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Abstract

Most of the recent Deep Semantic Segmentation algo-
rithms suffer from large generalization errors, even when
powerful hierarchical representation models, based on con-
volutional neural networks, have been employed. This
could be attributed to limited training data and large distri-
bution gap in train and test domain datasets. In this paper,
we propose a multi-level self-supervised learning model for
domain adaptation of semantic segmentation. Exploiting
the idea that an object (and most of the stuff given context)
should be labeled consistently regardless of its location, we
generate spatially independent and semantically consistent
(SISC) pseudo-labels by segmenting multiple sub-images
using base model and designing an aggregation strategy.
Image level pseudo weak-labels, PWL, are computed to
guide domain adaptation by capturing global context sim-
ilarity in source and target domain at latent space level.
Thus helping latent space learn the representation even
when there are very few pixels belonging to the domain cat-
egory (small object for example) compared to rest of the im-
age. Our multi-level Self-supervised learning (MLSL) out-
performs existing state-of-art (self or adversarial learning)
algorithms. Specifically, keeping all setting similar and em-
ploying MLSL we obtain an mloU gain of 5.1% on GTA-V to
Cityscapes adaptation and 4.3% on SYNTHIA to Cityscapes
adaptation compared to existing state-of-art method.

1. Introduction

With the evolution of deep learning methods during the
last decade and the availability of densely labeled datasets
[1-3], a considerable attention has been devoted to improv-
ing the performance of semantic segmentation [4—10]. Sig-
nificant reliance of real-time applications like autonomous
vehicles [11], bio-medical imaging [12], etc. over robust
and accurate semantic segmentation step has also helped
it gain prominence in current research. However, with the
limited datasets for such a complex task (pixel-wise anno-
tation), the state-of-the-art models have been reported to
produce large generalization errors [13, 14]. This occurs
naturally, because the train data may vary from test data

(domain shift) in many aspects like illumination, visual ap-
pearance, camera quality, etc. It is time consuming and
labor-intensive to densely label high resolution images cov-
ering all the domain variations. Modern computer graphics
makes it easier to train deep models using synthetic images
with computer generated dense labels [2,3]. However, these
simulated-scene datasets are significantly different in visual
appearance and object structures compared to real-life road-
scene datasets, limiting the model performance. To over-
come these domain shift issues, many techniques have been
proposed to adapt the target data distribution [15—17]. Here
our focus is to adapt the target domain dataset without labels
in an unsupervised manner using self-supervised learning.

Due to large real-world applications, unsupervised do-
main adaptation (UDA) is a well-studied field in the current
decade and aims to generalize to unseen data using only
the labeled data of source domain. In UDA, most of the
algorithms try to match the source and target data distri-
bution using adversarial loss [18] either at structured out-
put level [17] or latent space features level [19-21] respec-
tively. Similarly, UDA based on adversarial learning aug-
mented with other methods have recently produced good re-
sults on adaptation of semantic segmentation [ 14,22]. How-
ever, Zou et al. in [13] showed that a comparative perfor-
mance can be achieved using an alternative method contrary
to adversarial learning with less computational resources
required compared to these complex methods. They in-
troduced a class balanced self-supervised training method
by generating pseudo-labels using the source-data trained
model and tried to minimize a single loss function. How-
ever, they failed to capture the global context of the im-
age referenced to categories and also the generated pseudo-
labels had high uncertainty.

In this work, we propose a novel Multi-level Self-
Supervised learning (MLSL) approach for UDA of seman-
tic segmentation. The proposed approach consists of two
complementary strategies. First, we propose spatially inde-
pendent and semantically consistent (SISC) pseudo-labels
generation process. We make reasonable assumption that
an object should be segmented with same label regardless

1864



of the location of the object. Same could be said about the
stuff representing grass, road, sky, etc., given a reasonable
context in surrounding. Using a base model, multiple sub-
images (extracted from an image) are segmented indepen-
dently and output probability volume is aggregated. This
not only generates better pseudo-labels than single instance
(SI) based ones, the assumption is more general than the
spatial consistency assumption used by [13].

