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Abstract

Improving object detectors against occlusion, blur and

noise is a critical step to deploy detectors in real applica-

tions. Since it is not possible to exhaust all image defects

and occlusions through data collection, many researchers

seek to generate occluded samples. The generated hard

samples are either images or feature maps with coarse

patches dropped out in the spatial dimensions. Significant

overheads are required in generating hard samples and/or

estimating drop-out patches using extra network branches.

In this paper, we improve object detectors using a highly

efficient and fine-grain mechanism called Inverted Atten-

tion (IA). Different from the original detector network that

only focuses on the dominant part of objects, the detec-

tor network with IA iteratively inverts attention on feature

maps which pushes the detector to discover new discrimina-

tive clues and puts more attention on complementary object

parts, feature channels and even context. Our approach (1)

operates along both the spatial and channels dimensions

of the feature maps; (2) requires no extra training on hard

samples, no extra network parameters for attention esti-

mation, and no testing overheads. Experiments show that

our approach consistently improved state-of-the-art detec-

tors on benchmark databases.

1. Introduction

Improving object detectors against image defects such

as occlusion, blur and noise is a critical step to deploy de-

tectors in real applications. Recent efforts by computer vi-

sion community have collected extensively training data on

different scenes, object categories, shapes and appearance.

However, it is yet not possible to exhaust all image defects

captured under camera shake, dust, fade lighting and tough

weather conditions. Moreover, deep learning approaches

are highly biased by data distribution, while it is very dif-

ficult to collect data with uniform combinations of object
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Figure 1: Attention heat-maps visualized at the ROI feature

map ([7×7×512]) of VGG16 Fast-RCNN. Each [7×7] at-

tention heatmap is linearly interpolated and superposed on

the [224×224] object ROI image patch. The first 4 columns

are respectively the attention heat-maps at the top 4 chan-

nels affected by IA. The last column, “Overall”, denotes the

overall attention summed over all 512 channels. (This fig-

ure is best viewed in color)

features and defects due to the long-tail distribution.

Besides waiting for more data collection and annotation,

a fundamental way to learn robust detectors is to improve

the training approach: (1) Refining models by mining hard

samples in training data [17]. These approaches may thor-

oughly explores the training samples, but does not gener-

alize to defects that are not in training data. (2) Penaliz-

ing the occluded bounding boxes by occlusion-aware losses

[22, 26]. These approaches do not generalize well to unseen

occlusion. (3) Synthesizing image defects by hard example

generation [10, 21]. [10] generates new occluded samples

by dropping out image patches, and increases the training

samples and training cost exponentially. [21] proposes to

learn an adversarial network that generates positive samples

with occlusions in the feature space. Estimating the occlu-

sion features or masks requires extra networks and therefore
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Overall attention heat-maps trained without IA

Overall attention heat-maps trained with IA

Figure 2: More examples of overall attention heat-maps trained without Inverted Attention (Upper row), and trained with

Inverted Attention (Lower row).

increases the training overheads. In addition, training gen-

erator and discriminator simultaneously by competing with

each other makes the model hard to converge.

In this paper, we propose Inverted Attention(IA), a sim-

ple module added to the standard back-propagation opera-

tion. In every training iteration, IA computes the gradient of

the feature maps produced at the feature extraction network

(also called the backbone network) using object classifica-

tion scores. The higher gradients on feature maps indicate

the more sensitive features. By iteratively invert the gradi-

ents at the feature maps, IA re-directs attention of the net-

work to more features. Different from the original detector

network that only focuses on the small discriminant parts of

objects, the neural network with IA puts more attention on

complementary spatial parts of the original network, feature

channels and even the context. This is the key that IA can

improve the network against unseen defects in inference.

In terms of efficiency, the IA module do not have any net-

work parameters to be learned in training. The IA module

only changes the network weights in training and does not

change any computation in inference.

