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Abstract

Many recent methods for semi-supervised Video Object

Segmentation (VOS) have achieved good performance by

exploiting the annotated first frame via one-shot fine-tuning

or mask propagation. However, heavily relying on the first

frame may weaken the robustness for VOS, since video ob-

jects can show large variations through time. In this work,

we propose a Dynamic Identity Propagation Network (DIP-

Net) that adaptively propagates and accurately segments

the video objects over time. To achieve this, DIPNet factors

the VOS task at each time step into a dynamic propagation

phase and a spatial segmentation phase. The former utilizes

a novel identity representation to adaptively propagate ob-

jects’ reference information over time, which enhances the

robustness to videos’ temporal variations. The segmenta-

tion phase uses the propagated information to tackle the ob-

ject segmentation as an easier static image problem that can

be optimized via light-weight fine-tuning on the first frame,

thus reducing the computational cost. As a result, by op-

timizing these two components to complement each other,

we can achieve a robust system for VOS. Evaluations on

four benchmark datasets show that DIPNet provides state-

of-the-art performance with time efficiency.

1. Introduction

Given annotations in the first frame, semi-supervised

Video Object Segmentation (VOS) aims to identify and

segment the target objects across the video [48, 9, 36,

33, 3, 4, 56, 54]. Recently, deep learning based meth-

ods [10, 43, 55, 30, 17, 8, 60, 57, 23, 45] have made re-

markable progress for this task. However, many of these

successful methods rely on one-shot fine-tuning or mask

propagation, leading to a trade-off between efficiency and

accuracy. For example, methods [2, 32, 25, 46] tackle the

VOS task as a pure spatial segmentation problem, and ap-

ply computationally-heavy online fine-tuning to adapt mod-

Figure 1. Two examples showing significant appearance variations

of objects in different frames. (a) OSVOS [2] fine-tunes the model

on the first frame. (b) RGMP [51] constantly propagates object’s

masks from the first frame. (c) Our DIPNet dynamically prop-

agates the identity of objects and achieves robustness for video

objects’ temporal variations.

els to memorize both the high-level semantic attributes and

the low-level appearance of the target, leading to effec-

tiveness but slow speed. On the other hand, approaches

like [51, 6, 58] rely on the spatiotemporal connections

to propagate masks from the first frame. Without online

fine-tuning, this type of method is less adapted to test-

ing videos, resulting in fast but less accurate performance.

More crucially, due to the ground-truth annotations in the

first frame, most of these methods choose to fix the first

frame as a semantic reference rather than dynamically up-

dating the reference frame over time. Yet, a fixed reference

can weaken the robustness for segmentation, as video ob-

jects can show large variations over time. While a spatial

prior has been utilized as auxiliary information in previous

works [51, 58, 25, 34], it is still challenging to deal with

internal variations of objects (see Fig. 1 for examples). As

such, these methods may face difficulties in tackling online

applications that require both fast speed and long-term ac-

curate segmentation of video objects.

Unlike the previous methods that take the first frame as a
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fixed semantic reference, in this paper we propose to adap-

tively update the reference information over time, so as to

achieve robustness to objects’ temporal variations. How-

ever, dynamically propagating object masks through time

is non-trivial, since segmentation errors at each time step

may be accumulated and amplified. To tackle this chal-

lenge, a propagation-based VOS system should meet two

requirements: (i) the model should be robust to the qual-

ity of reference information; (ii) the model should produce

accurate segmentation for each time step. To this end, we

carefully design a Dynamic Identity Propagation Network

that achieves these separately and complementarily with

two components: the Dynamic Identity Propagation that ef-

fectively updates and propagates objects’ information over

time and the Spatial Instance Segmentation that accurately

segments objects based on the propagated information.

