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Abstract

Exposure Fusion is a high dynamic range imaging tech-

nique fusing a bracketed exposure sequence into a high

quality image. In this paper, we provide a refined version re-

solving its out-of-range artifact and its low-frequency halo.

It improves on the original Exposure Fusion by augment-

ing contrast in all image parts. Furthermore, we extend

this algorithm to single exposure images, thereby turning it

into a competitive contrast enhancement operator. To do so,

bracketed images are first simulated from a single input im-

age and then fused by the new version of Exposure Fusion.

The resulting algorithm competes with state of the art image

enhancement methods.

1. Introduction

Introduced in 2007 by Mertens et al. [28, 29] Exposure

Fusion (EF) is a high dynamic range imaging technique fus-

ing a bracketed exposure sequence into a high quality im-

age. Contrarily to most HDR imaging methods, Exposure

Fusion does not create an intermediate HDR image but di-

rectly constructs the final LDR image by seamlessly fusing

the best regions of the input sequence, using the Laplacian

pyramid. Since its publication, this method has received

considerable attention, being both effective and efficient.

In this paper, we propose a simple solution to two noto-

rious artifacts of exposure fusion, namely the out-of-range

artifact and the low-frequency halo. We call the improved

algorithm extended exposure fusion (EEF), and show that

not only its fusion results are artefact free, but also that it

can be used to produce directly images with increased local

contrast. Visual comparisons demonstrate that the proposed

method outperforms state-of-the-art fusion techniques. Fur-

ther, we derive a single image contrast enhancement tech-

nique from this corrected exposure fusion. To this aim, a

bracketed exposure sequence is simulated from the single

input and then fused. The enhancement method inherits all

the qualities of extended exposure fusion.

Our plans is as follows. After a brief description of EF

in Section 3, we explain and solve in Section 4 the out-of-

range artifact and the low-frequency halo. This section de-

fines an extended exposure fusion (EEF), which fuses real

bracketed exposure sequence without artifacts. Results are

compared against state-of-the-art methods. We also present

an application to the fusion of two large-exposure-ratio im-

ages. The EEF method is then adapted to the enhancement

of a single exposure in Section 5. We thus obtain a single

image contrast enhancement method that we call simulated

exposure fusion (SEF). A comparison of SEF with state-of-

the-art methods is carried out in Section 6.

2. Related Work

The classic HDR imaging pipeline consists in the con-

struction an HDR image by fusion of a bracketed exposure

sequence followed by the application of a tone-mapping

operator [37]. Since the publication of the Mertens et

al. paper [28, 29] however, exposure fusion methods have

emerged as an attractive alternative to this pipeline, as they

avoid a camera response curve calibration and artifact-prone

tone-mapping steps. EF is not the first method of the kind

though [4, 8]. In the last decade, numerous exposure fusion

methods have been proposed that changed either the quality

metrics or the fusion method, sometimes both. Yet they all

keep the same construction, namely the creation of weight

maps using quality metrics, and a weighted blending.

Regarding the quality measures, Mertens et al. [28] used

contrast, namely the amplitude of the Laplacian, color satu-

ration and well-exposedness. The magnitude of the Lapla-

cian had been used before [2], the color saturation was re-

used in [39,41] and some other metrics were proposed, e.g.

the entropy [8, 12], saliency [21], or the amount of detail

after a base+detail decomposition using an edge-preserving

smoothing filter [36, 39]. SSIM-related [45] image quality

metrics have also been used in [25, 27].

As for the fusion strategy, numerous variations have been

explored. Fusion can be carried out through global opti-

mization [10, 16, 35, 39], in which case the quality is di-
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rectly measured in the final image. Other fusion techniques

are single-scale [12, 20, 36, 39–41], or pyramid-based [2, 4,

19, 29]. The former generally require to refine the weight-

ing maps, e.g. using the (weighted) guided filter [21–23].

Kou et al. [17] proposed a edge-aware smoothing pyramid.

