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Abstract

We present a generative autoencoder that provides fast

encoding, faithful reconstructions (e.g. retaining the identity

of a face), sharp generated/reconstructed samples in high

resolutions, and a well-structured latent space that supports

semantic manipulation of the inputs. There are no current

autoencoder or GAN models that satisfactorily achieve all

of these. We build on the progressively growing autoencoder

model PIONEER, for which we completely alter the training

dynamics based on a careful analysis of recently introduced

normalization schemes. We show significantly improved vi-

sual and quantitative results for face identity conservation in

CELEBA-HQ. Our model achieves state-of-the-art disentan-

glement of latent space, both quantitatively and via realistic

image attribute manipulations. On the LSUN Bedrooms

dataset, we improve the disentanglement performance of the

vanilla PIONEER, despite having a simpler model. Overall,

our results indicate that the PIONEER networks provide a

way towards photorealistic face manipulation.

1. Introduction

Advances in generative image modelling with deep neural

networks have raised expectations for delivering new tools

for photographic image manipulation and exploration. Gen-

erative image modelling involves training the model by a

wide variety of data, such as pictures of faces or bedrooms,

and allowing it to learn features and structure present in

the data. Recent works (e.g. [19, 20, 3]) on using Genera-

tive Adversarial Networks (GANs, [10]) for images of high

quality and resolution have showed that generating random

beautiful and sharp high-resolution images is achievable by

current tools—given a fair deal of engineering and compute.

However, to manipulate existing images and other content,

we also need inference, not only the capability to generate

random samples. A model that can encode the sample of

interest into a well-structured latent space allows us to manip-
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Figure 1. Six-way example interpolations in the latent space be-

tween reconstructions of previously unseen input images (bottom)

at 256×256 resolution. Best viewed zoomed in.

ulate the sample via that latent representation. In absence of

extensions, a GAN has no inference component. In contrast,

generative autoencoder models allow both generation and

reconstruction, with a bi-directional mapping between the

latent feature space and image space. The latent space can

be exploited by interpolating between two or more points

that represent images (see Fig. 1), by finding directions that

encode an individual feature of interest (see Fig. 6) to modify

new images, and for other downstream tasks.

The state-of-the-art in this direction was set by three pa-

pers simultaneously published in late 2018: the flow-based

GLOW method [25], the introspective variational autoen-
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Figure 2. Example of reconstruction quality in 256×256 resolution with typical images from the CELEBA-HQ test set (top row), by our

balanced PIONEER (middle) and baseline PIONEER (bottom). Here, the input images are encoded into 512-dimensional latent feature

vector and decoded back to the original dimensionality (middle and bottom rows). The encoding–decoding of balanced PIONEER tends to

preserve facial features, orientation, expressions, and hair style. Small mistakes can still be observed, especially in male subjects. (Features

highly underrepresented in the limited CELEBA-HQ training set, such as a dark-skinned face with atypical orientation, will result in more

pronounced failures.)

coder (IntroVAE, [16]), and the progressively growing gener-

ative autoencoder (PIONEER, [13]) based on the Adversarial

Generator–Encoder (AGE, [40]). GLOW offers tractable

likelihood estimates and a degree of attribute manipulation

but ultimately suffers from mode collapse issues. IntroVAE

offers high sample quality but with e.g. human faces, it often

only retains overall topology, not the identity [16].

Here, we build on the progressively growing generative

autoencoder concept, primarily the PIONEER. We seek to

balance the training in higher resolutions—a common chal-

lenge for generative models (see e.g. discussion in [16]).

PIONEER was previously shown to reconstruct images only

up to 128×128. Our model provides 256×256 reconstruc-

tions (Fig. 2), generates realistic and diverse samples, and

learns disentangled latent representations of features (Fig. 6).

The contributions and results of this paper are as follows.

(i) We show that an AGE-based autoencoder model (bal-

anced PIONEER) can learn a high-resolution image dataset,

combining all the strengths of both autoencoder and GAN

models—fast encoding, faithful reconstruction of inputs, and

sharp sample generation (contrary to what is implied in [16]).

We also show state-of-the-art disentanglement capabilities

in terms of Perceptual Path Length metric [20], along with

image attribute modifications at higher resolutions than pre-

viously shown for unsupervised general-purpose models.