Fig 1 (the upper row) visualizes the attention in a stan-

dard Fast-RCNN detector. The attention is visualized as

heatmaps superposed on the object. The red pixels of the

heat-maps denote high attention, while the blue pixels de-

note low attention. During our IA training, the original at-

tention heat-maps are inverted as Fig 1 (the middle row) and

proceed to the next iteration. After the IA training finishes,

the network produces new attention heat-maps, see Fig 1

(the lower row). Observe that, the detector network trained

with IA focuses on more comprehensive features of the ob-

jects, making it more robust to the potential defects of the

individual pixels. Fig 2 shows more examples of overall at-

tention produced without IA training (the upper row) and

with IA training (the lower row).

We summarize the main contributions of this work as

follows:

• We propose a highly efficient IA module that fully ex-

plore the feature maps along both the spatial and chan-

nel dimensions.

• Our IA module requires no extra training on hard sam-

ples, no extra network parameters for attention estima-

tion, and no testing overheads.

• We conducts extensive experiments on benchmark

datasets where our proposed detector performs favor-

ably against state-of-the-art approaches.

2. Related Work

In this section, we mainly discuss some recent ap-

proaches against occlusions and brief introduction about at-

tention mechanism.

2.1. OcclusionAware Loss

[26] proposed a aggregation loss for R-CNN based per-

son detectors. This loss enforced proposals of the same ob-

ject to be close. Instead of using a single RoI pooling layer

for a person, the authors used a five-part pooling unit for

each person to deal with occlusions. [22] proposed a new

bounding box regression loss, termed repulsion loss. This

loss encourages the attraction by target, and the repulsion

by other surrounding objects. The repulsion term prevents

the proposal from shifting to surrounding objects thus lead-

ing to more crowd-robust localization. [30] proposed two

regression branches to improve pedestrian detection perfor-

mance. The first branch is used to regress full body re-

gions. The second branch is used to regress visible body

regions. Instead of revising network architecture or adding

extra loss function to improve occlusion problem, we use a

data-driven strategy by generating occluded samples.

2.2. Hard Sample Generation

Image based generation: [28] randomly occludes sev-

eral rectangular patches of images during training. [10]
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Figure 3: Architecture of Inverted Attention Network (IAN) based on a CNN object detection network. Light gray blocks

denote tensors. Dark gray blocks denote operations. The data flows along the red dashed arrows are only needed in training.

The inference only require the flows along the black arrows.

occludes rectangular patches of image guided by the

loss of the person Re-Identification task. [18] improves

weakly-supervised object localization by randomly occlud-

ing patches in training images. The hard samples in the

image space are often generated in an offline manner, so the

training data will increase exponentially.

Feature based generation: [8] selects weighted channel

to dropout for the regularization of CNNs. [21] uses pre-

dicted occlusion spatial mask to dropout for generating hard

positive samples with occlusion and deformations. [27] re-

weights feature maps according to three kinds of channel-

wise attention mechanism. [19] dropout input features to

obtain various appearance changes using random generated

masks via adversarial learning in video tracking. Unlike

existing methods that generate hard samples by adding gen-

erative network, we use an efficient IA module which con-

ducts both channel-wise and spatial-wise dropout on fea-

tures to generate hard samples.

2.3. Attention Estimation

Recent methods incorporate attention mechanism to im-

prove the performance of CNNs. [4, 9, 23] integrate

channel-wise or spatial-wise attention network branches to

the feed-forward convolutional neural networks. The esti-

mated attention maps are multiplied to the original feature

map for various CNN tasks. All these methods introduce

extra network branches to estimate the attention maps. [24]

improves the performance of a student CNN network by

transferring the attention maps of a powerful teacher net-

work. Deconvnet [25] and guided-backpropagation [20] im-

prove gradient-based attention using different backpropaga-

tion strategy. CAM [29] converts the linear classification

layer into a convolutional layer to produce attention maps

for each class. Grad-CAM [16] improve CAM and is ap-

plicable to a wide variety of CNN model. In our method,

we compute inverted attention guided by gradient-based at-

tention and Grad-CAM. Our network does not require extra

network parameters or teacher networks.

lowhigh
gradient
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threshold

feature

maps

gradients

inverted attention heatmaps

~
Inverting&

Figure 4: Detailed architecture of the Inverted Attention

Generation Module in Fig. 3. This module consists of only

simple operations such as pooling, threshold and element-

wise product. No extra parameter is needed to learn. This

module only operates during training, not in testing.