The gradient domain was used in [9,14,43,46]. Base+detail

decomposition was also used, either to compute the blend-

ing weights [36], or to enhance the local contrast: Wang

et al. [44] enhance the local contrast of the input sequence

using the Local Laplacian Filter [31, 32] before fusing the

images, whereas Li et al. [22] add a detail-enhancement

step after fusion. Mixing these ingredients, Li et al. [49]

proposed an optimization-based method in the gradient do-

main, where a detail layer is computed and added to the

fused image to enhance its local contrast.

None of these works solved the initial issues of the

Mertens et al. method, though described by the authors

themselves [29]. Kou et al. [17] succeeded, however, to

circumvent the out-of-range artifact by reducing the depth

of the pyramid. But doing this increases the low-frequency

halo. To avoid it, the authors introduced an edge-aware

smoothing pyramid. Our approach has two major differ-

ences: first, it is simpler and does not rely on any addi-

tional smoothing step, but on mere remapping functions.

Our method tackles the artifact at its root. Moreover, we

will see in Section 4 that [17] eventually creates some ha-

los. Second, rather than reducing the depth of the pyramid,

we increase it. This is better, since a deeper pyramid gives

more natural results, with preserved relative brightness.

Image contrast enhancement techniques belong to the

wider class of tone-mapping operators. While this term gen-

erally refers to methods that map values of a high dynamic

range (HDR) image into the smaller range of a low dynamic

range (LDR) image, the very same methods can generally

be adapted to LDR images and improve their brightness and

contrast. Global operators like histogram equalization and

gamma-correction apply the same correction to pixels with

the same color, whereas local operators map the values de-

pending on the local content. Among the many local meth-

ods introduced for LDR images we can mention ACE [5,6],

LCC [7, 24, 38], LLF [1, 31]. Contrast enhancement tech-

niques take inspiration in Land’s retinex method [18] which

modeled the human color perception system. Its most pop-

ular implementation is arguably MSR [15, 33].

Given the success of the exposure fusion methods, the

number of papers that suggested to simulate a sequence of

images from a single one, and then fuse it, is surprisingly

small. Lee et al. [19] proposed to generate virtual expo-

sure images using a function imitating the F-stop concept.

They classify the input image in three classes: dim, well-

exposed and bright, and adapt the well-exposedness mea-

sure. A multiscale fusion is then carried out in the dis-

crete wavelet transform domain. This method is heavier

than ours: while we generally uses only five or less images

thanks to our histogram-based generation process, they usu-

ally need twice more. Besides, their method can reduce lo-

cal contrast. Our method secures local contrast preservation

or enhancement everywhere in the image. In their paper on

burst photography for mobile cameras, Hasinoff et al. [11]

also used EF with simulated images, as a way to perform

tone-mapping at a very low cost. They simulate two im-

ages, one with short and one with long exposure, from an

HDR image obtained from the fusion of a burst of images

with constant exposure time. Lastly, in their 2017 paper

on image fusion, Li et al. [22] proposed to simulate images

and fused with their modified version of the Mertens et al.

method [28]. They aim at enhancing backlit images by fus-

ing three images with increased contrast in the dark parts,

leaving bright regions untouched. Their results suffer from

strong out-of-range artifacts, causing loss of contrast in the

bright regions (see Section 6).

Our improvement of the Mertens et al. Exposure Fusion

cancels out artifacts and increases local contrast. This is rel-

evant, considering that EF, despite its numerous derivations,

was still judged in 2015 the best available [26].

3. Exposure Fusion

Exposure fusion [28, 29] first measures the perceptual

quality of the input sequence’s images using three pixel-

wise metrics: contrast C, saturation S and well-exposed-

ness E. We will denote in the following by u the image, by

x=(x1, x2) the position of the pixel, by c the color channel,

and by k the position of the image in the sequence. The con-

trast metric uses the absolute value of a discrete Laplacian

filter applied to the grayscale version of the image:

Ck(x) =
∣∣∣
(

1
3

∑3
c=1 uc,k

)
∗KLaplacian

∣∣∣ (x). (1)

The authors use for the Laplacian kernel KLaplacian the sum

of differences over the four nearest neighbors. The satu-

ration metric is the standard-deviation of the pixel’s color,

Sk(x) =

√
1
3

∑3
c′=1

(
uc′,k(x)−

1
3

∑3
c=1 uc,k(x)