Secondly, we enforce the global context and small ob-
ject information preservation while adaptation by attach-
ing a category based image classification module at latent
space level. For each target image, image level labels,
called pseudo weak-labels (PWL) are generated using SISC
pseudo-labels and size statistics collected from source do-
main. In summary, our main contributions are:

1. A Multi-level self learning strategy for UDA of seman-
tic segmentation model by generating pseudo-labels
at both fine-grain pixel-level and image level, helping
identify domain invariant features at both latent and
output level.

2. Designing a strategy, based on a reasonable assump-
tion that for most categories, labels should be loca-
tion invariant (given enough context) to generate spa-
tially independent and semantically consistent pixel-
wise pseudo-labels.

3. Using category wise size statistics to help build pseudo
weak-labels (PWL) and train latent space.

4. State-of-the-art performance on benchmark datasets
by augmenting the pseudo-labels with class-wise spa-
tial and image-level category distribution priors.

2. Related Work

Due to the evolution of deep learning methods, most of
the computer vision tasks including, but not limited to, ob-
ject detection, semantic segmentation, etc., are shifted to
deep neural networks based methods [23]. In [4], the au-
thors proposed a fully convolutional network for pixel-level
dense classification for the first time. Following them, many
researchers proposed state-of-the-art methods for semantic
segmentation taking the performance to an acceptable level
for many computer vision tasks [5, 8, 9].

Domain adaptation is a widely studied area in com-
puter vision for segmentation, detection, and classifica-
tion tasks. With the emergence of semantic segmentation
algorithms [4-0], availability of datasets [1-3] and mod-
ern applications demanding real-time constraints, e.g., self-
driving cars, domain adaptation for semantic segmentation
is in the spotlight. Many approaches exploited an appealing
direction in semantic segmentation using domain adapta-

tion from synthetic dataset to real-life datasets [17,21,24].
The underlying idea of UDA include matching target and
source features using discrepancy minimization [20, 22],

self-supervised learning with pseudo-labels [13,25] and re-

weighting source domain to look like target domain [16,26].
This work thoroughly investigates the unsupervised domain
adaptation for semantic segmentation with focus on self-
supervised learning approach.

Adversarial learning is the most explored method for
UDA of semantic segmentation [17, 19, 21]. Adversar-
ial loss-based training is exploited for feature matching,
structured output matching, and re-weighting processes fre-
quently in UDA. The authors in [20] and [26] exploited la-
tent space representations and used an adversarial loss to
match the latent space features of source and target do-
mains. Similarly, Chen et al. [19] used the adversarial loss
for UDA of semantic segmentation augmented with class-
specific adversaries to enhance the adaptation performance.
The authors in [22] also proposed the latent space domain
matching based on adversarial loss augmented with appear-
ance adaptation network at the input. They tried to com-
bine the latent space adaptation and re-weighting process
and observed a significant gain in performance. In [16] the
authors adapted similar approach to first transform the fully
labeled source images to target images, train the segmenta-
tion model using the labeled source data, and then adapt fur-
ther to target data. Rui et al. [27] devised a domain flow ap-
proach to transfer source images to new domains using ad-
versarial learning at intermediate levels. In [28], the authors
leveraged the spatial structure of source and target domain
dataset, and working in latent space, proposed domain in-
dependent structure and domain specific texture based com-
posite architecture for UDA. However, due to high dimen-
sional representation at latent space, it is hard to adapt to
new data distributions using adversarial loss because of the
instability of the adversarial learning process.