3. Inverted Attention for Object Detection

We take the R-CNN [5] based framework to illustrate our

Inverted Attention Network (IAN) (Fig. 3). An Inverted At-

tention Generation Module (Fig. 4) is added to the R-CNN

detection network, and operates on the ROI featrue maps.

Note that this module consists of only few simple opera-

tions such as pooling, threshold and element-wise product.

No extra parameter is needed to learn. In the rest of the

paper, we show how this simple change can effectively im-

prove the original network to overcome image defects.

3.1. Inverted Attention Generation Module

The attention mechanism identifies the most representa-

tive receptive field of an object. Highlighting the object with

attention heatmaps encourages discrimination between ob-

ject classes, meanwhile, decreases the diversity of features

within the same class. However, the diversity of features is

the key to generalize an object detector to unseen object in-

stances and image defects. The proposed Inverted Attention

training approach aims to alleviate the conflict and find the

optimal trade-off between discrimination and diversity.

As shown in Fig. 4, the Inverted Attention Generation

Module consists of two simple operations: (1) Gradient-

Guided Attention Generation: computing the the gradients

at feature maps, by back propagating only the classification
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(a) Epoch 1 (b) Epoch 2 (c) Epoch 3 (d) Epoch 4 (e) Epoch 5 (f) Epoch 6 (g) Epoch 7 (h) Epoch 8

Figure 5: Network attention evolves at different epochs during the IA training. Each sub-image shows the 2D attention

heat-maps superposed on object ROI. The attention maps are visualized at the ROI feature map ([7×7×512]) of the VGG16

backbone network in Fast-RCNN.

score on the ground-truth category, (2) Attention Inversion:

reversing element values of the attention tensor to produce

IA heat-maps.

Gradient-Guided Attention Generation: In training

phase of the convolutional neural networks, gradients of

feature maps in the back-propagation operation encode how

sensitive the output prediction is with respect to changes at

the same location of the feature maps. If small changes at

an element of feature maps have a strong effect on the net-

work outputs, then the network will be updated to pay more

attention on that feature element. With this principle, we

use the gradient to generate attention map in our approach

(see details in Fig.4).

Denote the gradient tensor as G
1 and feature tensor as

F. Both of them are of size height×width× channel. A

global pooling is applied on the gradient tensor to produce

a weight vector w with size channel × 1. We compute a

gradient guided attention map following [16],

M =

channel
∑

i

wi ∗ F
(i), (1)

where wi is the i-th element of w, and F
(i) is the i-th chan-

nel map of F. As shown in Fig. 4, the high values in gradi-

ent correspond to the receptive field of and trunk in the car

sample, while small values correspond to the receptive field

of door of the car and background.

Attention Inversion: In the standard training process,

the gradient descent algorithm forces the attention map to

converge to a few most sensitive parts of objects, while

ignoring the other less sensitive parts of objects. The IA

training conducts iterative inverting of the original atten-

tion tensor as the Inverted Attention tensor, which forces the

1All non-bold letters represent scalars. Bold capital letter X denotes a

matrix; Bold lower-case letters x is a column vector. xi represents the ith

column vector of the matrix X. xj denotes the jth element of x.

network to detect object based on their less sensitive parts.

Specifically, we generate a spatial-wise inverted attention

map and a channel-wise inverted attention vector, and then

combine them to produce the final attention maps.

The spatial-wise inverted attention map A
s = {asi} is

computed as

asi =

{

0 if mi > Ts

1 else
, (2)

where asi and mi are the elements of As and M at the i-

th pixel, respectively. Ts is the threshold for spatial-wise

attention map. From Eq. 2, spatial-wise inverted attention

map pays more attention to the area of the sample with small

gradient value.

Observe that the weight vector w serves as a sensitivity

measure for channels of feature maps. A threshold Tc is

used to compute the channel-wise inverted attention vector

A
c = {acj},

acj =

{

0 if wj > Tc

1 else
. (3)

The final inverted attention map A = {ai,j} is computed as

ai,j =

{

asi if acj = 0

1 else
. (4)

Fig. 5 illustrates how network attention evolves at dif-

ferent epochs during the IA training. The IA training iter-

atively guides the neural network to extract features on the

whole object sample.