)2

. (2)

Finally, the well-exposedness measures how close each

pixel’s color is to the median value 0.5 using a Gauss curve:

Ek(x) =
∏3

c=1 exp
−(uc,k(x)−0.5)2

2σ2 , (3)

with σ=0.2. We follow the convention that the images’ dis-

playable range is [0, 1]. The quality measure of each pixel

is finally obtained as a product of these three metrics:

wk(x) = Ck(x)
ωc × Sk(x)

ωs × Ek(x)
ωe . (4)

Power functions with parameters ωc, ωs and ωe are added

to allow the user to balance the importance of the different

metrics. In this paper, unless notified otherwise, we keep
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inputs EF [28], clipped EF [28], normalized

Figure 1. Out-of-range artifact. The bracketed sequence (left) is

fused into a single output with EF (center, right). The result has

out-of-range values, e.g. in the windows’ bright parts: its dynamic

range is 1.75× larger than the input’s one. EF clips the fused im-

age (center), thus loses information. The normalized result (right)

has a drastically reduced contrast compared to the input images.

these parameters equal to one. For the blending process, the

resulting weights need to be normalized as

ŵk(x) = wk(x)
(∑N

k′=1 wk(x)
)−1

. (5)

The input images are then fused according to their nor-

malized weight maps using the Ogden et al. multiscale fu-

sion [30]. This technique builds the Laplacian pyramid [3]

of the output image by blending the Laplacian pyramids of

the input images according to the Gaussian pyramid of the

weight maps. The fused image is obtained by collapsing the

constructed pyramid. We will denote L{u} the Laplacian

pyramid of u, G{w}k the Gaussian pyramid of the weights

wk, and l the scale. The blending operation is then:

L{v}l(x) =
∑N

k=1 G{ŵ}lk(x)L{u}
l
k(x). (6)

Algorithm 1 describes the whole process, from the quality

measurements to the multiscale fusion.

Algorithm 1: Exposure Fusion (EF)

input : sequence of images u, parameters ωs, ωc, ωe

output : fused image v
foreach image at index k∈{1, 2, ..., N} do

Compute metrics C, S, E // Eq. (1), (2), (3)

Compute weight map wk // Equation (4)

Compute the normalized weights ŵk // Equation (5)

Initialize output pyramid L{v} with zeros

foreach image at index k∈{1, 2, ..., N} do
Compute G{ŵ}k // Gaussian pyramid of ŵk

Compute L{u}k // Laplacian pyramid of uk

foreach coefficient of the pyramid do // Eq. (6)

L{v}l(x) ← L{v}l(x) +G{ŵ}l
k
(x)L{u}l

k
(x)

v ← collapse Laplacian pyramid L{v}

4. Correcting exposure fusion

Fusion methods should preserve the relevant informa-

tion from all input images. In Exposure Fusion, the de-

sirable image contains the well-exposed areas from the in-

put bracketed sequence (and without distortions!). How-

ever EF sometimes fails at constructing such an image. The

authors themselves described two artifacts affecting their

results [29]: first, an expansion of the fused image’s dy-

namic range with respect to the inputs (out-of-range ar-
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Figure 2. Out-of-range artifact. The sections displayed here are

horizontal lines passing through the top left window of the house

images. Top: input sequence (see Figure 1). Bottom: fused result

with EF (blue) and EEF (red). While all input images are in the

correct range, the EF result has a larger dynamic: this is the out-of-

range artifact. The EEF method does not suffer from this artifact.
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Figure 3. Low-frequency halo. The EF result has a vertical low-

frequency halo. One of the input is displayed on the left for ref-

erence. In the EF result, the top of the shadow is darker than the

bottom. That is, the brightness change is reverted with respect

to the input images, where the top of the shadow is the brightest.