(ii) We propose a modified PIONEER model with com-

pletely altered training dynamics, considerably improving

the learning capacity. When reconstructing face images of

CELEBA-HQ, the baseline PIONEER often loses the identity.

The cause is related to a large dynamic range and occasional

collapse of the encoder–decoder minimax game, compli-

cated by three different weight normalization schemes: Pixel

Norm (PN), Equalized Learning Rate (EQLR) and Spectral

Normalization. For the first time, we show systematic com-

parison of the effects of each on a generative model. By

improving the loss function with a margin term, we are able

to drop PN and EQLR while solving the stability problem.

(iii) With these improvements, our model can reconstruct

256×256 CELEBA-HQ images with substantially better con-

servation of identity and attribute editability than shown for

the baseline models such as the state-of-the-art model In-

troVAE, with almost comparable sample quality. In compari-

son to the vanilla PIONEER, we show substantially better con-

servation of face identity (via L2 distance in the embedding

space of a face recognition model [22, 9]) and significantly

improved LPIPS [44] and FID [15] scores. In LSUN Bed-

rooms dataset, we improve the disentanglement performance

of the vanilla PIONEER despite our model being simpler.
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2. Related work

Our work builds upon the previous research in generative

image models, such as variational autoencoders (VAEs, [23,

18]), autoregressive models, flow models, and GAN variants.

Our approach borrows ideas from both autoencoders and

GANs. In this section, we give a brief overview of the

background literature and conclude with discussion about

the closest related works.

The basic idea of a GAN is to train two networks, gen-

erator and discriminator, in a competitive manner so that

(a) the generator learns to produce images from the same

distribution as the training data and (b) the discriminator

learns to distinguish the synthetic images produced by the

generator from the real training samples as well as possible.

If successful, the generator has become good enough so that

the discriminator can no longer make the distinction. The

generator starts from a compact random latent code.

During the recent years there has been rapid progress

related to GAN-based models and applications. Many recent

improvements improve the stability and robustness of the

training process by suggesting new loss functions [1], reg-

ularization methods [33, 35, 31], multi-resolution training

[19, 43], architectures [20], or combinations of these.

However, despite the notable progress in image gener-

ation, it is widely accepted that the capability for realistic

image synthesis alone is not sufficient for most applications,

such as image manipulation, where we start from an existing

image. This calls for a model with an encoder, such as a

VAE. On the other hand, autoencoders tend to suffer from

blurry outputs, and are often used for only low resolution

images (even in recent works such as e.g. [37, 38, 5], see

also comparison in [13]).

Thus, there have been many efforts to combine GANs

with autoencoder models, (e.g. [4, 34, 7, 8]). For instance,

[7] and [8] proposed utilizing three deep networks in order

to learn functions that enable mappings between the data

space and the latent space in both directions. That is, besides

the typical autoencoder architecture, consisting of a decoder

(i.e. generator) and encoder networks, their approach uses an

additional discriminator network, which is trained to classify

tuples of image samples with their latent codes. Other au-

thors introduce additional discriminator networks besides the

generator and encoder. For example, [28, 4] use a GAN-like

discriminator in sample space and [30, 32] in latent space.

Nevertheless, the image synthesis performance of these hy-

brid models has not yet been shown to match state-of-the-art

of purely generative models [19, 20].

In this paper, we build upon PIONEER [13], based on

the adversarial generator–encoder (AGE) [40]. In contrast

to many other previous works, these two models consist

of only two deep networks, a generator and an encoder,

which represent the mappings between the image space and

latent space. In addition, the method of progressive network

growing, adapted from [19], is utilized in [13].

The results of [13] are promising, and both synthesis and

reconstruction have good quality in relatively high image

resolutions. However, in this paper, we show that [13] suffers

from large fluctuations of the competing divergence terms of

the adversarial loss, and this seems to hamper optimization

and convergence thereby limiting performance.

Besides [13], other recent and related works are IntroVAE

[16] and GLOW [25]. Based on VAE, IntroVAE is funda-

mentally different from PIONEER that is based on AGE.