3.2. Inverted Attention Network

As shown in Fig. 3, the Inverted Attention Network

(IAN) is basically built by adding Inverted Attention Gen-

eration Module (Fig. 4) to the R-CNN based detection net-

work, and operates on the ROI feature maps.
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Given an input image, the backbone of the R-CNN

framework, i.e., VGG or ResNet, takes the whole image as

an input and produces feature maps. The region propos-

als are generated from these feature maps by region pro-

posal network (RPN) or pre-computed region proposal can-

didates. Then the RoI-pooling layer generates a fixed size

feature maps for each object proposal. These feature maps

after RoI pooling then go through fully connected layers for

object classification and bounding box regression.

The R-CNN can be trained end-to-end by optimizing the

following two loss functions:

Lrpn = Lcross−entropy + Lrpn reg, (5)

Lrcnn = Lsoftmax + Lrcnn reg, (6)

where Lcross−entropy and Lrpn reg are the cross-entropy

loss and L1 loss for RPN network. Lcross−entropy and

Lrpn reg are the softmax loss and L1 loss for RCNN net-

work. Lrpn + Lrcnn are jointly optimized in the Faster-

RCNN framework, and Lrcnn is optimized in the Fast-

RCNN framework.

In the backward stage, the gradient is computed by back-

propagating the classification score only on the ground-truth

category, which is used for inverted attention generation

module. With the generated Inverted Attention map, an

element-wise product layer between feature maps and IA

heat-maps is used for feature refinement, as

Fnew = F. ∗A, (7)

where .∗ indicates element-wise multiplication. The refine-

ment is conducted at element-level, i.e., along both the spa-

tial and channels dimensions of the feature maps.

After these operations, the refined features are forwarded

to compute the detection loss, and then the loss is back-

propagated to update the original network parameters. The

training process of IAN is summarized in Algorithm 1.

3.3. Discussion

The high attention regions learned by the original net-

work represent the most common features shared by the

training samples. These features are discriminative enough

on the training data while may not be enough for the testing

data, especially when high attention regions are corrupted

by the unseen image defects.

Most top improvements on original networks were

reached by discovering more discriminative features. For

instance, Image based Hide-and-Seek (HaS) [28] and fea-

ture based A-Fast-RCNN [21]. HaS randomly hides patches

in a training image, forcing the network to seek discrimina-

tive features on remaining patches of the images. A-Fast-

RCNN finds the best patches to occlude by estimating a oc-

clusion mask with a generation and adversary network.

Algorithm 1 Training Process of IAN

Input: RGB images with ground-truth labels

Output: Object detection model.

1: for each iteration do

2: Generating region proposal by the RPN network;

3: Getting the the feature map of the region proposal by

ROI pooling, as F shown in Fig. 3;

4: Computing gradient G by back propagating the clas-

sification score on the ground-truth category;

5: Computing the gradient-guided attention map with

Eq. 1;

6: Achieving spatial-wise and channel-wise inverted at-

tention maps with Eq. 2 and Eq. 3;

7: Refining feature map F with inverted attention map

with Eq. 7;

8: Computing RPN loss and classification loss with Eq.

5 and Eq. 6;

9: Back-propagation.

10: end for

Our IA approach fuses the advantages of both ap-

proaches in the training steps of the original detector net-

work. The new discriminative features are iteratively dis-

covered (see Fig. 5) by inverting the original attention.

IA finds discriminative features in all object parts, feature

channels and even context. This process requires no extra

training epochs on hard samples and no extra network pa-

rameters to estimate occlusion mask.

4. Experiments

Inverted Attention Network (IAN) was evaluated on

three widely used benchmarks: the PASCAL VOC2007,

PASCAL VOC2012 [3], and MS-COCO [12] datasets. In

the following section, we first introduce the experimental

settings, then analyze the effect of the Inverted Attention

module. Finally, we report the performance of IAN and

compare it with the state-of-the-art approaches.