This can be verified in the bottom plot where we drew lines from

the images above. Our method (EEF) does not create this effect.

tifact). Second, a low-frequency brightness change (low-

frequency halo). It gives an unrealistic aspect to the result,

especially when the contrast is reversed, e.g. a decreasing

brightness from top to bottom becomes in the fused image

an increasing brightness. A good illustration of it is given

in [29]. Both artifacts are described in this section; illustra-

tion are shown in Figure 1, 2 and 3. Our goal in this section

is to resolve these artifacts to get closer to this desirable re-

sult. We do not intend to fundamentally change EF since

its results are already considered as the best available [26].

Our goal in the next Section 5 is to show that we can build

on this improved technique a simple method to improve the

contrast of single images.

Out-of-range artifact While the sum of the weights is

guaranteed for every pixel to be equal to 1, this does not

imply that the reconstructed image belongs to the initial in-
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terval. This out-of-range artifact was described (yet not ex-

plained) by the Exposure Fusion’s authors themselves [29].

Avoiding clipping in the dark or bright parts is possible by

applying an affine rescaling of the image’s dynamic to fit it

to the standard interval [0, 1]. Yet the final compressed im-

age may end up with a local contrast that is smaller than the

contrast of the input images.

We illustrate this clipping/contrast dilemma in Figure 1,

where we compare the standard (clipped) result with the

normalized one. Numerous values of the standard output

are lost, in the bright parts notably, e.g. the top left window

pane. Normalizing the result so that it fits [0, 1] gives an

output with lower contrast than the input images. Figure 2

shows sections of the input images and a fused result.

This artifact happens because the method preserves the

highly contrasted edges. But fitting every good part of the

input images in the dynamic forces to reduce their ampli-

tude [13]. Since EF only computes averages of Laplacian

coefficients, the blending selects the edges with high ampli-

tude, thus leading to an excessive image range.

Our proposed solution simply reduces the dynamic range

of the input images. We shall see that this can be done in

a way that preserves relevant information of each input im-

age, and allows to reduce the final image edges’ amplitude.

Extended exposure fusion Our correction of the out-of-

range artifact in EF simply consists in separating each input

image in a series of images with reduced dynamic range. To

this aim, we use the function g defined in Equation (8). The

only parameter is the restrained range width β ∈ (0, 1]. The

number of generated images per input one is M = ⌈1/β⌉,

where ⌈·⌉ is the ceiling function. This ensures that the full

initial range is reproduced in the generated images.

First, let us call ρ(k) the center of the reduced range,

where k∈{−N∗, . . . , N} is the index of the generated im-

age in the series. For now we define N=M−1 and N∗=0,

but these values will have different values in Section 5. The

range is then limited to [ρ(k)− β
2 , ρ(k) +

β
2 ], with

ρ(k) = 1− β/2− (k +N∗)(1− β)/(N +N∗). (7)

Rather than brutally clipping the values outside this re-

strained range, we use a function that progressively reduces

the contrast until it becomes zero. We call g the function

designed for this purpose:

g(t, k)=

{
t if |t−ρ(k)|≤ β

2
t−ρ(k)
|t−ρ(k)|

(
a− λ2

|t−ρ(k)|−b

)
+ρ(k) otherwise,

(8)

where t denotes an intensity, a= β
2+λ and b= β

2−λ, with λ
is a parameter controling the speed of the decay in the func-

tion outside the valid part of the range. We keep it fixed to

λ=0.125. The decay behaves like 1/x2. These remapping

functions are displayed in Figure 5. The particular shape of

g is not important; any function with a sufficiently fast de-

cay and a smooth transition to outside the valid range can be

used. Smooth transitions avoid the creation of false edges

that could be transmitted to the final image.

After fusion, the fused image’s intensities need to be

rescaled to the unit range. Depending on β and the content

of the image, this typically amounts to stretch the intensity

range (as opposed to EF). This final step over-stretches the

colors to [0, 1] by allowing 1% of clipping in both sides of

the histogram. The method is described in Algorithm 2.