In [17], the authors proposed a structured output space
UDA approach based on adversarial learning. They avoided
the curse of high dimensionality at latent space by exploit-
ing the defined structure of road scene imagery at the out-
put and provided a baseline solution along with state-of-
the-art results in comparison to previous methods. The au-
thors in [24] proposed a curriculum domain adaptation by
addressing the easy examples first. They introduced a su-
perpixels based-loss at the output space in conjunction with
image level loss. Similarly, DADA [29] tried to exploit
depth information for UDA of urban scene segmentation.
Zou et al. [13] proposed a comparative performance method
based on iterative learning. They proposed a class balanced
self-training mechanism and obtained state-of-the-art per-
formance using spatial priors in the pseudo-labels genera-
tion process. A tri-branch UDA model for semantic seg-
mentation is proposed in [25], where they generate pseudo-
labels from two branches and train the third branch on that
pseudo-labels alternatively. The authors in [14] stated that,
only adversarial learning at latent space or output space is
not enough to learn the target distribution. They used a
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Figure 1. An illustration of the alternating self-supervised learning method for UDA of semantic segmentation. (a) shows pseudo-label
generation and (b) shows segmentation network training on source and target images. (a) and (b) are repeated iteratively.

direct entropy minimization algorithm augmented with an
entropy-based adversarial loss for UDA of semantic seg-
mentation.

In summary, the existing solutions are suffering due to
various problems e.g. latent space adaptation suffers from
high dimensional feature representation, output space adap-
tation struggles with small and thin objects, re-weighting
independently is not enough to achieve the goal. Similarly,
the existing iterative methods are not capable to generate
good pseudo-labels and cannot capture the global image
context. In this work we propose category-based image
classification using PWL and SISC based self-supervised
learning for domain adaptation of semantic segmentation.

3. Approach

In this section, we present the proposed self-supervised
and weakly-supervised learning approaches based on SISC
pseudo-labels and PWL for domain adaptation of semantic
segmentation. We start with existing state-of-the-art net-
works in semantic segmentation [30] and self-training for
domain adaptation [ 3] as baseline methods and plugin ad-
ditional modules for proposed approaches. Fig. 1 illus-
trates, iterative self-supervised learning technique for UDA.

3.1. Preliminaries

Let I, € REXWx3 and v, € RI*WxC where, I, cor-
responds to RGB images of source dataset with resolution
H x W and Y, are ground truth labels as C-classes one-
hot vectors with same spatial resolution as [;. Let G be
a fully convolutional network which predicts softmax out-
puts G(I) = G(ITT>*Wx3) = pHXWXC — P/ for an input
image I. One needs to learn the parameters w, of G by
minimizing the cross-entropy loss given in Eq. 1 on source
domain images.

Lseg([s,YS):_ Z YbeWxClog(PIIijxC) (1)
H,W,C

If ground truth labels for target dataset are available, the
most direct strategy would be to use Eq. 1 and fine-tune the
source trained model to target dataset. However, labels for
target dataset are not always available, especially in case of
real-time applications, e.g., self-driving cars. Therefore, an
alternate way for unsupervised domain adaptation is to fine-
tune the source trained model on the most confident outputs
called “pseudo-labels”, which the model produces on target
domain images. The pseudo-labels have exactly the same
dimensions as Y. The loss function for the target domain
images is formulated as follows:

IA/seg(It,S;;):_ Z dHXWﬁHXWXClog(PIIjXWXC) (2)
H,W,C

where I:seg([t, Yt) in Eq. 2 is self-training loss with Yt
as the pseudo-labels one-hot vectors with C classes, and
d™*W is a binary map, obtained from pseudo-labels Y; e.g.,
d;; = 1if any pseudo-label is there at )A’tij, and d;; = 0 if
there is no pseudo-label assigned at }Aftij, wheret =1,..., H
and j = 1, ..., W. d allows to back propagate loss for those
pixel locations only, which are assigned pseudo-labels. We
name the training method as “self-supervised learning” or
“self-training”.

3.2. Semantically consistent pseudo-labels

Training a network using single inference (SI) generated
pseudo-labels only, misleads the training process as there is
no guarantee over the quality of pseudo-labels. An initial
strategy is to jointly train the segmentation network using
the ground truth labels of source images and the generated
pseudo-labels of target images. The joint loss function is
given by Eq. 3.

minLsr(Is,Ye, I, Vi) = Leeg(Is, Vo) + Loeg(I;, Y2)  (3)
Wy

where, Lscq(1s,Ys) is the loss of source images and
ﬁseg(It, Y;) is the loss of target images given in Eq. 1 and
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Figure 2. (a) Single-inference pseudo-label generation, (b) SISC pseudo-labels generation where, from left to right: patches are extracted
randomly, segmented, recombined, normalized and pseudo-labels are generated. (c) shows the semantic segmentation and category-based
image classification model, and (d) describes the PWL generation process.