Dynamic Identity Propagation. In order to adaptively up-

date and propagate the reference information of objects over

time, we propose a novel semantic identity representation

that enables the robust extraction of instance information

from previous frames. Recent works about Class Activa-

tion Mapping [61, 59, 40] have shown that in a deep CNN

trained for classification, specific objects are encoded in

specific channels of the highest-level feature maps (an ex-

ample is shown in the supplementary material). Based on

this, we end-to-end enhance the highest-level feature maps

of ResNet [16] to encode instance-level information of the

input into different channels for segmentation. As a result,

we can represent an instance in the image with an Identity

Attention vector, which is a channel-wise attention vector

indicating the feature channels’ relevance to the object. As

the same objects in consecutive frames are encoded simi-

larly, the object can be propagated by applying the Identity

Attention vector estimated from previous frames to feature

maps of the current frame (Fig. 3 gives an overview). The

proposed representation also allows us to incorporate ob-

jects’ information from multiple frames by averaging the

Identity Attentions vectors. As our propagation model is

based on deep CNNs’ natural representation, it eases the

difficulties for network training. Moreover, the Identity At-

tention operates at a high-level semantic space and ignores

low-level details, thus can robustly update and propagate the

reference information over time.

Spatial Instance Segmentation. After transferring the in-

stance’s information to the current frame via the Dynamic

Identity Propagation module, the task is simplified to be a

static image problem that segments objects with given high-

level information as guidance. The segmentation network

for this task can focus on segmenting objects’ low-level de-

tails, and can be efficiently optimized via very slight fine-

tuning on the first frame. As a result, we can achieve high

segmentation accuracy while greatly reducing the compu-

tational cost comparing to previous one-shot fine-tuning

methods [46, 2, 34].

Thus, in Dynamic Identity Propagation, we adaptively

update objects’ reference information along with their tem-

poral variations; and in Spatial Instance Segmentation, the

propagated identity information is utilized to facilitate ac-

curate and efficient segmentation of objects for each frame.

These two components complement each other to achieve

robustness for temporal variations. Moreover, by tackling

these two easier sub-tasks with respect to their specific tar-

gets, we reduce the difficulties for optimizing the entire sys-

tem [39], and conveniently achieve a good state for both

high accuracy and time efficiency. To sum up, our contribu-

tions are as follows: (1) We propose a novel semantic iden-

tity representation which allows us to robustly update and

propagate objects’ reference information in a dynamic way.

(2) We develop a DIPNet that comprises a propagation step

and a segmentation step, which can be separately optimized

to complement each other. (3) We conduct evaluations on

four benchmark datasets. Without extra training data, DIP-

Net achieves state-of-the-art accuracy at a fast speed.

2. Related Work

Traditional methods for semi-supervised VOS are usu-

ally built on tracking [48, 50, 12, 19], pixel trajectory [49,

9], object proposal [36, 44, 47, 24], and spatial-temporal

lattices [33, 21]. Recently, many approaches employ deep

CNNs to achieve good performance. Methods like [25, 34,

7, 18, 52, 22, 28] extract spatial-temporal structures from

the motion. Models in [46, 2, 41, 34] are heavily fine-tuned

on the first frame to achieve more effective models. One-

shot finetuning is an effective way to adapt models to the

testing scenarios, however for the spatiotemporal VOS task

it always requires a large number of iterations to work effec-

tively, leading to high computational cost. To achieve effi-

ciency, some recent work proposes to propagate masks from

the first frame based on the spatiotemporal connections be-

tween frames. Yang et al. [58] apply conditional batch nor-

malization to modulate features of the current frame based

on the first frame. Oh et al. [51] propagate the instance

mask by concatenating the high-level feature maps and then

decode them. By discarding the one-shot fine-tuning step,

these methods greatly accelerate their speeds, while less

adapted to the testing video, resulting in lower accuracy.

Due to the well-annotated instance masks, both the one-

shot learning based methods [46, 2, 41] and propagation

based models like [51, 58] heavily relying on the semantic

information in the first frame. However, video objects usu-

ally show variations and a fixed reference maybe not opti-

mal. Although the online adaptation [46] can update models

along with time, its speed is too slow. In contrast to previ-

ous methods [51, 58, 46, 2, 41, 34], our method relieves the

challenge by a disentangled task-specific framework and a

novel identity representation mechanism that allows for dy-
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Figure 2. An overview of the proposed DIPNet. For each video

object, we maintain a Dynamic Identity Attention vector that is

initialized in the first frame and updated over time. At a time

step t, there are two phases. In the Dynamic Identity Propaga-

tion (Phase I), we first employ an Identity Encoding Network to

extract an Identity Attention vector for the object from the frame

t-1, and use it to update the Dynamic Identity Attention; then, we

apply the updated Dynamic Identity Attention vector to the feature

maps of frame t to output a coarse mask that explicitly indicates

the object’s spatial and shape information. In the Spatial Instance

Segmentation (Phase II), the target object is segmented based on

the propagated coarse mask.

namically updating reference information along with time,

so as to achieve robustness for video objects’ temporal vari-

ations without losing time efficiency.