Algorithm 2: Extended Exposure Fusion (EEF)

input : sequence û (with N images), reduced range β
output : z: fused image

K ← ⌈1/β⌉
for n ∈ {0, . . . , N−1} do

for k ∈ {0, . . . ,K} do
v̂k+n×(K−1) ← g(ûn, k) // Equation (8)

z ← EXPOSUREFUSION(v̂) // Algorithm 1

Results and contrast enhancement We compare in Fig-

ure 4 the results obtained with EF (first column) and EEF,

for different values of β. The remapping functions, used to

distribute the initial intensities between the generated im-

ages, are displayed on the right. We observe that all EEF

results with β=0.5 are already more contrasted than the EF

output. Hence, this value is sufficient to correct the artifact,

as can be easily verified in Figure 2, where we showed an

horizontal line in the “house”, that goes through the top left

pane of the windows, taken in the EF result (in blue) and

the EEF result (in red, with β = 0.48). In this figure, the

out-of-range artifact of the original method is obvious, and

so is its correction with the proposed method.

The results with smaller β are even more contrasted lo-

cally. Thus, our correction can also be used to increase

the local contrast with respect to the input images. Several

methods have been proposed to produce more contrasted

images with EF, e.g. by enhancing the local contrast in the

sequence before the fusion [45] or after [22,49]. With EEF,

this can simply be obtained by setting β to a smaller value,

and applying a final stretching step to the fused image.

Comparisons In addition to the comparison with Mertens

et al. [28], we present in Figure 4 fusion results with the

2007 and 2009 methods of Raman et al. [35, 36] (MLSC

and BBEF respectively), with Kou et al. [17] (ICME), Ma

et al. [27] (PWMEF), and Li et al. [22] (DEEF). The MLSC

and BBEF results are slightly darker and less contrasted lo-

cally than other methods, e.g. in the house image. The re-

sults with the MLSC method are a little blurry due to the

regularization term on the fused output. The ICME method

produces halos, that can easily be spotted in the sky of the

grand canal image. The PWMEF method produces surpris-

ingly bright results. It is visually pleasing, but one can no-

tice out-of-range artifacts in the house image. Furthermore,
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Figure 5. Remapping functions in EEF. β = 1 amounts to EF.

the bookshelf looks exaggeratedly saturated. Finally, the

DEEF results are dark and lack local contrast. In fact, they

look very similar to those of EF. EEF, however, is able to

deliver fused images without halo and without out-of-range

artifacts, and with an adequate amount of local contrast.

Elimation of the low-frequency halo The correction de-

tailed above also resolves the second and last artifact known

in Exposure Fusion: the low-frequency halo described

in [29] and explained in [13] (see illustration in Figure 3).

It appears near strong intensity differences in the input se-

quence. It corresponds to residual seams, but at the coars-

est resolution of the pyramid. Its solution consists in using

deeper pyramids. Yet, this trick could not be used in prac-

tice because it increased the out-of-range artifact [13]. With

our correction, this is no longer an issue.

In Figure 6 we present an example of low-frequency

halo. We created an image made of plateaus and a small

noise to simulate texture. Two other images were generated

using affine rescaling of the first one (and keeping the part

in [0, 1] only). Lines of the input sequence are displayed

in the top plot, and fused results with EF and EEF and dif-

ferent pyramid depths in the center and bottom plots. The

low-frequency halos of the EF method can be easily spot-

ted on the left and right parts of the center blue line, where

the standard depth is used. In EF the depth is computed as

⌊logmin{H,W}/ log 2⌋, where H and W are the height

and width of the image. Since these values are rarely pow-

ers of two, the residual image is generally a few pixels wide.
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Figure 6. Fusion of a sequence (top) with the standard depth (cen-

ter) or a larger depth (bottom), for EF (blue) and our EEF (red).

Low-frequency halos are visible in the standard EF result. These

halos can be removed using deeper pyramids, yet this also in-

creases the out-of-range artifact. Our result, however, displays no

halo nor out-of-range artifacts, independently of the depth.

The maximal depth, however, is obtained by continuing to

downsample until the residual’s size is one. In our exper-

iment the Mertens’s et al. depth is 6 and the maximal one

is 9. These halos can be removed by using deeper pyra-

mids [13, 29]. But the out-of-range artifact is amplified by

this modification [13], as can be seen on the bottom plot.

With EEF however, no low-frequency nor out-of-range arti-

facts are visible in the results.

