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Abstract

Photogrammetry Studios are a common setup to acquire

high-quality 3D geometry from different kinds of real-world

objects, humans, etc. In a photo studio like setup, 50 - 200

DSLR cameras are used with object-specific illumination to

simultaneously capture images that are processed by algo-

rithms that automatically estimate the camera parameters

and detailed geometry. These steps are automated in estab-

lished pipelines to a large extent and do not require much

user input. However, the post-processing typically involves

a manual estimation of surface reflectance parameters by

an artist, who paints textures to allow for photorealistic ren-

dering. While professional light stages facilitate this pro-

cess in an automated way, these setups are very expensive

and require accurately calibrated light sources and cam-

eras. In our work, we present a new formulation along with

a practical solution to reduce these constraints to photo stu-

dio like setups by jointly reconstructing the geometric con-

figuration of the lights along with spatially varying surface

reflectance properties and its diffuse albedo. In the pre-

sented synthetic as well as real-world experiments, we ana-

lyze the effect of different optimization objectives and show

that our method is able to provide photorealistic reconstruc-

tion results with an RMSE of ≈ 1− 3% on real data.

1. Introduction

Today, photogrammetry studios are widely used to cre-

ate 3D content for advertisement, engineering, or movie

production. In such a studio, an array of DSLR cameras

synchronously takes a picture of an object in the center.

Structure-from-motion and multi-view stereo are used to

automatically reconstruct the subject matter. While such se-

tups achieve high-quality 3D geometry, much less attention

has been paid to the reconstruction of the reflection proper-

ties, and mostly only a texture atlas is generated with baked

diffuse lighting. To generate a texture with material pa-

rameters, a time-consuming and expensive manual material

painting process follows. Alternatively, much more expen-

sive light stage setups can be used, where multiple images

of the object are taken with varying, controlled illumination.

In this work, we show how to extend the standard captur-

ing process by an automatic reconstruction of a high-quality

spatially varying BRDF (SVBRDF) of the subject matter.

Our approach integrates easily into the typical workflow and

requires only little extra effort: It is based on the RGB input

images that are used for geometry reconstruction, in partic-

ular we do not need multiple images with varying illumina-

tion. Because lighting is usually adapted for each object to

be captured, we additionally capture a single HDR environ-

ment map, roughly from the position of the object, which

gives us all necessary information about the lighting setup.

Our process starts once the geometry of the object has

been reconstructed using the normal workflow. In an opti-

mization process we optimize spatially varying BRDF pa-

rameters based on the registered input RGB images. We

determine parameters of the Disney BRDF [6], because it is

widely used in production and can express different types of

materials well. This optimization requires knowledge about

the illumination of the object, which we take from the HDR

panorama. However, the panorama image is only roughly

aligned (for practical reasons), and light sources can be

rather close to the object, so that the infinite illumination

assumption does not hold. Thus, we optimize the alignment

of the panorama, as well as the distance of the light sources

visible in the panorama, jointly with the BRDF parameters.

As a result, we are able to reconstruct spatially varying Dis-

ney BRDF parameters that reproduce the input images with

only very little error, and that result in convincing render-

ings under arbitrary illumination and novel views.

In summary, we present the following contributions:

• A framework to estimate a spatially varying Disney

BRDF from a set of images of an object under known,

distant illumination from an environment map.

• An optimization approach to spatially align the envi-

ronment map, and to reconstruct the position of the

light sources.

• A pipeline for joint reconstruction of spatially varying

albedo, reflectance and the geometric configuration of

the light setup, which is able to provide photorealistic

results on real-world data.

• Thorough evaluation of the proposed environment re-

construction method on a synthetic dataset as well as

the influence of different optimization objectives.
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Figure 1: Method overview: From a set of RGB images, we run a photogrammetric reconstruction along with a clustered

representation of a captured HDR panorama of the studio. Based on these data, we solve for the diffuse albedo, the light

setup of the studio as well as the spatially varying surface reflectance.