We used Faster-RCNN and Fast-RCNN object detctors

as our baselines. Our IANs are simply constructed by

adding the IA module to each baseline network. VGG16

and ResNet-101 were used as the backbone feature extrac-

tors. By default, Fast R-CNN with VGG16 were used in ab-

lation study. The standard Mean Average Precision (mAP)

[3] are used as the evaluation metric. For PASCAL VOC,

we report mAP scores using IoU thresholds at 0.5. For the

COCO database, we use the standard COCO AP metrics.

4.1. Experimental Settings

4.1.1 Implementation Details

PASCAL VOC2007: All models were trained on the

VOC2007 trainval set and the VOC2012 trainval set, and
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tested on the VOC2007 test set. For Fast-RCNN, we fol-

lowed the training strategies in [21]: set the learn rate to

2e−3 for the first 6 epochs, and decay it to 2e−4 for another

2 epochs. We used batch size 2 in training, and used VGG16

as the backbone networks for all the ablation study experi-

ments on the PASCAL VOC dataset. For Faster-RCNN, we

followed the training strategies in [15]: set the learn rate to

2e−3 for the first 6 epochs, and decay it to 2e−4 for another

2 epochs. We used the batch size 2 in training. We also

report the results of ResNet101 backbone on these models.

PASCAL VOC2012: All models were trained on the

VOC2007 trainval set, VOC2012 trainval set and VOC2007

test set, and then tested on the VOC2012 test set. For

Faster-RCNN experiments, we follow the exact same train-

ing strategies as the VOC2007 training above.

COCO: Following the standard COCO protocol, train-

ing and evaluation were performed on the 120k images in

the trainval set and the 20k images in the test-dev set respec-

tively. For Faster-RCNN, we set the learn rate to 1e−2 for

the first 8 epochs, decay it to 1e−3 for another 3 epochs and

1e−4 for the last 1 epochs. We used batch size 16 in train-

ing, and used ResNet101, ResNetXt-101, ResNet50-FPN,

and ResNet101-FPN as the backbone networks.

4.1.2 Parameter Settings

IA only has two parameters: the spatial-wise threshold Ts

and the channel-wise threshold Tc (in Eq. 2 and Eq. 3). We

take soft-threshold strategy, which is compared with other

threshold selection in detail in Sec. 4.3.1. For spatial-wise

inverted attention map height×width, we set the gradients

of 33% feature elements that have highest values to zero.

For channel-wise inverted attention map, we dropout top

80% pixels with highest values.

In order to prevent network from overfitting to the in-

verted feature maps, we only apply IA on 20% region pro-

posals’ feature maps, and leave the rest 80% region propos-

als’ feature maps unchanged.

4.2. Training Speed

The forward cost increases a little due to IA operations

such as pooling, threshold and element-wise product. The

backward cost increases a little due to backpropagating

head parts of the detector network. Training time compari-

son between Faster-RCNN and our method is shown in Ta-

ble 1.

4.3. Results on PASCAL VOC2007

To verify the effectiveness of Inverted Attention, we first

conducted ablation study on two key factors of IA, i.e., in-

version strategies and inversion orientation. By taking the

best settings in the ablation study, we then show the results

compared with baselines and state-of-the-art.

Method Backbone Batch Size Time (hours/epoch)

Faster-RCNN VGG 16 0.19
Faster-RCNN + IA (ours) VGG 16 0.20

Faster-RCNN Resnet101 16 6.0
Faster-RCNN + IA (ours) Resnet101 16 6.5

Table 1: Training time comparison between Faster-RCNN

and our method on single Titian XP.

(a) (b) (c) (d)

Figure 6: Visualization of four inversion strategies. From

(a) to (d), it illustrates inverted attention map by random,

overturn, hard-threshold, and soft-threshold, respectively.

Method mAP

Baseline (Fast-RCNN + VGG16) 69.1

Random 70.3

Overturn 70.6

Hard-threshold 70.9

Soft-threshold 71.4

Table 2: Ablation study on inversion strategies.

Method mAP

Spatial 71.4

Channel 70.9

Spatial + Channel 71.6

Table 3: Ablation study on inverted orientations.