In summary, with a simple modification of the algo-

rithm, we have resolved the two identified shortcomings of

the initial method: the out-of-range artifact, and the low-

frequency halo, and provide a simple way to obtain fused

images with improved local contrast.

Application to two largeexposureratio images

Recently Yang et al. presented a interesting variant of ex-

posure fusion, the fusion of only two images with a large-
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two input sequences, “Eiffel tower” and “tree unil”

EF [28] TIMEF [47] EEF (ours)

Figure 7. Fusion of a sequence of two images only, with a very

large exposure time ratio. EEF handles this case without difficulty,

and produces more contrasted results than TIMEF [47] that was

specifically designed for this case. Our method is more general

and produce visually better results.

exposure-ratio [47]. This makes sense for example when

both images are captured at the same time with two sen-

sors, or when using a video camera that alternatively cap-

tures long and short exposures. We show in Figure 7 that

EEF can be applied in this configuration too, with a trivial

modification: each simulated image is centered in 0.5. This

avoids rejecting most regions, which are extremely bright

or dark. Compared to the algorithm proposed in [47], our

method achieves natural-looking images without changes in

the relative brightness, and much more local contrast.

Limitations In areas where no input images contain infor-

mation (e.g. all images are saturated), the EEF method will

produce flat regions. See for example the saturated sky in

the “tree unil” images in Figure 7. This limitation is shared

with all multi-image fusion methods.

5. Simulated Exposure Fusion (SEF)

We present in this section our model for the simulation of

a set of images from a single input. The simulated sequence

is then fused with a refined extended exposure fusion. The

pseudo-code of our method is given in Algorithm 3. Our

aim is to enhance the contrast of a single image by sim-

ulating an increase of exposure time where needed. The

desirable image is well-exposed in all regions.

Artificial sequence generation A bracketed exposure se-

quence is simulated from a single image using a simple set

of contrast factors. Let us call α≥ 1 the maximal contrast

amplification factor. It is set by the user and controls the

amount of enhancement. We shall define two remapping
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Figure 8. Remapping functions and their derivatives. The re-

strained dynamic range location is adapted to the different gener-

ated images, so a to preserve the most pertinent information. The

number of under- (N∗) and over-exposed (N ) images is automat-

ically computed from the histogram.

functions f∗ and f to simulate darker and brighter images,

respectively. We call them under- and over-exposed in the

following developments, by a slight abuse of terminology.

Under-exposed images are denoted with a negative index

k. We call N∗∈ N and N ∈ N
∗ the number of under- and

over-exposed images respectively; their value is automati-

cally computed. We also define Nmax=max(N,N∗). The

bracketed sequence is then simulated using:
{
f∗(t, k) = α|k|/Nmax(t− 1) + 1 if k < 0,

f(t, k) = αk/Nmaxt otherwise.
(9)

The function f∗ increases the contrast like f , but also shifts

the intensities toward the bottom to prevent clipping of the

bright values (we recall that t ∈ [0, 1]). The unmodified

input image is included in the generated sequence and de-

noted with index k = 0. The simulated sequence has then

M =N+N∗+1 images, numbered from −N∗ to N . Im-

ages whose indices have the same absolute value have the

same enhancement factor. Because the factors are equal or

superior to 1, the fused image is guaranteed to gain contrast.

Higher contrast factors are applied to the far left and right

side of the histogram, where more enhancement is needed.

In the raw case, increasing the exposure time amounts to

applying a factor to the image. Although in the JPEG case

non-linear corrections (gamma and s-shaped curve) have

been applied, this equivalence is still approximately true lo-

cally in the range. This justifies the application of simple

contrast factors in Equation (9), since they are used in lim-

ited portion of the range only thanks to Equation (10).

Adopting the restrained dynamic range strategy of EEF,

the enhanced images are generated using the composition

of the two functions, i.e. using
{
(g ◦ f∗)(t, k) if k < 0

(g ◦ f)(t, k) otherwise.
(10)

These functions are displayed in Figure 8 (a) and (c).