2. Related Work

The reconstruction of geometry and material of real

world objects is a long-standing and well researched prob-

lem, and often considered as the holy grail of visual com-

puting. A good overview on related techniques is given in

the state-of-the-art report by Guarnera et al. [12].

Related work can be categorized with respect to the

structure of the input images and the acquisition setup.

RGB / RGB-D Video input Dong et al. [11] and Xia et

al. [30] recover a spatially varying BRDF from a video of

a rotating object of known geometry under unknown illu-

mination. A general facet-based BRDF is determined, as

well as the illumination. Xia et al. [30] additionally refine

the shape to better explain the observations. Kim et al. [14]

determine an SVBRDF with a KinectFusion pipeline: For

each reconstructed voxel, observed color values are gath-

ered, and a per-voxel BRDF is determined by a learning-

based approach.

Controlled Illumination Lensch et al. [17] reconstruct

SVBRDFs of an object with known geometry from a num-

ber of views with varying illumination from a point-like

light source. Pose and light source are estimated from the

images and a Lafortune BRDF is fitted [16]. In light stage

setups [9, 29] multiple images from an object are made un-

der varying, controlled illumination from a dome of light

sources. These setups generate high-quality solutions, but

the dome installation is expensive, and the capturing pro-

cess is time-intensive. In other approaches, a simpler setup

is used to generate controlled illumination, e.g. an LCD

screen [4], a mini light stage [13], or a colored panel [27].

However, these setups can only handle flat material probes

or small objects. Nielsen et al. [22] take a general look at the

problem and present an approach to optimally select sam-

ples for BRDF acquisition in controlled environments.

Single (flash/no-flash) images A more recent stream of re-

search take as input a single (or two) images, often with

an off-the-shelf mobile phone with built-in flash to recon-

struct an SVBRDF, yet they are limited to a flat light probe

[5, 3, 18, 10], or to a single material [20]. Li et al. [19]

reconstruct an SVBRDF from a single picture of non-flat

objects, however naturally not the complete shape can be

reconstructed but a depth buffer for the given view.

Unstructured Input Panagopoulus et al. [25] present a sta-

tistical method to estimate illumination directions and shad-

ows from a single image. Zollhöfer et al. [31] refine geom-

etry by estimating albedo and illumination. This method

is extended by Kim et al. [15] also allowing for varying il-

lumination between different images. While these meth-

ods achieve compelling results on a geometric level, both

methods assume simple Lambertian reflectance and distant

illumination, thus rendering them unsuitable for our objec-

tive. Ono et al. [23, 24] use Multi-View stereo to recon-

struct the geometry and directly measure the BRDF (with-

out any BRDF model) from a set of reliable samples. This

method, however, is limited to homogeneous materials (sin-

gle BRDF). Wang et al. [28] jointly estimate material and il-

lumination from uncontrolled internet images, under the as-

sumption that multiple images of the same object are avail-

able under varying illumination or varying view point. In a

very recent work, Nam et al. [21] reconstruct geometry and

SVBRDFs from a set of images, all taken with the built-in

flash of a hand-held camera.

3. Approach

3.1. Setup and Input

Our work is based on a typical photogrammetry studio

setup. An array of DSLR cameras, which does not have

to be calibrated, takes about 50-100 high-quality images

of an object. Typical subject matters are persons or other

objects with no severe occlusions. Because cameras are

synchronized, the scene does not have to be static, which

makes it well applicable to persons. As in a photo studio,

the object is illuminated by light panels, which can be re-

arranged individually for every new object. Based on these

50-100 input images, high-quality reconstructions are gen-

erated without user input, using multi-view stereo software

like PhotoScan [2] or RealityCapture [26]. Most often, the

obtained models are cleaned up manually, before they are

fed to a standard content creation pipeline.

