a

factor of 10 after 30 epochs. The weighted average pooling

(see Section 3.1) is applied as finetuning step for 30 more

epochs. The approach is implemented using the Torch7

framework [2] and the code will be made available1.

There is a number of hyper-parameters to set for our ap-

proach. We perform a very limited search for the hyper-

parameters on CUB200-2011 using a validation set sepa-

rated from the training images. The parameters are quite

robust and we can use the same set of hyper-parameters

in all other experiments. The threshold τ for the localiza-

tion module is the only exception, where we use a slightly

smaller value on the Stanford cars and the FGVC-Aircraft

dataset. The exact values for the hyper-parameters are given

in Table 2.

In Section 6.4 and 6.5 we compare to state-of-the-art ap-

proaches using a similar experimental setting, specifically

with the same training data (ImageNet and the training set

of the FGVC task at hand) and no bounding box or part an-

notations. Note that for some datasets better results can be

1https://github.com/rwth-i6/fgvc

Hyper- Reference Value

parameter

α Equation (6) 0.5

λ Equation (1) 2.0

γ Equation (10) 16.0

m Equation (10) 0.75

K Equation (3) 4

τ Section (5) 0.3, 0.2

Table 2. Hyper-parameters used in the experiments. The threshold

τ is 0.3 on CUB200-2011 and 0.2 on the other two datasets.

Method Runtime [ms] Parameters

Baseline 96.8 24M

Ours 101.3 25M

Table 3. Computational efficiency comparison between baseline

ResNet-50 (input 14× 3× 448× 448) and our approach.

80

82

84

86

88

90

Directly on

input images

Before first
residual block

Before third
residual block

After last
residual block

A
cc

u
ra

cy

ROI-Pooling
No bounding boxes

Figure 5. Accuracies for ROI-Pooling with ground-truth bound-

ing boxes applied at different depths of a CNN on CUB200-2011

(ResNet-50 with GAP and no embedding learning).

achieved by acquiring large amounts of additional training

data [4, 15].

6.1. Computational efficiency

A comparison of the computational efficiency between

a baseline ResNet-50 and our approach with ResNet-50 as

backbone is given in Table 3. With a typical input resolu-

tion the additional complexity in terms of runtime caused by

our approach is small. The numbers were measured for one

forward pass on a NVIDIA GeForce R© GTX 1080 Ti GPU

using an input of dimension 14 × 3 × 448 × 448. There

is also no large increase in parameters highlighting the effi-

ciency of the proposed approach.

6.2. Localization module

In Figure 5 we analyze the effect on the recognition per-

formance if the image or feature maps are cropped based on

ground-truth bounding boxes (ROI-Pooling). We can ob-

serve that the earlier the ROI-Pooling is applied the better

is the recognition accuracy, confirming our expectation in

Section 5.
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Method Accuracy[%]

GoogleNet-GAP [38] 41.0

ResNet-50 mean feature map 58.6

Localization module 68.9

Table 4. Accuracy of localization if intersection over union (IoU)

is at least 0.5.

Figure 6. Examples of bounding boxes detected by the localization

module.

The accuracy of the bounding boxes can be calculated by

counting a bounding box as correct if the intersection over

union (IoU) with the ground truth bounding box is at least

0.5 [38]. We can observe in Table 4 that using the mean

over baseline ResNet-50 feature maps of the last convolu-

tional layer already achieves a better accuracy then what is

reported in [38]. However, on top of being much more effi-

cient the localization module is also even more accurate. We

argue that this is due to the slightly more general heatmaps

generated by the localization module as a result of the ap-

proximation (see Figure 4).

In Figure 6 we show qualitative results of the bounding

boxes estimated for validation images by the localization

module. We can observe that the localization module is able

to find quite accurate bounding boxes. In some cases the

localization module over-estimates the bounding box due

to other objects in the image such as a branch or a dis-

tracting background. Another interesting reason for over-

estimated bounding boxes can be multiple instances of the

given FGVC domain such as two different airplane mod-

els in the same image. However, in each of these cases the

classifier still has a good chance of finding the correct class,

since the objects are still present in the cropped image.

79

80

81

82

83

84

85

1 2 4 8 16 32 196

A
cc

u
ra

cy

K

Figure 7. Accuracies for different values of K in K-max pooling

on CUB200-2011.

6.3. Ablation study

Table 5 shows how the components contribute to the

recognition performance. The two baseline results with

GAP and GMP include a fully connected layer with dimen-

sion 512 before the classification layer. We can observe in

Table 5 that adding an embedding loss Le and adding the lo-

calization module leads to the largest boost in performance

at about 2% absolute (86.9%, using ground-truth bounding

boxes yields 87.5%). The addition of global k-max pool-

ing, weighted average finetuning and the full embedding

loss compared to only the within-class part leads to an im-

provement of about 0.5% each.

Pooling Le Loc. Accuracy[%]

module

GAP 81.2

GMP 82.2

GKMP 82.7

GKMP X 84.2

GKMP Center-loss [30] 84.1

GKMP DFF [10] 84.6

GKMP Lw 84.4

GKMP Lw + Lb 84.9

GKMP Lw + Lb X 86.9

GWKMP Lw + Lb X 87.4

Table 5. Results on CUB200-2011 with a ResNet-50. The nota-

tion Le = Lw means the embedding layer is trained only with

the within-class part of the embedding loss, while Le = Lw + Lb

means the embedding layer is trained with the full embedding loss.