To show the effect of the dynamic reduction on the fu-

sion result, we did the following experiment. We created an

image by repeating the same 1D signal along the lines. This

is the blue one in the bottom plots (a) and (b) in Figure 9.
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Figure 9. Comparison of the fused results without (a) and with

(b) the restrained dynamic. In (b), we used β = 0.5. Comparing

the left and right results one can check that the out-of-range values

have been almost completely removed.

From this image we generated two bracketed exposure se-

quences, without and with dynamic reduction, i.e., using

Equation (9) and (10), respectively. They are displayed on

the top left and right columns. We then fused them. The

line from the resulting image is superimposed, in red, in the

bottom plots (a) and (b). The out-of-range artifact of the

method is clearly visible in the fused result (a). However,

it is absent from the fused result (b). This illustrates the ef-

fectiveness of our proposition. Observe that the main edges

are generally not reduced in (a), whereas they are strongly

reduced in (b). Hence in SEF too the restrained dynamic

strategy solves EF’s inherent out-of-range artifact.

An image rarely needs the same enhancement in its

bright and dark areas. In fact, contrast enhancement is gen-

erally needed in the dark parts only, e.g. in the case of back-

lit images. Enhancement in the bright parts can still be

beneficial to thwart the effect of gamma-correction and S-

shaped curves that compress the contrast in this region of

the intensity range. The number of darkened or brightened

images N and N∗ is thus determined from the input im-

age’s histogram, using the median. N∗ is computed using

M as: N∗= ⌊(M−1)median{u}⌋, where ⌊r⌋ denotes the

integer part of r. The number of over-exposed images is

then N =M−N∗−1. The value M is automatically com-

puted from the user-set parameters α and β by ensuring that

all parts of the dynamic are enhanced at least once in the

simulated sequence.

HSV colorspace Once the bracketed exposure sequence

is simulated, it is fused with a refined EF. Notably, instead

of modifying the color image, we convert the input to the

HSV color space [42] and enhance the luminance only, i.e.

V (value), while preserving the H (hue) and S (saturation)

channels. This color space has the advantage of preserving

the dynamic range when restoring the color, whereas other

color spaces tend to generate colors outside the RGB color

cube. Besides, this accelerates the algorithm. We thus do

not use the saturation measure proposed by Mertens et al.

Contrast metric Knowing the remapping functions, we

can easily and efficiently compute the contrast metric. It is

directly given by the derivative of the remapping function:
{
αk/Nmax(g′ ◦ f)(t, k) if k < 0

α|k|/Nmax(g′ ◦ f∗)(t, k) otherwise,
(11)

where g′ is the derivative of g w.r.t. t:

g′(t, k) =

{
1 if |t− ρ(k)| ≤ β

2
λ2

(|t−ρ(k)|−b)2
otherwise.

(12)

Figure 8 (b) shows an example of derivatives. The well-

exposedness measure is kept unchanged.

Algorithm 3: Simulated Exposure Fusion (SEF)

input : image u and parameters α, β
output : enhanced image v
ℓ← V channel of input in HSV color space

while all dynamic not covered do
M ←M + 1 // Initialized at 1

N∗←⌊(M−1)med{ℓ}⌋ ; N←M−N∗−1

for k ∈ {−N∗, . . . , N} do // Generate a sequence

ℓ̂k ← GENERATIONMODEL(ℓ) // Equ. (10)

wc,k ← CONTRASTWEIGTHS(ℓ) // Equ. (11)

we ← compute well-exposedness // Equation (3)

ŵ ← compute final weight maps // Eq. (4) and (5)

ℓ′ ← multiscale fusion of ℓ̂ using ŵ // Equation (6)

vRGB ← replace V of uHSV by ℓ′, convert back to RGB

6. Results

We compared in Figure 10 our results with other retinex

and histogram-based methods: Automatic Color Enhance-

ment (ACE) [5, 6], Multiscale Retinex (MSR) [18, 33],

Histogram Equalization (HE), Contrast Limited Adap-

tive HE (CLAHE) [34], Detail-Enhanced Exposure Fusion

(DEEF) [22], and Fast Local Laplacian Filter (LLF) [1,31].