The generated models are of high quality, but usually in-

clude only textures with baked lighting. Thus, artists have to
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paint new textures with manually estimated material param-

eters, which is a lengthy and costly process, and often gives

non-reproducible results. Goal of this paper is to automate

this process, i.e., to automatically reconstruct high-quality

SVBRDFs from such input. In some sense, our setup is

comparable with a light stage, however, we do not need an

expensive illumination dome, and can handle moving ob-

jects, because we use synchronous single shots from each

camera. Due to the automatic registration of the cameras

and the joint estimation of the light geometry, our setup is

suitable for both object-dependent views and illumination.

Input to our method are:

• A high-quality reconstruction of the 3D geometry of

the subject matter.

• The images of all cameras, including their precise ex-

trinsic and intrinsic parameters.

• An HDR environment map of the setup, showing all

light sources, taken roughly from the position of the

subject matter.

We develop all the object images to 16 bit linear TIFF us-

ing dcraw [7]. The HDR environment map is captured using

exposure bracketing. It is taken roughly from the position

of the subject matter, its precise position and orientation are

optimized during the reconstruction process.

3.2. Representation of Illumination

Reconstructing the BRDFs makes it necessary to esti-

mate illumination. In our experiments, it turned out that a

photogrammetric reconstruction of the environment based

on the input images does not provide useful results (see sup-

plemental document). We thus use a single HDR environ-

ment map as basis, where each pixel can be seen as a single

point light. To reduce the overall amount of variables, we

create a low-dimensional representation, using the median

cut approach by Debevec et al. [8], which allows us to ap-

proximate the environmental light using a smaller amount,

e.g. 256, of directional light sources.

Because we don’t know its precise position and orienta-

tion from which the environment map has been taken, we

further add the center c and rotation R to the set of param-

eters to optimize.

Furthermore, we observe that the often made infinite dis-

tance assumption, as it is also typically done by methods

that approximate incident lighting by Spherical Harmonics,

e.g. [31, 15], does not hold for our environment maps: light

panels are at a distance of 1m to 3m in our setups, which

is close, relative to object size. We thus assign a distance

parameter ri to each light source i and also add these to the

set of free variables.

Given an initial estimate of the direction of a light source

l̂di
, the corresponding rotated light direction ldi

and its po-

s sample index

t texture index

i light index

ps position of s

ns normal of s

vs view direction of s

os observed color of s

ct diffuse albedo at texel t

θt BRDF at texel t

c center of env. map

R rotation of env. map

ldi env. map dir. of light i

ĉi env. map color of light i

lpi position of light i

li,s direction of light i at s

ci,s color of light i at s

Figure 2: Scene overview: Our scene representation and

the used notation throughout our paper (unknowns that we

estimate are highlighted in green).

sition lpi
are computed as:

ldi
= Rl̂di

, lpi
= c+ rildi

. (1)

For a sample with position ps and the observed color ĉi
for light i in the environment map, the position dependent

light direction li,s and its color ci,s are:

li,s =
lpi

− ps

‖lpi
− ps‖2

, (2)

ci,s =
r2i

‖lpi
− ps‖22

· 〈li,s, ldi
〉0 · ĉi (3)

The term 〈li,s, ldi
〉0 accounts for the disk approximation of

the light source, which offers a realistic representation.

For simpler notation, we define

〈a,b〉0 := max{〈a,b〉, 0}. (4)

An overview of the scene representation and

parametrization is given in Fig. 2.

3.3. Image Formation Model and BRDF Estimation

In the given setup with mostly convex objects, direct

light is the dominant factor for surface shading. We there-

fore model the light transport considering only the incoming

light of the light sources captured in the HDR panorama and

ignore indirect illumination. To model surface reflectance,

we use the BRDF described by Burley et al. [6]. This Disney

BRDF is both physically based and highly expressive. Fur-

thermore, it used in many real-world pipelines. The com-

plete formulation of the Disney BRDF is given in the sup-

plemental document.