3. Dynamic Identity Propagation for VOS

In this section, we present each component of our

method. An overview of is shown in Fig. 2.

3.1. Phase I: Dynamic Identity Propagation

Recent findings of Class Activation Mapping [61, 59, 40]

show that for deep CNNs trained for image classification,

specific objects in the input image are encoded by specific

channels of the highest-level deep feature maps. Based on

this, we further end-to-end enhance the highest-level feature

maps of deep CNNs to encode instance-level information in

different channels for object segmentation. As a result, an

instance can be identified with an Identity Attention vector,

which is actually a channel-wise attention vector showing

each channel’s relevance to the object. In the context of

VOS, as consecutive frames are encoded similarly by the

network, the information about an object can be propagated

by multiplying the Identity Attention estimated from the

previous frames to feature maps of the current frame. More-

over, since the proposed Identity Attention explicitly oper-

ates at high-level semantic space, our propagation model

can be robust against low-level details in masks of previous

segmentation results. Therefore we are able to dynamically

and robustly update object information over time. Below

we introduce the Dynamic Identity Propagation in detail,

and an overview of this part is shown in Fig. 3.

Feature Encoding. We directly utilize ResNet [16] as fea-

ture extractor for video frames, as it encodes objects in dif-

ferent channels of the final-layer feature maps. Via end-

to-end optimizing the propagation phase, we further en-

hance the feature maps to contain instance-level informa-

tion in different channels. The last layer of the ResNet is re-

moved, and the feature maps output by the block Conv5 X

are utilized as output. The model takes a video frame of

size 3*256*256 as input, and outputs a feature map of size

2048*8*8.

Identity Encoding Network. Given the feature maps of

video frames encoded by the Feature Encoding Network,

the Identity Encoding is designed to estimate the respective

Identity Attention vectors for target objects. The structure

of the Identity Encoding Network is shown in Fig. 3 (a).

The network takes a video frame and the corresponding ob-

ject mask as input, and outputs the 2048-dimension Iden-

tity Attention vector which shows the channels’ relevance

to the object. We build the network on ResNet50 [16]. Af-

ter each of the first four consecutive convolutional blocks

(i.e. Conv1, Conv2 X, Conv3 X, Conv4 X), the target

object’s information is incorporated by applying its mask m

as spatial attention on the feature maps f ,

f ′ = f +m ⊙ f (1)

where f ′ is the processed feature that will be the input

for the next Conv-Block, ⊙ represents the pixel-wise prod-

uct between the binary mask and feature map. With such

a scheme, we can robustly convert the object masks into

high-level semantic representation. To further utilize over-

all information of the image and mask to help estimate the

high-level semantic identity representation, at the end of the

network, a fully-connected layer and a sigmoid layer are

adopted to convert the feature maps from Conv5 X into a

2048-dimension Identity Attention vector that shows each

channel’s relevance to the current target.

Identity Updating Module. In order to dynamically update

the reference information over time to achieve robustness

for temporal variations in video, we maintain a Dynamic

Identity Attention vector for each object. As shown in Fig. 3

(b), the Dynamic Identity Attention is updated by the results

at the previous frames,

αt = ω · βt−1 + (1− ω) · αt−1 (2)

where αt−1 and αt are the Dynamic Identity Attention vec-

tors before and after updating, βt−1 is the Identity Atten-

tion vector estimated from the results on framet−1, and ω

is a parameter to control the influence of the earlier frames.

The Dynamic Identity Attention vector is initialized with

the first frame, and skips updating at frames with empty seg-

mentation output. With such a design, the Dynamic Identity
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Figure 3. Overview of the propagation phase. Based on [61, 59, 40], we end-to-end enhance ResNet to encode different instances in

different channels of the highest-level feature maps. Thereby an Identity Attention vector for an object is defined as a channel-wise

attention vector that shows the feature channel’s relevance to the object. (a) Identity Encoding Network estimates the object’s Identity

Attention vector. (b) Identity Updating Module adaptively maintains a Dynamic Identity Attention vector for each object. (c) Feature

Encoding Network encodes video frames into feature maps. (d) Instance Propagation Module applies the Dynamic Identity Attention on

the current frame’s feature maps. +© denotes pixel-wise addition. ⊙ means pixel-wise multiplication. ∗© is channel-wise multiplication.