IntroVAE has been shown to produce high quality samples,

but not to faithfully conserve sample details such as identity

of faces (see Fig. 3 in [16]). Mere conservation of overall

image topology is generally insufficient for manipulating

image attributes. Based on the contributions of our paper, we

are able to show that AGE-based generative models are capa-

ble of producing competitive results at 256×256 resolution,

while conserving the face identity better than IntroVAE. This

is in contrast to the observations in [16], where the authors

were not able to make AGE training converge with large

image resolutions. This finding is particularly promising

since the PIONEER model has a simpler yet more powerful

architecture than the corresponding purely generative model

PGGAN [19]. It shows that the conventional GAN paradigm

of a separate discriminator network is not necessary for learn-

ing to infer and generate image data sets.

Our model learns to manipulate image attributes in a fully

unsupervised manner, in contrast to supervised approaches

where the class information is provided during training (e.g.

[27, 14]), and to models only capable of specific discrete

domain transformations [46, 21, 41, 6, 17]. In practice, all

prior unsupervided work uses 64×64 resolution, such as

every model cited in a recent large-scale autoencoder com-

parison [29]. In the GAN research line, the state-of-the-art

models such as [20] could be used for this in high resolution,

but they have no encoder to deal with new input images.

3. Methods

In this section, we start from the basics of PIONEER [13]

which in turn builds on [40] and [19] (Sec. 3.1). From the

perspective of image manipulation in 256×256 resolution

(and above), the regular PIONEER reaches reasonable sample

quality and diversity, but the reconstructions are often not

faithful to the originals (unlike in 128×128 CELEBA).

Therefore, our main task in this paper is to substantially

improve the reconstructions without sacrificing other perfor-

mance aspects. For this, we must address two issues: (i) On

the training behavior level, the PIONEER training dynamics

are difficult to optimize, due to wildly oscillating Kullback–

Leibler divergence (KL) terms during training. Further, oc-

casionally the encoder and decoder completely diverge and

the training performance collapses (Fig. 3a). (ii) On the

algorithmic level, the three different normalization schemes
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used in baseline PIONEER compound the difficulty of under-

standing the behavior of the model, and together appear to

contribute to the issue (1) in complicated ways. Instead of

proposing yet another network architecture, we seek to find

the minimum sufficient changes to simplify and stabilise the

training workflow.

We benefit from first simplifying the algorithm, and re-

duce the three normalization schemes to only one (Sec. 3.2).

This simplification comes at the cost of even less stable

training dynamics. However, the behavior becomes more

straightforward, and we are able to stabilize the training by

bounding the difference between the competing KL terms,

preventing them from diverging (Sec. 3.3). We also compare

the impact of each combination of normalization strategies

on early training stages (Fig. 3a).

Finally, we analyze the representational power of our

improved model by measuring the degree of disentanglement

in the model’s latent space and demonstrate realistic image

feature manipulations (Sec. 3.4).

3.1. Model training dynamics

In PIONEER, the encoder φ and decoder θ are trained sepa-

rately during each training step, with separate loss functions.

Because of this separation and the presence of loss terms

that are the exact opposites of each other, the training can

be called adversarial. With x ∼ X as the training samples

and x̂ = θ(ẑ) where ẑ ∼ N(0, I), the encoder loss consists

of the encoder trying to push the distribution of the latent

codes of the training samples qφ(z | x) towards a unit Gaus-

sian distribution N(0, I) and the distribution of the codes of

the generated samples qφ(z | x̂) away from N(0, I). The

decoder tries to do the opposite to the generated samples.

Furthermore, the encoder attempts to minimize reconstruc-

tion error LX with L1 distance in sample space X , and the

decoder to minimize reconstruction error LZ with cosine

distance in latent code space Z . Hence, as explained in detail

in [13], the full loss functions are as follows:

Lφ = DKL[qφ(z | x) ‖N(0, I)]

− DKL[qφ(z | x̂) ‖N(0, I)] + λXLX , (1)

Lθ = DKL[qφ(z | x̂) ‖N(0, I)] + λZLZ , (2)

with DKL denoting Kullback–Leibler divergence. The re-

construction loss terms are defined as:

LX (θ,φ) = Ex∼X‖x− θ(φ(x))‖1, (3)

LZ(θ,φ) = Ez∼N(0,I)[1− z
Tφ(θ(z))]. (4)

Vectors in Z are always normalized to unity. Contrasted to

regular autoencoders, the second major aspect of PIONEER

is the progressive growing of the network architecture during

training, as follows. The encoder and decoder are divided

into residual convolution/deconvolution blocks operating on

separate resolutions (16×16, 32×32, . . . ). The training is

divided into phases during which we only train the blocks

that operate up to that resolution. Once that resolution is

sufficiently learnt, we gradually fade in the next level blocks,

and so on. (For more details, see [13, 19].)