For a sample s with its associated texel t, our image for-

mation model for N lights is given by:

N
∑

i=1

f(ns,vs, li,s, ct|θt) · ci,s. (5)
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f is the used BRDF representation, in our case the Disney

BRDF, with its parameters θt ∈ [0, 1]10. The operator (·)
refers to element-wise multiplication of the RGB values.

In our case, we aim to estimate the set T of surface re-

flectance parameters θ⋆t , its diffuse albedo c⋆t and the geo-

metric configuration of the light setup for N lights, i.e. the

center c⋆ and rotation R⋆ of the captured HDR panorama

and the distance r⋆i of each light source i to the center. We

cast this as a non-linear optimization problem, which mini-

mizes the dense photometric error w.r.t. to the observations

os of the input RGB images:

Ephoto =
∑

t∈T ,s∈St

∥

∥

∥

∥

∥

N
∑

i=1

f(ns,vs, li,s, ct|θt) · ci,s − os

∥

∥

∥

∥

∥

2

2

,

(6)

{θ⋆t , c
⋆
t , c

⋆,R⋆, r⋆i } = argmin
θt,ct,c,R,ri

Ephoto, (7)

where T is the set of albedo/BRDF texels and St are the

samples associated to texel t.

3.4. Joint Estimation of Albedo, Reflectance and
Light

Initial Albedo Estimation Our algorithm is bootstrapped

by first assuming directional lights, i.e., light sources that

have a distance of infinity. The initial rotation R is obtained

by a manual rough alignment of the environment map. We

observe that the diffuse amount of the albedo is contained

in the samples with the lowest luminosity.

Therefore, we compute the diffuse albedo ct for all tex-

els based on the quartile of observations os of the surface

element having the lowest luminosity by solving the linear

least-squares problem

c⋆t = argmin
ct

∑

t∈T ,s∈St

∥

∥

∥

∥

∥

N
∑

i=1

1

π
〈ns, l̂di

〉0 · ct · ĉi − os

∥

∥

∥

∥

∥

2

2

.

(8)

For this initial step, we deal with diffuse reflectivity and

distant light sources and thus do not have to estimate any

parameter for the reflectance (θt) or the lights (R, c, ri).

Alternating Optimization There is an inherent ambigu-

ity between light positions and albedo values: for a given

set of light positions, there is a unique albedo texture and

for a given texture, there is a unique set of light positions.

We observe that while the samples with the lowest lumi-

nosity represent the diffuse amount of the albedo, samples

with high luminosity represent the specular highlights and

can be used to triangulate the light sources. These specular

samples are assumed to be of the same BRDF, i.e., we only

use one parameter set θ.

We decouple our joint optimization problem of albedo,

reflectance and light into two sub-problems with opposing

properties and use an alternating optimization, which is it-

erated until convergence:

1. Given the current diffuse albedo, estimate the optimal

reflectance (θ⋆) and light setup (R⋆, c⋆, r⋆i ) from the

high-luminosity samples:

{θ⋆, c⋆,R⋆, r⋆i } = argmin
θ,c,R,ri

Ephoto. (9)

2. Given the current light, estimate the optimal diffuse

albedo (c⋆t ) from the low-luminosity samples assuming

diffuse reflectivity:

c⋆t = argmin
ct

Ephoto, (10)

with f(ns,vs, li,s, ct|θ) =
1
π
〈ns, li,s〉0 · ct.

While problem 1 consists of only few variables (N +16,

with N being the number of light sources), its structure is

very dense and highly non-linear. On the other hand, prob-

lem 2 consists of several millions of parameters (e.g. 12.6M

for an albedo texture of 2048 × 2048), but it is extremely

sparse and can be solved for each texel independently.