4.3.1 Ablation Study

The following ablation study is conducted on the Fast-

RCNN with the VGG16 backbone.

Inversion Strategies: Four inversion strategies were

evaluated: Random inversion, Overturn inversion, Hard-

threshold inversion, and Soft-threshold inversion. Table 2

shows that all the four inverting strategies improve the per-

formance of the baseline. Fig. 6 visualize the four strategies

on the same on the same object.

As shown in Fig. 6a, by randomly selecting pixels on

convolutional feature maps and setting them to 0, the mAP

improves from 69.1% to 70.3%. However, random inver-

sion loses the contextual information, meaning that even in

the same semantic part, some pixels were kept while oth-

ers were discarded. As shown in Fig. 6b Overturn in-

version achieves inverted attention map by IA = 1.0 - A,

which increases the weight of background and suppresses
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Method Train Backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train TV

FRCN [5] 07 VGG16 69.1 75.4 80.8 67.3 59.9 37.6 81.9 80.0 84.5 50.0 77.1 68.2 81.0 82.5 74.3 69.9 28.4 71.1 70.2 75.8 66.6

Fast+ASTN [21] 07 VGG16 71.0 74.4 81.3 67.6 57.0 46.6 81.0 79.3 86.0 52.9 75.9 73.7 82.6 83.2 77.7 72.7 37.4 66.3 71.2 78.2 74.3

Fast+IA(ours) 07 VGG16 71.6 74.9 82.0 71.8 59.1 47.6 80.9 80.5 85.2 51.2 77.2 71.6 81.3 83.6 77.0 74.1 39.3 71.1 70.0 79.2 74.0

FRCN [5] 07 ResNet101 71.8 78.7 82.2 71.8 55.1 41.7 79.5 80.8 88.5 53.4 81.8 72.1 87.6 85.2 80.0 72.0 35.5 71.6 75.8 78.3 64.3

Fast+ASTN [21] 07 ResNet101 73.6 75.4 83.8 75.1 61.3 44.8 81.9 81.1 87.9 57.9 81.2 72.5 87.6 85.2 80.3 74.7 44.3 72.2 76.7 76.9 71.4

Fast+IA(ours) 07 ResNet101 74.7 77.3 81.2 78.1 62.6 52.5 77.8 80.0 88.7 58.6 81.8 71.4 87.9 84.2 81.4 76.6 44.0 77.1 79.1 76.9 77.2

Faster [15] 07 VGG16 69.9 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6

Faster+IA(ours) 07 VGG16 71.1 73.4 78.5 68.3 54.7 56.1 81.0 85.5 84.3 48.4 77.9 61.7 80.5 82.6 75.3 77.5 47.0 71.7 68.8 76.0 72.5

Faster [15] 07 ResNet101 75.1 76.5 79.7 77.7 66.4 61.0 83.3 86.3 87.5 53.6 81.1 66.9 85.3 85.1 77.4 78.9 50.0 74.1 75.8 78.9 75.4

Faster+IA(ours) 07 ResNet101 76.5 77.9 82.9 78.4 67.2 62.2 84.2 86.9 87.2 55.5 85.6 69.1 87.0 85.0 81.4 78.8 48.4 79.4 75.0 83.2 75.4

Faster [15] 07+12 VGG16 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

Faster+IA(ours) 07+12 VGG16 76.8 78.5 81.1 76.8 67.2 63.9 87.1 87.7 87.8 59.3 81.1 72.9 84.8 86.7 80.5 78.7 50.9 76.9 74.2 83.1 76.5

Faster [15] 07+12 ResNet101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

Faster+IA(ours) 07+12 ResNet101 81.1 85.3 86.8 79.7 74.6 69.4 88.4 88.7 88.8 64.8 87.3 74.7 87.7 88.6 85.3 83.5 53.9 82.7 81.5 87.8 80.9

Table 4: Object detection Average Precision (AP) tested on VOC2007. We followed the same training prototype as the

baselines without adding any extra tricks or data augmentations.