When training on resolutions 128×128 or higher, we ob-

serve that around the time when the image generation results

begin to get worse, the encoder tends to assign increasingly

low KL divergence estimates for the training samples, and

increasingly large ones for the generated samples. In other

words, the encoder wins the game. We will keep this obser-

vation in mind, and now turn to the weight normalization

schemes that underlie the training dynamics.

3.2. Simplification of the normalization scheme

In [13], three unrelated implicit regularization techniques are

used to stabilize the training: (i) equalized learning rate [19]

and (ii) pixel norm [19] in the decoder, as well as (iii) spec-

tral normalization [33] in the encoder. (i) is used to scale

generator weights by dividing each weight with He’s initial-

izer [12] at runtime. (ii) normalizes, for each convolutional

layer, the feature vector of each pixel to unit length. In (iii),

the spectral norm of each layer of the network is constrained

directly during every computation pass by dividing each net-

work weight matrix by its largest singular value. This keeps

the Lipschitz constant under control. Intuitively, (iii) ensures

that the weights do not amplify the ‘scale’ of the input signal,

but allows them to freely ‘rotate’ the signal.

Since (i) scales the weights based on the number of in-

put connections, it merely ensures that the overall scales of

weight gradient updates are balanced against the changing

layer sizes. While this helps to even out extreme cases, it

does not guarantee Lipschitz continuity.

Method (ii) scales the outputs of the convolution opera-

tions. First, it prevents activations from escalating to large

values. Second, it eliminates much of the information about

how the activation of a given filter varies across locations.

The filter might activate more strongly on one pixel than on

another, but this difference may be ‘scaled away’ depending

on the other filter activations. This explains the observed

dampening effect that (i) and (ii) have on learning, with more

stability at the cost of capacity.

Informally, we can construe the regularization as having

two goals: (A) stable individual training steps and (B) pre-

venting the encoder–decoder competition from spiralling out

of control. (i) and (ii) meet (A) but fail (B). As their effect

is local, they provide nothing to prevent the encoder from

over-powering the decoder over time (Fig. 3). Likewise, (iii)

guides only the local learning, but with less dampening.

As (iii) is more principled an approach than (i) and (ii),

we could in fact use it to replace (i) and (ii) altogether. Hypo-

thetically, without the strong dampening effect, this buys us

more learning capacity. Empirically, however, it then leads
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(b) Effects of various normalization scenarios on the KL terms and FID

Figure 3. (a) The competing KL divergence terms that the encoder assigns for x (training samples) and x̂ (generated samples) in PIONEER

show two pathological properties. Relatively early on, the encoder overpowers the decoder leading the terms to diverge from each other, and

the dynamic range of each grows, leading to an upper bound on the learning capacity. (b) The individual contribution of our changes, shown

for KL divergence terms for early stages of CELEBA-HQ training. FID (blue dots) is shown for 128×128 stage onwards (with stage fade-in

starting at 16.52M samples). PixelNorm (PN) or Equalized Learning Rate (EQLR) alone or in combination (top) will lead to poor FID even

with KL margin (bottom left). On the other hand, merely adding Spetral Normalization (SN) without KL margin will lead to divergence of

the terms and training collapse (bottom middle). Adding SN with the margin produces the optimal outcome (bottom right).

to unbalanced competition even faster than with (i) and (ii).

Now, the key insight here is to use the implicit regular-

izer (iii) to address goal (A) only. To this end, the weaker

constraints of (iii) will suffice for encoder and decoder alike,

allowing us to discard (i) and (ii) altogether. For (B), we will

proceed to explicitly improve the loss function, instead.

3.3. Competing KL divergence terms

We now return to the KL terms. In general, their absolute

values do not seem to always correlate with better generation

results. Instead, the difference between them is critical.