Similarity of Lights In our synthetic experiments

(Sec. 4.1), we observe that even for ground-truth settings,

the optimization of step 1 will result in incorrect light con-

figurations as long as the reconstruction operates with a dif-

ferent number of light sources than the amount the data has

been generated with, which is especially true for real data.

To mitigate this problem, we add a weighted similarity

term to the optimizer that prefers configurations with simi-

lar distances (ri, rj) for neighboring light sources:

Esim =
N
∑

i=1

∑

j∈Ni

1

‖̂ldi
− l̂dj

‖22
(ri − rj)

2. (11)

This term enforces stronger similarity for light distances

that have similar direction. Due to the preprocessing of the

HDR panorama, the density of the clusters is proportional to

the local luminosity of the environment map, i.e., the den-

sity resembles the actual lights. If light directions are closer

to each other, the probability of being the same light source

is high. On the other hand, if light directions are far apart,

they are probably different light sources.

Given this additional constraint, we extend problem 1 to

{θ⋆, c⋆,R⋆, r⋆i } = argmin
θ,c,R,ri

Ephoto + wsimEsim. (12)
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3.5. Estimation of HighQuality Spatially Varying
Reflectance Properties

We use the reconstructed light geometry (Sec. 3.4) to

estimate high-quality spatially varying surface reflectance

θ⋆t (SVBRDFs) by minimizing the photometric energy. All

pixels from every image that correspond to an observation

of the object are used (overall up to 100M observations).

To reduce artifacts for undersampled surface areas and

mitigate overfitting, we add a local smoothness regularizer

in texture space to constrain the reflectance parameters:

Ereg =
∑

ti∈T

∑

tj∈Nti

‖θti − θtj‖
2
2, (13)

where Nti are the neighboring reflectance parameters.

We solve the joint optimization problem

θ⋆t = argmin
θt

Ephoto + wregEreg (14)

using a Levenberg-Marquardt (LM) solver in a hierarchical

way (texture dimensions 1 × 1 to 2048 × 2048) to avoid

getting stuck in local minima. For optimal precision and

performance, we use analytic derivatives, wich we provide

in the supplemental document.

Neighbors across texture boundaries As the surface

parametrization output of regular photogrammetry software

is a texture atlas, we use a surface-based approach to find

neighbors for texels at boundaries. For every boundary

point that has k neighbors in the texture, we find the (4−k)-
nearest neighbors on the surface in any other texture seg-

ment and use the corresponding parameters as neighboring

values for the regularization term.

3.6. Implementation

To build a system that achieves practical runtime, we

use optimized implementations for two sub-problems: The

linear-least squares problem to estimate the diffuse albedo

(Eq. (10)), is solved entirely on the GPU.

Furthermore, we use a hand-crafted CUDA implemen-

tation utilizing shared memory and intrinsic functions, e.g.

shfl down, to efficiently evaluate the sums in the entries

of the Jacobian matrix and the residual vector. In our real-

world datasets, we deal with up to 109 residuals and 40M

variables – though JTJ is extremely sparse, i.e. 14 non-zero

entries per row. To solve the linear least-squares problem in

each LM step, we use a parallel PCG solver on the CPU,

which has negligible runtime (3.1%) compared to the eval-

uation of the Jacobian matrix and the residual vector.

A naive implementation, e.g., using the Ceres optimiza-

tion framework [1] that utilizes automatic differentiation

shows an increased runtime of ≈ 400× in our experiments.

While our GPU implementation runs for ≈ 3.5 hours, such

implementation would result in a runtime of ≈ 60 days.

4. Evaluation

We conduct a thorough evaluation on both synthetic as

well as real-world data. Furthermore, we analyze the influ-

ence of the regularization parameters in terms of accuracy

as well as generalization of the reconstructed reflectance pa-

rameters. Our evaluation is done consistently in terms of

photometric RMSE normalized to the RGB cube [0, 1]3, i.e.

(0, 0, 0)T vs. (1, 1, 1)T results in an error of 100%.