Attention is able to track the variations of objects over time,

so that enhance the method’s robustness.

Instance Propagation. Attention [53, 42] is a mechanism

to re-weigh the nodes/channels with extra information in

order to achieve better performance. In our case, on the

one hand, with Feature Encoding Network, we get the fea-

ture maps that contains instance-level information in dif-

ferent channels; on the other hand, the Dynamic Identity

Attention vector shows each channel’s relevance to the tar-

get object. As a result, by applying the Dynamic Identity

Attention vector as a channel-wise attention on the current

frame’s feature maps, the target object is propagated to the

current frame. The process is shown in Fig. 3 (d)

At first, we multiply the Dynamic Identity Attention vec-

tor to the current frame’s feature maps to extract features for

the target objects. Then, we adopt two 3*3 Deconv layers,

two 3*3 Conv layers and a 1*1 Conv layer to convert the

extracted features to a 32*32 coarse mask for the target. All

the layers except for the last one are followed by a Batch-

Norm Layer and a ReLU layer. When dealing with single-

instance VOS, we add a sigmoid layer at the end. By out-

putting a propagated mask with resolution of 32*32, which

is a relatively low resolution, we alleviate the network’s bur-

den of extracting low-level details. Thus allow the model to

focus on propagating high-level information of the instance

mask and ease the difficulties of training.

3.2. Phase II: Spatial Instance Segmentation

After the identity propagation phase, the object’s infor-

mation is transferred to the current frame as a coarse mask

and the problem is simplified to a static image segmentation

problem. At this phase, we aim to accurately segment the

object based on the information of the propagated coarse

mask. Comparing to previous one-shot finetuning meth-

ods [32, 25, 46] that drive the model to memorize both high-

level semantic information and low-level appearance details

of the target, the task for our model is much simpler: seg-

menting objects from the images based on the high-level

guidance information.

Spatial Segmentation Network. In this part, we design

our Spatial Instance Segmentation Network based on the

Cascaded Refinement Network (CRN) proposed in [18] for

static image segmentation. The CRN incorporates a coarse

segmentation as spatial attention on the feature maps and

segments the objects accurately. The original CRN accepts

a 16*16 coarse mask, we modify the network structure so

that the network takes a 512*512 image frame as well as

the propagated 32*32 coarse mask as input, and outputs a

refined 512*512 mask.

By formulating this step as a task of object segmenta-

tion guided by coarse masks, the segmentation network fo-

cuses on extracting low-level details and does not need to

care too much about the high-level semantic information of

the instance, thus alleviating the training burden. As a re-

sult, the model can be effectively adapted to testing videos

via very slight finetuning on the first frame, and greatly

saves the computational cost comparing to previous meth-

ods like [2, 46, 34].

3.3. Multi­Instance VOS

Multi-instance VOS is a more difficult task due to chal-

lenges like occlusion and similar appearances. To alleviate
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these challenges, we propose a two-stage method to tackle

multi-instance cases.

3.3.1 Foreground Region Segmentation

At first, we apply DIPNet to segment all the target in-

stances as a single foreground object. Based on the fore-

ground mask, we crop a tight region from the video frames,

and re-size the region to the required input size. Then

multi-instance segmentation is performed on these cropped

patches. This step is beneficial for the accuracy, since crop-

ping foreground patches helps to reduce the interference

from background and make target instances more dominant.

3.3.2 Multiple Instance Segmentation

We differentiate instances on the coarse mask propagated

by the Dynamic Instance Propagation phase. According to

the disjoint constraint of instances, each pixel can only be-

long to one instance. Based on this, we formulate the multi-

instance VOS as a task of pixel-wise multi-class classifica-

tion, and adopt the softmax classifier that is widely used in

semantic segmentation [11].