Figure 7: Object detection examples in VOC2007 with ResNet101-Faster-RCNN (top) and its IAN version (bottom).

the foreground. Overturn inversion gets the mAP of 70.6%,

which is 1.5 percentages better than baseline. To keep-

ing the weights of background, we take two thresholding

methods to suppresses all pixels in attention map which

are large than the threshold. The hard-threshold is shown

in Fig. 6c, which takes 0.5 as threshold. While the soft-

threshold adopts a sorting algorithm and suppresses the top

33% pixels. Hard-threshold achieves 70.9% mAP and soft-

threshold achieves 71.4%, which are 1.8% and 2.3% better

than the baseline, respectively.

Inversion Orientation: Using the soft-threshold inver-

sion strategy, we further studied two inversion orientations

in Table 3. The spatial inversion attention conducts inver-

sion over all channels, while the channel inversion attention

conducts inversion only on a subset of channels. Conduct-

ing spatial or channel inversion produced 71.4% and 70.9%,

respectively. Conducting both the spatial and channel inver-

sion, the performance is further improved to 71.6%.

4.3.2 Comparing with Baselines and State-of-the-Art

We first present extensive comparisons on PASCAL VOC

2007 with Fast-RCNN (denoted as “FRCN”), Faster-RCNN

(denoted as “Faster”) and the state-of-the-art hard-sample

generation approaches Fast-RCNN with ASTN [21] (de-

noted as “Fast+ASTN”). These approaches only provided

results on Fast-RCNN. The results are compared in Table 4.

With the VGG16 backbone and the VOC2007 training

data, IA improved Fast-RCNN from 69.1% to 71.6%, and

improves Faster-RCNN form 69.9% to 71.1%, which are

2.5% and 1.2% improvement respectively. With more pow-

erful backbone, i.e., ResNet101, Fast-RCNN and Faster-

RCNN achieves better object detection performance than

VGG16. By adding IA to them, the performance were con-

sistently improved: for Fast-RCNN from 71.8% to 71.4%,

and for Faster-RCNN from 75.1% to 76.5%, respectively.

Using the training data from both VOC2007 and VOC2012,
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Method Train Backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train TV

Faster [15] 07++12 ResNet101 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6

Faster+IA(ours) 07++12 ResNet101 79.2 87.7 86.7 80.3 68.1 62.1 81.0 84.7 93.8 61.8 84.2 63.1 92.0 87.4 86.6 85.8 61.0 84.6 72.4 86.5 73.8

Table 5: Object detection Average Precision (AP) tested on PASCAL VOC2012. We followed the same training prototype as

the baselines without adding any extra tricks or data augmentations.

Method Backbone Schedule AP[0.5,0.95] AP0.5 AP0.75 APs APm APl

YOLOv2 [14] DarkNet-19 - 21.6 44.0 19.2 5.0 22.4 35.5

SSD512 [13] ResNet101 - 31.2 50.4 33.3 10.2 34.5 49.8

RetinaNet [11] ResNet101-FPN - 39.1 59.1 42.3 21.8 42.7 50.2

Faster-RCNN [15] ResNet101-FPN - 36.2 59.1 39.0 18.2 39.0 48.2

Deformable R-FCN [2] Inception-ResNet-v2 - 37.5 58.0 40.8 19.4 40.1 52.5

Mask-RCNN [7] ResNet101-FPN - 38.2 60.3 41.7 20.1 41.1 50.2

Faster-RCNN* [1] ResNet50-FPN 1x 36.2 58.5 38.9 21.0 38.9 45.3

Faster-RCNN* [1] ResNet101-FPN 1x 38.8 60.9 42.1 22.6 42.4 48.5

Faster-RCNN* [1] ResNet101-FPN 2x 39.7 61.3 43.4 22.1 43.1 50.3

Faster-RCNN* [1] ResNetXt101-32x4d-FPN 1x 40.5 62.7 43.9 24.1 43.9 50.3

Faster-RCNN* [1] ResNetXt101-64x4d-FPN 1x 41.6 64.0 45.4 24.9 45.2 52.1

Mask-RCNN* [1] ResNet101-FPN 1x 39.7 61.6 43.2 23.0 43.2 49.7

Faster-RCNN*+IA(ours) ResNet50-FPN 1x 38.3(+2.1) 59.7(+1.4) 41.8(+1.9) 21.9(+0.9) 41.0(+1.1) 47.6(+2.3)