Several additional evaluations on both synthetic and real-

world data can be found in the supplemental document.

4.1. Quantitative Evaluation on Synthetic Data

We create several studio-like datasets with varying

complexity (see Fig. 3) using 85 images rendered from

camera positions similar to the photogrammetry stu-

dio setup. Dataset 1 and 2 are created with dif-

fuse shading. The images of dataset 3 are shaded us-

ing the Disney BRDF (Fig. 3e) with parameters θ =

(0.2, 0.2, 0.5, 0.6, 0.9, 0.0, 0.3, 0.4, 0.2, 0.2)T (described in more

detail in the supplemental document).

For dataset 1, the object is placed in center, whereas for

dataset 2 and 3, the object is placed off-center.

Regularization of Light Sources We perform an exten-

sive evaluation of the similarity objective Esim (Sec. 3.4).

To this end, we use dataset 1 (Fig. 3c) created with differ-

ent amounts of light sources N̂ ∈ {256, 512, 65536} on the

cuboid (3.6m× 2.4m× 1.2m).

For each case, the reconstruction is performed with N =
256 light sources with a different value of wsim. N̂ = 256
is the validation case, N̂ = 512 simulates an environment

with similar number of light sources and N̂ = 65536 sim-

ulates a realistic environment with a high number of light

sources. Furthermore, we initialize the distances with dif-

ferent values: 1m, the ground truth and 2m.

The results of this evaluation can be found in Fig. 5. The

most important observation is two-fold: On the one hand,

if we reconstruct the light geometry with the same amount

of lights, i.e. 256, the optimization converges even for very

small similarity weights for different types of initial values.

On the other hand, if the number of light sources differs, e.g.

512 and 65536 for data creation, 256 for reconstruction, the

optimization diverges even for ground truth initialization.

This shows the importance of the additional similarity ob-

jective: As can be seen, a weight of wsim ∈ [10−7, 10−6]
offers stable results for the light reconstruction, i.e., a rela-

tive distance error of ≈ 5%, with a low photometric RMSE.

Furthermore, we evaluate the joint reconstruction of cen-

ter c, distances ri (dataset 2 and 3) and BRDF θ (dataset 3,

all Fig. 3). The aim of this experiment is to evaluate if the

optimization can reconstruct the center and the surface re-

flectance. Therefore, the object of interest, which typically
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(a) Light config 1 (b) Light config 2 (c) Dataset 1 (d) Dataset 2 (e) Dataset 3

Figure 3: Overview of synthetic datasets: For two different light configurations (object in center and off-center; lights

shown in green) we create three datasets. (1) is created with config 1 and diffuse reflectance, (2) is created with config 2 and

diffuse reflectance, (3) is created with config 2 and a complex Disney BRDF.

(a) Dataset 1, RMSE: 0.08% // 1.8% (b) Dataset 2, RMSE: 0.22% // 4.6% (c) Dataset 3, RMSE: 0.67% // 11.6%

≥ 5%

0%

Figure 4: Results for synthetic data: We show the reconstructed light geometry (yellow) for wsim = 10−6 with its ini-

tialization (red) and the ground truth (green) along with the photometric error for one example image (upper). For baseline

comparison, we also show the error using directional illumination without accurate reconstruction of the light sources (lower).
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Figure 5: Evaluation of light similarity term: We evalu-

ate the relative distance error of the light sources (upper) as

well as the photometric RMSE (lower) for different values

of wsim, initializations and number of light sources N̂ .

serves as a rough estimate of the center of the environment

map, is placed off-center. The input data is generated with

65536 light sources for a realistic simulation. The optimiza-

tion is initialized with the center of the mesh’s bounding box

and distances of 2m, as large values guarantee better conver-

gence (see supplemental document). For the reconstruction

of dataset 3, all BRDF parameters are initialized to 0.5.