We thus set out to regularize this part of the training

by adding a simple hinge loss to limit the gradient reward

for the encoder. A major component of the gradient of the

encoder comes from the gap between the KL terms. We wish

to ensure that the encoder is not motivated to increase the

gap too much, so we define a single margin term Mgap that

defines the upper bound of the gap, and then modify Eq. (1)

as follows into a hinge-loss form:

Lφ = max(−Mgap,DKL[qφ(z | x) ‖N(0, I)]

DKL[qφ(z | x̂) ‖N(0, I)]) + λXLX . (5)

Because the latter KL term is, in practice, almost always

larger than the former, the gap is negative and needs to be

bounded from below. Now, Eq. (5) alone would not care

about the absolute values of the KL terms at all. How-

ever, since Eq. (2) remains unchanged, the decoder training

provides the force that drives the DKL[qφ(z | x̂) ‖N(0, I)]
lower. Combined with Eq. (5), the result is a force that

pushes the other KL term lower, too (see Fig. 3 for an exam-

ple of diverging KLs and the effect of bounding the gap).

After applying this change, the training becomes stable

again, regardless of resolution, while using our simplified

weight normalization scheme. There is no collapse of the

training, and furthermore, we tend to see steady improve-

ments well beyond the capacity of the original PIONEER.

With the approach in Eq. (5), we do not need to try to reduce

the learning rate to dampen the gradients. We note that the

large gradients are not a problem in the early pre-training

stages. On the contrary, applying a heavy-handed margin in

the early stages will reduce the rate of learning too much.

Hence, it is sufficient to only apply the margin after the pre-

training. Alternatively, we could have defined the margin to

be dependent on the progressive stage of the training, but

more experiments should be done to confirm the generality

of such margin choices.

3.4. Disentanglement of latent space

One of many ways to measure disentanglement of the latent

space is to find latent directions that correspond to specific

factors of variation in the sample space. In an unsupervised

training setup, these factors are unknown a priori. However,

as a proxy measure, we can measure how smoothly the gen-

erated samples change while we move around in the latent

space. This requires a good metric (inductive bias) for mea-

suring such changes between images, such as LPIPS [44].

Following [20], we compute the Perceptual Path Length

(PPL) by repeatedly taking a short constant-length random

vector in the latent space, generating images at its endpoints,

and measuring LPIPS between the points.

Visually, we can modify isolated image attributes, such

as the degree of smiling, by finding the corresponding latent

code vectors after the training. We take our existing model

trained without labels, a set A of images with the desired
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Figure 4. FID-10k values of CELEBA-HQ during training, with

regular PIONEER and Balanced PIONEER. The FID measures the

quality and diversity of generated images (smaller is better). The

regular PIONEER scores are markedly worse and more volatile.

attribute, and a set B without it. Requiring no additional

training or optimization, we take the difference between the

mean latent code of each set. The resulting 512-dimensional

difference vector can then be added to the code of any new

real test image xnoF, scaled to the desired intensity λ. The

decoded image then gains (or, with negative λ, loses) the

attribute (see Fig. 6):

xF(A,B) = θ(φ(xnoF)+λ[Ex∼A‖φ(x)‖−Ex∼B‖φ(x)‖]).

4. Experiments

Any generative models can create data samples, but encoder–

decoder models can also take input samples and modify

them via latent space. Correspondingly, one can test such a

model by reconstructing new test samples and interpolating

between them in the latent space, evaluating some generated

random samples, and analyzing the latent space.

The various ways of measuring generative models consti-

tute an active field of research as such. To evaluate random

samples, we look for both quality and diversity of the sam-

pled distribution, typically via Fréchet inception distance

(FID, [15]) or Inception Distance [36]. They come with vari-

ous shortcomings [2] but as long as we use identical sample

size, FID remains a reasonably reliable tool for comparing

different models. For easy comparison to prior work, we

measure against the training set (but see [26] for limitations).