The model for multi-instance VOS is based on the same

network in Fig. 3. To process multiple objects with a single

network at the same time, we take advantage of the Batch

dimension of the input tensor for deep networks. Given a

frame from a video with n target objects, we stack the input

images for the n objects on the Batch dimension to form

input tensors with Batchsize = n. Then we apply the net-

work on the input tensors to produce an output tensor with

Batchsize = n. Lastly, we adopt the softmax function along

the Batch dimension of the output to assign class probabil-

ities to pixels as pi(·) = e
fi(·)

∑
n
j=0 e

fj(·)
, where i is the object

identity, pi is probability map for the i-th object and n is

the total number of objects, fi is the network output, and

j = 0 represents background. To compute f0, we utilize

the foreground as an extra object, and multiply the output

for it with −1. After segmenting different instances, we ap-

ply the spatial refinement network on these coarse masks to

generate full-resolution ones.

3.4. Network Training

By formulating the task of VOS as two sub-steps, we

can easily optimize the system by training the two compo-

nents separately. To effectively train our models, we adopt

a three-stage training process [2] as follows.

Pre-Training on PASCAL VOC. We utilize the 11,355 im-

ages from PASCAL-VOC dataset [11, 14] to pre-train our

model. To generate consecutive image pairs for training

the temporal propagation model, we first randomly select

an instance from a sample image as the target; then gener-

ate a second frame by shifting and rotating the image. For

the spatial refinement network, we create training samples

composed of an image, a ground-truth mask, and a coarse

mask that is produced by randomly applying morphological

operations (dilation and erosion kernels with sizes between

0 to 16 pixels) on the ground-truth mask and scaling it to

32*32. The temporal propagation network and refinement

network are trained separately. We adopt the Binary Cross

Entropy (BCE) loss and optimize both networks using SGD

with batch-size 4 , learning rate 1e-4, and momentum 0.9

for 40 epochs.

Off-line training on DAVIS. To adapt models to the task

of VOS, we fine-tune our models on the training split of

DAVIS2016 (for single-instance task) and DAVIS2017 (for

multi-instance task). To train the dynamic identity propaga-

tion module, we randomly select two frames as a training

pair from every ten consecutive frames to form a training

sample. For the spatial segmentation network, we randomly

select frames from the training set to create a training sam-

ple as in the pre-training stage. We independently train the

two networks both for 20 epochs using SGD with batch-size

4, learning rate 1e-4, and momentum as 0.9.

One-shot Finetuning for Testing. We also fine-tune our

models on the first frame to adapt to the testing video. We

don’t find that fine-tuning the instance propagation network

results in performance improvement. For efficiency at test-

ing time, we only apply one-shot finetuning on the spatial

refinement network. We make training samples using the

first frame and apply morphological operations on the mask

as in the previous two stages. To segment foreground re-

gions, we train the spatial segmentation network for 200

iterations on the original scale with learning rate 1e-3 and

momentum 0.9. For single-instance VOS, we further fine-

tune the model 100 iterations on the cropped foreground

patch; for multi-instance VOS, we further apply 200 itera-

tions of finetuning for each instance.

4. Experiments

We evaluate our DIPNet on four benchmarks including

DAVIS2016 [35] and Youtube-Object [20, 38] for single-

instance VOS; SegtrakV2 [27], DAVIS2017 validation and

test-dev [37] for multi-instance VOS. The region similarity

J and the contour accuracy F [35] are utilized for evalua-

tion. The region similarity is the mean intersection-over-

union (mIoU) between the predicted segmentation map

and the ground truth. The contour accuracy adopts the

F-measure between the predicted contour and the ground

truth. We built our method with PyTorch and all the experi-

ments are performed with an Nvidia Titan Xp GPU.

4.1. Segmentation Performance

Single-object VOS. We compare the proposed DIPNet with

two sets of recent state-of-the-art methods. The first set in-

cludes one-shot finetuning based methods OnAVOS [46],
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Methods DIPNet DIPNet∗ OnAVOS OSVOSS CNIM OSVOS MSK RGMP† RGMP PML OSNM

J Mean ↑ 0.858 0.836 0.861 0.856 0.834 0.798 0.797 0.824 0.815 0.757 0.74

Recall ↑ 0.973 0.967 0.961 0.968 0.949 0.936 0.931 - 0.917 0.896 876

F Mean ↑ 0.864 0.851 0.849 0.875 0.850 0.806 0.754 0.822 0.820 0.793 0.729

Recall ↑ 0.956 0.959 0.897 0.956 0.921 0.926 0.871 - 0.908 0.934 0.870

One-shot light light heavy heavy heavy heavy heavy heavy no no no

w/ Temp-Prop X X X X X X X

#Training Data 13.5k 13.5k 87k 85.1k 15.6k 2.1k 11k 26.6K 26.6K 85.1k 87.2k

Testing Speed (s/f) 1.09 0.70 15.57 (4.5) (>60) 9.24 (12) (1.87) (0.13) (0.28) (0.14)