A visual overview of the reconstruction results can be

found in Fig. 4, the quantitative evaluation is given in Fig. 6.

While the photometric RMSE for the data shaded with

the Disney BRDF (Fig. 3e) is slightly higher than for the

data with diffuse shading (Fig. 3d), the resulting light re-

construction is more precise using the Disney BRDF. I.e.,

for wsim = 10−6 the average error of the light positions is

≈ 10.7cm, with the center being off by only 0.79cm. For

comparison, using the diffuse dataset, the average error is

≈ 13.9cm, with an error for the center of 1.45cm. This

shows that more complex shading with dominating influ-
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Figure 6: Evaluation of light reconstruction: We evaluate

the accuracy of the reconstruction for different BRDFs. A

complex Disney BRDF offers more shading cues to allow

for a more precise reconstruction of the light sources.

ence of distinct light sources and view-dependent shading

leads to more accurate reconstruction of the light sources.

The reconstructed BRDF values are θ⋆ =

(0.195, 0.190, 0.493, 0.597, 0.892, 0.0, 0.314, 0.380, 0.202, 0.0)T .

Apart from the last parameter (0.0 vs. 0.2), the estimated

values have an average relative deviation of 2.1%, which

shows that our optimization accurately recovers the surface

reflectance. Regarding the last parameter (clearcoatGloss),

which does not get reconstructed correctly, we make the

following observations in our synthetic experiments: For

values ∈ [0, 0.8], it did not have any visible influence, only

values ∈ [0.8, 1] lead to visually different results. This

observation can also be validated by inspecting the used

GTR1 distribution [6].

4.2. Evaluation on Real Data

To perform an evaluation on real-world data, we cap-

tured several datasets with different objects that are typical

examples for photogrammetry studios (Fig. 7) and use Re-

alityCapture [26] to reconstruct both the camera poses and

the 3D geometry:
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Figure 7: Results on real-world data: For the scenes UPPER BODY, BUST, SHOE and VASE, we show two example input

images along with the estimated diffuse albedo and the re-rendered result as well as the photometric error.

1. A human UPPER BODY including a bald head, which

serves as a challenging example considering the re-

flectance complexity of human skin [29].

2. An archaeological BUST that is of almost constant re-

flectance and albedo.

3. A SHOE that is a trade-off between complex geometry

and complex surface reflectance.

4. An archaeological VASE that is of simpler geometry,

but provides sharp reflectance and albedo boundaries

as well as almost mirror-like surface areas.

Especially the UPPER BODY example is an interesting use-

case for photogrammetry studios. While these setups are

designed to output compelling geometry, photorealistic sur-

face reflectance models often involve manual fine tuning of

the parameters by an artist.

For several evaluations, we divide our input data into two

disjoint sets of each 42 images. The set fit is used for the

reconstruction of the parameters, unseen is used to evalu-

ate the generalization of our method for unseen views. The

joint error is evaluated on the complete input set all.

Using all input images, our method achieves an overall

RMSE of 1.6% − 2.3% (Fig. 8). The most significant re-

duction of error occurs for the VASE scene due to the fact

that it consists of distinct reflectance properties (almost dif-
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Figure 8: Evaluation on real-world data: We evaluate the

overall error for different texture sizes.

fuse middle part and highly specular dark areas). The BUST

shows almost no reduction as it is reasonable to assume

to be of constant material with only slight differences over

the surface (e.g. due to touching). While the scenes VASE,

BUST and SHOE used the raw output of the photogramme-

try reconstruction, a professional artist post-processed the

geometry of the UPPER BODY example. This results in ex-

tremely accurate surface normals, which allows for superior

performance in the SVBRDF estimation part (Sec. 3.5).

In Fig. 7, we show two example images (out of 85 to-

tal input images), the diffuse albedo and the resulting syn-

thetically rendered image along with the photometric error.

More renderings can be found in the accompanying video.