To measure the extent to which face identity of an input

image is conserved in the reconstructed face images, we used

L2 distance between the 128-D feature embeddings of the

two images, in the embedding space of a pre-trained DLib

face recognition model [22, 9]. To measure the conservation

of overall image features, we use LPIPS [44] which corre-

lates with human judgement more closely than, for example,

the commonly used pixel space L2 distance or Structural

Similarity measures [45]. Finally, to evaluate the quality of

Table 1. Comparison of Fréchet Inception Distance (FID) and per-

ceptual path length (PPL) of 256×256 images on CELEBA-HQ

and LSUN dataset between Balanced PIONEER, regular PIONEER,

PGGAN, IntroVAE and GLOW. Balanced PIONEER has the best

PPL result, PGGAN has the best FID results. Improvement of the

Balanced PIONEER over the regular PIONEER is clear on CELEBA-

HQ. [16] provides the 256×256 FID of IntroVAE for LSUN Bed-

rooms but not for CELEBA-HQ (they provide it for 1024×1024 as

5.19, but with a more favorable train/test split). For other figures,

the best-run results are shown. For GLOW, 256×256 LSUN im-

age generation has not been demonstrated (only 128×128). FID is

based on a 50k batch of generated samples compared to training

samples. CELEBA-HQ Perceptual Path Length (PPL) was calcu-

lated with 100k samples, cropped to 128×128 (ε = 10−4), LSUN

PPL with 256×256. Pre-trained models for PGGAN and GLOW

(T = 0.9 resulted in best FID) were used with default settings

provided by the authors. For all numbers, smaller is better.

FID FID PPL PPL

(CELEBA-HQ) (LSUN) (CELEBA-HQ) (LSUN)

PGGAN 8.03 8.34 229.2 1080.1
IntroVAE — 8.84 — —

GLOW 68.93 — 219.6 —

PIONEER 39.17 18.07 155.2 779.5

Balanced PIONEER (ours) 25.25 17.89 146.2 678.4

the latent space as such, we measure the Perceptual Path

Length [20] and show interpolations between reconstruc-

tions of input images as well as feature modifications. The

success in the latter requires a well-structured latent space.

Since PIONEER networks are most useful in the domain of

high-resolution images (128×128 and higher), we consider

the CELEBA-HQ [19] and LSUN Bedrooms [42] datasets

with images up to 1024×1024 and 256×256 resolution, re-

spectively. CELEBA-HQ contains 30,000 images (where we

use 27,000 / 3,000 split for training and testing images) while

LSUN has its designated separate testing images. In Table 1,

we compare the PIONEER, Balanced PIONEER, PGGAN and

GLOW, with both datasets, in 256×256.

We train progressively as in [13], allowing the last two

pre-training phases (64×64 and 128×128) last 0.5–2 times

longer than the earlier phases. The final phase is trained until

convergence of the FID metric. We train both the CELEBA-

HQ model and the LSUN Bedrooms model for 8 days on

two Nvidia V100 GPUs, up to 25.5M samples (resolutions

vary between epochs). In higher resolutions, the batch size

is reduced. After the pre-training stages up to 64×64, we

switch on the margin (m = 0.6 for LSUN, m = 0.2 for

CELEBA-HQ). From 256×256 onwards, m = 0.4. The

fine-tuning is not necessary, but slightly improves the FID

values. The overall scale of m can be determined empirically

from the behavior of KL divergence values.

4.1. Ablation studies in varying the normalization

We carried out a sequence of ablation studies to quantify

each single change in the normalization scheme. Fig. 3b
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Balanced PIONEER (ours) GLOW PGGAN IntroVAE

(a) CELEBA-HQ 256×256

Balanced PIONEER (ours) PIONEER PGGAN IntroVAE

(b) LSUN Bedrooms 256×256

Figure 5. Generated samples from CELEBA-HQ and LSUN Bedrooms. IntroVAE from [16] (CELEBA-HQ downscaled), others uncurated.

focuses on the critical early training stages separately us-

ing PixelNorm (PN), Equalized Learning Rate (EQLR),

PN+EQLR etc. in CELEBA-HQ up to 20M steps. Other

hyper-parameters and resolution schedule remain the same.

PN or EQLR alone or in combination will lead to poor FID

even with KL margin. On the other hand, Spetral Normal-

ization (SN) without KL margin will lead to divergence of

the KL terms and training collapse. Only adding SN with

the margin produces the optimal outcome. Also in PGGAN,

replacing PN+EQLR with SN retained the FID results with

CELEBA-HQ in 128×128 (see Supplement).

4.2. LSUN Bedrooms

For LSUN Bedrooms, we show randomly generated samples

in Fig. 5b in 256×256. In terms of visual comparison to, for

example, [16], [19], or [11], it is hard to discern the differ-

ences between the models. However, comparing to 128×128
samples of [25] or [13] (which provide no 256×256 sam-

ples), we can already observe some mode collapse. We

found that even the baseline PIONEER can indeed gener-

ate high-quality samples of LSUN Bedrooms at 256×2561.