For comparison we include results obtained by using the loss func-

tions defined in [30] and [10] in our framework.

The effect of the value selected for K in GKMP is il-

lustrated in Figure 7. The special case K = 1 is equiva-

lent to GMP and K = 196 is equivalent to GAP (the spa-

tial dimension of the last convolutional layer is 14 × 14).

We can observe that a value around 4 seems to be optimal.

The improvement compared to GMP is only 0.5% absolute,

but using a value larger than 1 also enables us to apply the
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weighted averaging, which gives another performance boost

(see Table 5).

6.4. CUB200­2011

Method Backbone CNN Accuracy[%]

STN [13] BN-Inception 84.1

MA-CNN [37] VGG-19 86.5

GMM [19] VGG-19 86.3

Spatial RNN [32] M-Net/D-Net 89.7

Stacked LSTM [8] GoogleNet 90.4

DLA [35] DLA-102 85.1

FAL [33] ResNet-50 84.2

DT-RAM [18] ResNet-50 86.0

ISE [24] ResNet-50 87.2

DFL-CNN [29] ResNet-50 87.4

NTS-Net [34] ResNet-50 87.5

DCL [1] ResNet-50 87.8

OSME-MAMC [27] ResNet-101 86.5

iSQRT-COV [17] ResNet-101 88.7

Ours ResNet-50 87.4

Ours ResNet-101 88.5

Table 6. Comparison of our approach with other state-of-the-art

methods on CUB200-2011.

In Table 6 we compare our approach to other state-of-

the-art methods. In addition to the results reported in Table

5 we also evaluate our method with ResNet-101 as back-

bone network. This includes all components (GKMP with

weighted average pooling, embedding layer with full em-

bedding loss, localization module). Our best result is with

88.5% very competitive, even though a little less accurate

then the state-of-the-art results that are reported in [32]

and [8]. However, these involve recurrent neural networks

which can be computationally expensive.

6.5. Stanford cars and FGVC­Aircraft

The results on the Stanford cars and the FGVC-Aircraft

dataset are given in Table 7 and 8, respectively. Here we

run the experiments with ResNet-50 and ResNet-101 with

all components included. As mentioned earlier, we use the

same hyper-parameters as for CUB200-2011 (apart from

the threshold τ ). Again, our approach achieves very com-

petitive state-of-the-art results for both ResNet variants.

7. Conclusion

In this work we presented an efficient method to im-

prove the classification performance of a backbone CNN

for fine-grained visual classification. Specifically, we pro-

pose a lightweight localization module that relies only on

class label annotations during training. We showed that the

localization module can find reliable bounding boxes and

Method Backbone CNN Accuracy[%]

MA-CNN [37] VGG-19 92.8

GMM [19] VGG-19 93.5

DFL-CNN [29] VGG-16 93.8

Spatial RNN [32] M-Net/D-Net 93.4

DLA [35] DLA-X-60-C 94.1

DT-RAM [18] ResNet-50 93.1

ISE [24] ResNet-50 94.1

NTS-Net [34] ResNet-50 93.9

DCL [1] ResNet-50 94.5

GPipe [12] AmoebaNet-B 94.8

AutoAugm [3] Inception-v4 94.8

OSME-MAMC [27] ResNet-101 93.0

iSQRT-COV [17] ResNet-101 93.3

Ours ResNet-50 94.5

Ours ResNet-101 95.0

Table 7. Comparison of our approach with other state-of-the-art

methods on Stanford cars.

Method Backbone CNN Accuracy[%]

MA-CNN [37] VGG-19 89.9

GMM [19] VGG-19 90.5

DFL-CNN [29] VGG-16 92.0

Spatial RNN [32] M-Net/D-Net 88.4

DLA [35] DLA-X-60 92.9

ISE [24] ResNet-50 90.9

NTS-Net [34] ResNet-50 91.4

DCL [1] ResNet-50 93.0

GPipe [12] AmoebaNet-B 92.9

AutoAugm [3] Inception-v4 92.7

iSQRT-COV [17] ResNet-101 91.4

Ours ResNet-50 93.4

Ours ResNet-101 93.5

Table 8. Comparison of our approach with other state-of-the-art

methods on FGVC-Aircraft.

significantly boost the recognition performance. Addition-

ally we propose to use global k-max pooling [14] to obtain a

global vector describing the image. This approximates part-

based modeling and can further be improved by learning

weights to regulate the contribution of the maximal values

in each feature map. Finally, we project the image descrip-

tor into a discriminative embedding space from which the

classification layer makes the classification. As an interme-

diate layer of the full classification network the embedding

space is trained jointly with the full network and a specific

loss function that optimizes class means. We evaluate our

approach on three popular FGVC tasks and achieve com-

petitive results on all three. Especially on Stanford cars and

FGVC-Aircraft we can report state-of-the-art classification

accuracies.
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