Texture boundaries The influence of our nearest neigh-

bor search across textures is shown in Fig. 9. If the regular-

izer only operates inside each part of texture separately, the

reconstructed SVBRDF exhibits discontinuities. This leads
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to shading artifacts for novel views. Using the regulariza-

tion, these artifacts get mitigated, while the resulting photo-

metric RMSE shows similar value (1.612% vs. 1.615%).

Figure 9: Texture boundaries: Without regularization

across texture boundaries (left), the reconstructed SVBRDF

exhibits discontinuities (two example layers shown), which

cause shading artifacts for novel views (middle).

Comparison against Directional Lights We compare

our method against the naive approximation of directional

lights, i.e. lights of infinite distance, for the VASE dataset,

which offers sharp reflectance boundaries and defined high-

lights. As can be seen in Fig. 10, our reconstruction of light

positions (point lights) provides reduced photometric error

compared to directional lights for all three sets (fit, unseen,

all), given sufficient texture resolution, i.e. ≥ 64× 64.
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Figure 10: Comparison against directional lights: Using

our method to reconstruct the geometric configuration of the

lights (point lights), we are able to reduce the photometric

error compared to a naive assumption of directional lights.

Regularization of Reflectance Parameters To evaluate

the influence of our smoothness constraint for SVBRDFs

(Sec. 3.5), we run our algorithm on the head of the UPPER

BODY dataset for different values of wreg (see Fig. 11)

A regularization weight wreg ≈ 1− 20 offers similar re-

sults on unseen data, while wreg ≈ 1 performs best overall.

For lower weights, the optimizer overfits to the seen data,

whereas for higher weights, the property of spatially vary-

ing parameters gets lost and the result converges to a single

set of parameters for wreg → ∞.

Using these BRDF textures layers, it is possible to syn-

thesize photorealistic renderings of the object from novel

views and under different illumination. We show several

animations in the accompanying supplemental video.

5. Limitations and Future Work

While we are able to provide photorealistic results, it is

important to point out limitations of our method and discuss
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Figure 11: Evaluation of BRDF regularizer: We run the

algorithm with varying strength wreg of the smoothness con-

straint (defined in Sec. 3.5) and evaluate the photometric

RMSE for the three different image sets.

how these problems can be addressed in future work.

Incorrect geometry causes severe errors especially along

silhouettes (BUST) as well as in very glossy areas (VASE,

both Fig. 7). We believe that our method to estimate the sur-

face reflectance and the light setup can assist stereo-based

3D reconstruction to mitigate problems in these glossy ar-

eas and improve the accuracy of the surface normals. Fur-

thermore, slightly incorrect camera alignment also leads

to severe errors especially for areas with a high-frequency

albedo, e.g., the colored cloth in the UPPER BODY example.

While the used Disney BRDF representation allows to

model complex BRDFs, such as human skin, our method is

currently not able to reconstruct arbitrary anisotropic mate-

rials. Extending the optimization and jointly solving for the

anisotropy directions will thus allow for even more complex

shading behavior.

Inherent to our image formation model, (self-)shadowing

as well as indirect illumination is currently neglected.

Therefore, these information get integrated into the albedo,

which will cause slight artifacts for illumination changes,

i.e., shadows will not be at the correct position anymore.

Jointly solving these problems is challenging, but we be-

lieve that recent advancements especially in the domain of

deep-learning can help to make these challenges tractable.

6. Conclusion

We presented a method to estimate albedo and spatially

varying Disney BRDF parameters of an object in a pho-

togrammetry setup. Illumination is reconstructed from a

panoramic HDR image, where the position of the light

sources is jointly optimized with the albedo and BRDF

parameters. The approach generates high-quality Disney

BRDF textures, that make high-quality rerenderings from

arbitrary view points and under novel illumination possible.

Our method thus can replace the time intensive and costly

manual BRDF painting step, that is still necessary in current

setups before the model can be used in production.
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