The balanced PIONEER reaches better PPL and similar FID

figures with 30% less training steps in the final stage than

1This may be due to fixing the PyTorch bug 12671[39] which prevented

the spectral normalization from working on multi-GPU setup.

PIONEER baseline (Table 1). In terms of FID scores, our

Balanced PIONEER does not quite reach the state-of-the-art

of [19] and [16]. However, the better performance of purely

generative models such as [19] for random sampling is not

directly comparable to that of encoder-based models.

4.3. CelebA-HQ

In [13], PIONEER was shown to reconstruct CELEBA images

up to 128×128, but only random samples at 256×256 level.

We show reconstructions from both the baseline PIONEER

and Balanced PIONEER at 256×256. Balanced PIONEER

has superior quality in both reconstructions (Fig. 2) and

random sampling (Fig. 5a and Table 1). Reconstruction of

input images is not interesting as such, but it serves as a

proxy guarantee that the model at least handles the point in

the latent space that represents the input image.

For identity conservation, the median L2 distance for 1k

CELEBA-HQ samples in the embedding space of a DLib

face recognition model improved from 0.758 of the PIONEER

baseline to 0.712 of our model (29.1% closer to the target

of 0.600 at which the recognizer is confident that the person

is same; see the Supplement for details). LPIPS score for

10k CELEBA-HQ samples (cropped at face area to 128×128
for more precise measurement) improved from 0.223 of the

baseline to 0.172 of our improved model (22.9% reduction).

3126



Input Reconstruction Smile on/off Rotate Male ↔ Female Add sunglasses

Figure 6. Examples of feature manipulation in 256×256 resolution CELEBA-HQ test set images that the model has not seen before, for

attributes that the model did not know about during training. Column 1: the input; Column 2: the reconstruction; Columns 3–6: various

added feature vectors. Each 512-dimensional feature vector was extracted after training as a simple arithmetical difference between the

latent vector of 32 to 64 training set examples that contain and do not contain the feature. The difference vector was then added to the latent

code of each new input image and decoded back into a result image. There is no a priori reason to assume that this would result in a valid

image in the first place, nor that the feature would be transformed. Note that there is no class information in the training set, which means

that during training, the model has to figure out the existence of these features from scratch. Only a well-structured latent space can explain

the result. Here, the feature intensity scale λ varies between [−2.0, 2.0]. For smoothly increasing the intensity, please see the Supplement.

4.4. Disentanglement measures

Finally, we evaluate whether the individual factors of vari-

ation in the training data are represented as disentangled

directions in the latent space. We demonstrate this by show-

ing smooth interpolations between the reconstructions of

most input images (Fig. 1 and the Supplement) and attribute

manipulation (Fig. 6) in CELEBA-HQ. We show superior

degree of disentanglement with PPL, following [20]. To this

end, we sample 100k pairs of short random latent vector

segments, the ends of which we decode into pairs of images,

cropped around mid-face. The scaled expectation of their

LPIPS value is, then, the PPL.

5. Discussion and conclusions

In this paper, we introduced a streamlined PIONEER model

variant, drawing from careful analysis of several normaliza-

tion techniques and loss dynamics. Via state-of-the-art image

manipulation capabilities, we also showed that AGE-based

models can compete with GANs and VAEs.

We focused on face images to demonstrate the full range

of capabilities of the model, even though it is in no way

specifically designed for face data. Unlike GANs limited

to random sample manipulation, our model allows for en-

coding, reconstruction and manipulation of new real inputs.

Unlike VAEs, we showed sharp reconstruction and attribute

editing up to 256×256 resolution. The reconstructive ca-

pacity and latent space disentanglement are superior to the

results shown so far with vanilla PIONEER and IntroVAE.

Recent GANs and IntroVAE (but not GLOW) have shown

better FID, but anything beyond random sample generation

requires finer metrics. To evaluate latent space structure,

arguably the core of representation learning, we showed

unsupervised editing of face attributes (also see the Supple-

ment), sharp interpolations between new inputs, and PPL

metrics superior to the baselines on both datasets (Table 1).

The code for the experiments can be found at https://

github.com/AaltoVision/balanced-pioneer.
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