Table 1. Single-instance VOS Performance on DAVIS2016 with comparison to one-shot finetuning methods (OnAVOS [46], OSVOSS [32],

CNIM [1],OSVOS [2], MSK [34]) and temporal propagation methods (PML [5], OSNM [58], RGMP [51], RGMP† represents the results

with one-shot finetuning). DIPNet∗ indicates our method without foreground segmentation step. The best results are boldfaced, and the

second are underlined. In the last row, the s/f is seconds per frame, and the numbers in parentheses are reported by the original papers.

DIPNet OSVOS[2] RCAL[13] MSK[34] OnAVOS[46] OSNM[58]

.789 .783 .781 .777 .774 .690

Table 2. mIoU on Youtube-Object dataset.

OSVOSS [32], CNIM [1], OSVOS [2], and MSK [34]. The

other set comprises of temporal propagation based meth-

ods RGMP [51], PML [5], and OSNM [58]. The per-

formance for DAVIS16 [35] is shown in Table 1 and the

left part of Fig. 4. In general, one-shot finetuning meth-

ods achieve high accuracy but low efficiency, while tem-

poral propagation based methods show high efficiency but

low accuracy. Unlike these methods, our proposed DIP-

Net achieves both state-of-the-art accuracy and fast speed.

Comparing to OnAVOS [46], our method achieves similar

region similarity J , but performs much better in contour ac-

curacy F . Furthermore, OnAVOS runs at a speed of 15.57

seconds per frame, as it applies one-shot fine-tuning, online

adaptation, and post-processing with denseCRF [26] during

testing, while our full method only takes about 1.09 sec-

onds per frame, which is nearly 15x faster. The OSVOSS

incorporates the segments from existing instance semantic

segmentation model [15] as extra information and achieves

very similar accuracy but lower speed than ours. Comparing

to propagation-based fast methods like RGMP, PML, and

OSNM that optimize the task as propagation problem, our

method is able to achieve a much higher accuracy without

losing too much efficiency. Moreover, after one-shot fine-

tuning, RGMP[58] only achieves 0.824 in mIoU at a speed

1.87s/f, which is still worse than ours in both speed and ac-

curacy. This also shows that our framework can learn more

effectively and efficiently from data. The performance on

the Youtube-Object is presented in Table 2, and our method

outperforms most of the recent methods. The state-of-the-

art performance for single-instance VOS validates the effec-

tiveness and efficiency of our DIPNet.

Multi-object VOS. The performance for multi-instance

VOS on the validation split of DAVIS2017 [37] is shown

in Table 3 and the right part of Fig. 4. We compare our

method with recent models CNIM [1], FCIS-SCO [24],

OSVOSS [32], OnAVOS [46], OSVOS [2], FAVOS [6],

Figure 4. Accuracy versus runtime on val set of DAVIS2016 (left)

and DAVIS2017 (right). The s/f and s/i/f represent seconds per

frame and seconds per instance per frame, respectively.

and OSNM [58]. As shown in the table and figure, our

DIPNet outperforms the one-shot-learning-based methods

OnAVOS, and OSVOS by a large margin in both accuracy

and efficiency. Although FCIS-SCO and OSVOSS both

adopt segments from existing instance segmentation meth-

ods [29, 15] to enhance the mask, our DIPNet still achieves

better performance with higher efficiency. Comparing to

the propagation-based methods FAVOS and OSNM, our

method outperforms by a large gap of more than 0.1 in terms

of both mean-J and mean-F . The performance on the

DAVIS2017 test-dev and SegtrackV2 is presented in Table 4

and Table 5 respectively. Our method outperforms most of

the recent methods. CNIM outperforms our method on the

DAVIS2017 dataset. However, our DIPNet only slightly

finetunes on the first-frames, while CNIM utilizes optical

flow and the entire video for inference. Moreover, CNIM

takes more than one hour to finetune on synthesized train-

ing images for each testing video which makes it runs (>60

seconds per instance per frame) more than 60x slower than

our DIPNet (1.06 seconds per instance per frame).