Faster-RCNN*+IA(ours) ResNet101-FPN 1x 40.2(+1.4) 61.6(+0.7) 44.1(+2.0) 22.9(+0.3) 43.1(+0.7) 50.7(+2.2)

Faster-RCNN*+IA(ours) ResNet101-FPN 2x 40.8(+1.1) 61.9(+0.6) 44.8(+1.4) 22.6(+0.5) 43.7(+0.6) 51.9(+1.6)

Faster-RCNN*+IA(ours) ResNetXt101-32x4d-FPN 1x 41.7(+1.2) 63.3(+0.6) 45.8(+1.9) 24.8(+0.7) 44.7(+0.8) 52.3(+2.0)

Faster-RCNN*+IA(ours) ResNetXt101-64x4d-FPN 1x 42.8(+1.2) 63.8(-0.2) 47.2(+1.8) 25.3(+0.4) 45.8(+0.6) 53.6(+1.5)

Mask-RCNN*+IA(ours) ResNet101-FPN 1x 41.0(+1.3) 62.0(+0.4) 45.1(+1.9) 23.6(+0.6) 43.8(+0.6) 52.0(+2.3)

Table 6: Comparing with state-of-the-art methods on COCO test-dev (single scale testing). The numbers in brackets are

performance gains of IA. The symbol * denotes the latest re-implemented results from [1] (typically better than the original

papers). Training “Schedule”s used here were introduced in Detectron [6].

the mAPs of our approach were further improved to 76.8%
with VGG16, and 81.1% with ResNet101.

Fig. 7 shows some detection examples from the

VOC2007 test set using ResNet101 Faster-RCNN and its

IAN version. These examples illustrate that IAN improves

object detection to handle images defects such as heavy oc-

clusions, faded pictures and shadows.

4.4. Results on PASCAL VOC2012 and COCO2017

We implemented IA based on Faster-RCNN and Mask-

RCNN respectively. For the PASCAL VOC2012 and

COCO2017 datasets, all results were produced by the of-

ficial evaluation server.

The performance on PASCAL VOC2012 is shown in Ta-

ble 5. For ResNet101 Faster-RCNN, IA increased mAP

from 73.8 of the baseline to 79.2, which is 5.4 improvement.

The AP on 19 categories achieved consistent performance

gain. This demonstrates that our IAN can discover more

discriminative features for a large variety of object classes.

The detection performance of COCO2017 is shown in

Table 6. We used the official evaluation metrics for COCO.

We used a better implementation [1] as our strong baseline.

IA gets 2.1 higher AP with ResNet50-FPN and achieves

38.3 AP without bells and whistles. When using more

powerful backbone ResNetXt101-64x4d or longer training

schedule on ResNet101-FPN, IA gains over 1.0 AP than

baselines consistently. IA also gain 1.3 higher AP for

bounding box evaluation in Mask-RCNN [7] framework.

The COCO evaluation server also gave the detection

performance on small (APs), medium(APm), and large

objects(APl). It is interesting to note that, in Table 6, IAN

tends to boost the performance of the large objects than

the small objects. This indicates that larger objects have

more features discovered by IAN. One can also observe

that IA tends to boost the localization accuracy as the AP

of IoU=0.75 gains more than AP of IoU=0.50. The higher

detection IoU means that the detector finds more features of

each object for localization purposes, rather than settle with

few discriminative parts of objects. This further validates

the discussion in Sec. 3.3 and examples in Fig. 5.

5. Conclusion

We present IA as a highly efficient training module to

improve the object detection networks. IA computes atten-

tion using gradients of feature maps during training, and it-

eratively inverts attention along both spatial and channel di-

mension of the feature maps. The object detection network

trained with IA spreads its attention to the whole objects.

As a result, IA effectively improves diversity of features in

training, and makes the network robust to image defects. It

is very attractive to explore the best configurations of IA

module on all other computer vision tasks such as image

classification, instance segmentation and tracking.
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