The results of SEF are comparatively more definite. In

the “columns” image for example, the SEF result (first line)

is the only one that correctly enhances the bushes and the

house wall between the columns. Furthermore, SEF did not

create halos, contrarily to CLAHE (and also, to a lesser ex-

tent MSR and LLF). It also did not lose contrast anywhere

in the images, contrarily to HE, ACE, DEEF and MSR. Un-

like CLAHE, SEF preserves the global contrast: for exam-

ple, the sky of the “column” image is not darkened. Also,

SEF does not over-enhance some regions that do not need

it, contrarily to LLF in the “escanonge” image for exam-

ple, that also enhances the already correctly exposed parts

of the image, resulting in too much local contrast on the sky.
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original, Q = 0.821 SEF (ours), Q=0.978 original, Q = 0.892 SEF (ours), Q=0.987 original, Q = 0.885 SEF (ours) Q=0.962

ACE [5], Q = 0.988 MSR [18], Q = 0.975 ACE [5], Q = 0.982 MSR [18], Q = 0.902 ACE [5], Q = 0.986 MSR [18], Q = 0.956

HE, Q = 0.973 CLAHE [34], Q = 0.943 HE, Q = 0.972 CLAHE [34], Q = 0.976 HE, Q = 0.967 CLAHE [34] Q=0.960

DEEF [22], Q = 0.970 LLF [31], Q = 0.917 DEEF [22], Q = 0.970 LLF [31], Q = 0.974 DEEF [22], Q = 0.910 LLF [31], Q = 0.948

Figure 10. Comparison of SEF with other retinex methods on three images. SEF, ACE and LLF have an enhancement parameter (called

α for SEF); it is set to 8. Similarly to SEF, the algorithms HE, CLAHE, MSR and LLF were applied to the luminance channel only. For

SEF, we used β = 0.5 which gives N = 4 and N∗
= 0: only five images were fused. For LLF, we used the default parameters σ = 0.1,

N = 10, which means that 10 images were fused. For ACE and MSR we used the default parameters proposed in [6, 33]. For DEEF we

used the authors’ implementation default parameters. For HE and CLAHE we used the Matlab implementation default parameters.

DEEF does not enhance bright regions. Besides, it produces

images with values standing largely outside [0, 1] (the out-

of-range artifact), thus requiring a final range compression.

This means that bright regions systematically lose contrast.

This phenomenon is apparent in the sky of the “columns”

and “escanonge” images. Moreover, the dark parts in DEEF

are not as well enhanced as with SEF.

We reported in Figure 10 the tone-mapping quality index

(TMQI) [48] score of the enhanced images. In each case our

method is among the three best ones.

In short, the proposed method outperforms state-of-the-

art retinex algorithms such as MSR, ACE, and CLAHE, be-

cause it preserves and enhances contrast everywhere with-

out creating halos. As for DEEF [22], the method suffers

from the out-of-range artifact, which produces images with

very poor local contrast. Besides, DEEF is more complex

and costly since it requires edge-aware smoothing in addi-

tion to the Laplacian pyramid blending. Concerning edge-

aware local contrast enhancement, the state-of-the-art LLF

method is able to correctly enhance contrast everywhere

without creating artifacts (slight halos are sometimes visi-

ble). Compared to LLF, our algorithm produces more natu-

ral images, because it corrects the exposition locally rather

than enhancing local contrast with the same factor every-

where. It therefore better adapts to the input image. This

also saves computations. In Figure 10, SEF only required

three Laplacian pyramids, while LLF used ten.

Limitations The single image contrast enhancement

technique SEF increases noise as much as contrast.

7. Conclusion

We have shown that the out-of-range artifact and the low-

frequency halo in Exposure Fusion originated in the lack of

a mechanism to reduce strong edges. Limiting the range

of the input resolves these drawbacks and produces results

free of halos and clipped values, and with improved lo-

cal contrast everywhere. The resulting method, which we

called extended exposure fusion (EEF), produces better re-

sults than concurrent approaches. Applied to a single image

the method simulates first under- and over-exposed images,

then applies EEF to them. This yields a state of the art LDR

contrast enhancement method that we called simulated ex-

posure fusion (SEF). The proposed improvements are easily

applicable to all methods involving exposure fusion.
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