Running Time. During testing, DIPNet takes about 110 ms

per frame for inference. To apply one-shot fine-tuning for

the spatial segmentation model, DIPNet takes 40 seconds

for 200 iterations at the original scale, and 20 seconds for

100 iterations at the cropped patch. As a result, our DIPNet

takes 1.09 seconds per frame on DAVIS2016, Fig. 4 plots

the J&F score and the running speed of each method. Our

DIPNet shows a better trade-off than the other methods.
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Methods DIPNet DIPNet∗ CNIM FCIS-SCO OSVOSS OnAVOS OSVOS FAVOS OSNM

J Mean ↑ 0.653 0.587 0.672 0.665 0.647 0.616 0.566 0.546 0.525

Recall ↑ 0.766 0.662 0.745 0.797 0.742 0.674 0.638 0.611 0.609

F Mean ↑ 0.716 0.651 0.740 0.688 0.713 0.691 0.639 0.618 0.571

Recall ↑ 0.821 0.739 0.816 0.821 0.807 0.754 0.738 0.723 0.661

One-shot light light heavy no heavy heavy heavy no no

w/ Temp-Prop X X X X

Table 3. Multi-instance VOS performance for validation of DAVIS2017. DIPNet∗ means to jointly segment multiple instances without

foreground cropping step. The best results are boldfaced, and the second best are underlined.

DIPNet OSVOSS [32] RGMP [51] OnAVOS [46] OSVOS [2] OSMN [58]

.552 .529 .513 .499 .470 .377

Table 4. mIoU on DAVIS-17 test-dev.

DIPNet MRNN [19] RGMP [51] MSK [34] OFL [44] OSVOS [2]

.738 .721 .711 .703 .675 .654

Table 5. mIoU on SegtrackV2 datasets.

Figure 5. The average performance (J&F ) on DAVIS17 of differ-

ent methods over time. “’0%’ means the beginning of sequence.

“’100%’ represents the end of sequence. Performance on all the

videos are normalized to the same length.

4.2. Method Analysis

4.2.1 Dynamic Identity Propagation

At first, we show in Fig. 5 how the performance of our

DIPNet and other methods change over time. As we can

see, unlike most of the other methods that decrease dras-

tically over time, DIPNet achieves more stable accuracy.

This shows that our method provides better robustness for

video objects’ temporal variations. OSVOS-S achieves a

similar curve to ours, yet it is based on instance segmenta-

tion results of the MaskRCNN [15] and nearly 5x slower

than ours. To investigate how the robustness for tempo-

ral variations is achieved by our dynamic identity propa-

gation mechanism, we experiment with different ω in the

Dynamic Identity Attention (Eq. 2). The performance for

different ω is shown in Fig. 6. As we can see, a larger

ω leads to a better performance, which shows that our dy-

namic reference is effective to achieve robustness for tem-

poral variations of objects. Therefore, in practice we choose

ω = 0.95 for experiments. We also compare our model de-

sign with OSMN [58]. For a fair comparison, we also train

Figure 6. The performance for different ω in the Dynamic Identity

Attention. ω = 0 means only using the first frame as a reference,

and ω = 1 represents only relying on the previous frame

our model with DAVIS2017 as in OSMN [58]. Our un-

supervised model achieves mIoU of 0.758 on DAVIS2016

which is higher than 0.740 of OSMN [58]. This shows that

our Dynamic Identity Propagation is more effective.

4.2.2 Identity Attention Vector

In this section, we analyze the Identity Attention vector gen-

erated by the identity encoding network. We compute the

2048-d Identity Attention vectors for instances in all the

frames. Then for the convenience of visualization, we ap-

ply t-SNE [31] to embed the Identity Attentions into a 2-d

space. Based on the reduced vectors, we show in Fig. 7

an example for the distributions of those Identity Attentions

vectors. As we can see, after training the distributions for

different instances are better separated (left of Fig. 7 (c))

and the changes for the same instance between frames are

smoother and more gradual (right of Fig. 7 (c)). To evalu-

ate the effectiveness of the design of the identity encoding

network, we also try directly concatenating the reference

frame and mask as input for the Identity Encoding Network.

Without one-shot finetuning on DAVIS2016, the concatena-

tion structure achieves 0.713 in mIoU, which is worse than

0.734 of our proposed one. This shows that our network de-

sign is more robust to extract objects’ semantic information

from masks.

4.2.3 Ablation Study

We first show the effectiveness of the joint segmentation

for multi-instance VOS. On the validation of DAVIS2017,

without cropping the foreground, segmenting instances sep-

arately leads to a mIoU of 0.540. However, applying the
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Figure 7. Distribution of the Identity Attention vectors for the three

instances (sequentially labelled as red, green, and blue) in the se-

quence “soapbox” of DAVIS2017 using t-SNE [31]. (a) are exam-

ples of the video frames and the three instances. The left graphs

of (b) and (c) are the distributions of the instances in all frames

of the video. The right graphs of (b) and (c) show the details of

the distributions for the instance “Instance-3” (labeled as blue in

(a)) of the different frames, and the frame ID is indicated by the

intensity of color.

IPN SSN DAVIS16 DAVIS17fore DAVIS17multi

X 0.643 0.671 0.395

X 0.825 0.819 0.486

X X 0.836 0.832 0.587

Table 6. The performance (mIoU) for the Identity Propagation

Network (IPN) and the Spatial Segmentation Network (SSN) in

the proposed method. DAVIS16: single object segmentation.

DAVIS17fore: foreground segmentation. DAVIS17multi: Jointly

segmenting multiple instances.

joint segmentation increases the mIoU to 0.587. This is

because segmenting instances separately may lead to over-

laps between the instance masks which should be disjoint.

The effectiveness of the proposed foreground cropping step

can be shown by comparing the models without foreground

cropping (DIPNet∗ in Table 1 and Table 3) with the mod-

els that adopt this step (DIPNet in Table 1 and Table 3).

Directly applying our method leads to a mIoU of 0.836 on

DAVIS16 and 0.587 on DAVIS17. While after applying the

proposed foreground segmentation step, we get an improve-

ment of 0.02 on DAVIS16 and 0.066 on DAVIS17. This

shows that foreground cropping step is effective and neces-

sary.

The effectiveness of different components is shown in

Table 6. Without the Spatial Segmentation Network (SSN),

the Identity Propagation Network (IPN) achieves low ac-

curacy. This is because the IPN is designed to accept

full-resolution masks, but when running by itself, it ac-

Pre-Training Off-Line One-Shot

J Mean ↑ 0.332 0.734 0.836

Recall ↑ 0.341 0.840 0.967

F Mean ↑ 0.340 0.742 0.851

Recall ↑ 0.357 0.832 0.959

Table 7. Performance for different training stages on DAVIS2016.

cepts previous coarse masks as input and the errors will

be accumulated. The SSN can also run on its own by ac-

cepting the segmentation of previous frame as input. Due

to the strong spatial-temporal continuity between consecu-

tive frames, the SSN itself can achieve good performance.

However, when combined with the IPN, the whole sys-

tem can achieve better accuracy. Especially for the multi-

instance task (DAVIS17multi in Table 6), combining the

IPN and SSN leads to an improvement of 0.101 in mIoU.

This shows the effectiveness of the proposed instance prop-

agation mechanism, and also shows that the two compo-

nents can complement each other effectively.

As introduced in previous section, our method involves

three stages of training, which are static image pre-training,

DAVIS off-line training, and one-shot finetuning. We show

the performance for models of these different stages in Ta-

ble 7. After pre-training with images from the Pascal VOC

dataset, the accuracy in mIoU is 0.332. Then fine-tuning

on the DAVIS dataset helps to adapt model to the VOS task

thus greatly improving the mIoU by 0.4. Finally, one-shot

finetuning on the first frame further adapts the network to

the testing videos, and leads to a further improvement of ac-

curacy by 0.1 in mIoU. We also try jointly optimizing two

components together as an end-to-end system at the one-

shot finetuning step, but don’t find accuracy improvement.

5. Conclusion

In this work, we present the accurate and fast Dynamic

Identity Propagation Networks for semi-supervised video

object segmentation. The task of VOS is explicitly formu-

lated as a combination of two phases: a dynamic identity

propagation step and a spatial segmentation step. In this

way, the system can be more effectively optimized with lim-

ited data by separately optimizing models for their specific

purpose. Furthermore, our method can be very efficiently

adapted to each test video, and thus achieves state-of-the-art

accuracy with high efficiency. Experiments on four bench-

mark datasets validate the effectiveness and efficiency of

our method.
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