Eq. 2 respectively. To minimize the loss in Eq.
the two stage alternating process given below:

3, we follow

1. Generate pseudo-labels by fixing the parameters w,.
2. Minimize the loss in Eq. 3 with respect to w, by fixing
the pseudo-labels Y; generated in the previous step.

In this work, Step-1 and Step-2 are executed alternatively
and repeated for multiple iterations. A work-flow of the
proposed algorithm is shown in Fig. 1. Step-1 generate
pseudo-labels using the output softmax probabilities of the
target images based on the more confident examples. Once
the pseudo-labels are generated, Step-2 updates the model
parameters w, using stochastic gradient descent (SGD) by
minimizing the loss function given in Eq. 3.

Spatially independent and semantically consistent
pseudo-labels: Instead of generating pseudo-labels using
SI, (e.g., segmenting the whole image simultaneously), we
generate “spatially independent and semantically consistent
(SISC)” pseudo-labels. We leverage the spatial indepen-
dence of our baseline semantic segmentation model to gen-
erate spatially independent and semantically consistent pre-
dictions. To quantitatively show the contribution of seman-
tic consistency, we evaluate the softmax predictions based
on different spatial context and select the most consistent
ones. For each target image [;, we select K partially over-
lapping patches [p1, pa, ..., pi] of size h x w each. Each

patch p; is passed through the segmentation algorithm to as-
sign pixel-wise confidence vectors using softmax outputs.
The output softmax probabilities for each patch are added
to an empty matrix Py, € RFXWXC in specific locations
where each patch belongs, and generate the composite out-
put. Each pixel in P, has an associated count based on
the number of occurrences in different patches during infer-
ence. We normalize Py, with associated counts to obtain a
normalized probability map and forward it to pseudo-label
selection step which chooses the most confident outputs as
pseudo-labels. The whole process of patch-based and single
inference based pseudo-label generation is shown in Fig. 2.

Unlike simple pseudo-labels generation methods which
suffer from category distribution imbalance problem, we
use the category-balanced pseudo-label selection similar to
the method used in [13]. Using the obtained normalized
probability map, we further normalize the category-wise
probabilities and select the pixels having high probability
within a specific category. For example, we select all pixels
locations which are assigned to be “road”, normalize prob-
abilities on that locations and then select the most confi-
dent ones. This process balances the inter-category pseudo-
labels ratio and avoids the training process to adapt simple
examples only. The obtained pseudo-labels belong to the
more consistent pixels inferred without the global view. The
loss function given in Eq. 3 is minimized using the origi-
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nal labels for source domain and SISC pseudo-labels for the
target domain.

3.3. Pseudo weak-labels guided domain adaptation

The cross-entropy loss for an input image/label pair de-
fined in Eq. 1 calculates the sum of independent pixel-wise
entropies, dealing with each pixel and label at the location
independently. Thus ignoring any spatially global informa-
tion, prone to effected by sparse erroneous pseudo-labels.
Due to unbalanced pixels per category distribution, mini-
mizing the summation of independent pixels entropies ig-
nores the global data distribution. Even balancing the la-
bels [13], the low-density classes fades (for target domain)
as self-training proceeds.

We employ the pseudo weak-labels (PWL), guided
multi-task weakly-supervised learning to regularize the
pixel wise cross-entropy loss. The PWL based category
level cross-entropy loss is attached at the encoder level
while adapting. This forces the latent space to learn to rep-
resent target categories, even for the small objects whose la-
tent space representation might be faded if only pixel-wise
cross-entropy loss is used.

3.3.1 PWL Filtering

The pixel-wise pseudo-labels are too noisy to generate
the image level pseudo-labels. Assuming that source and
target have similar objects and their instances, we build
a naive model for the category’s size relationship with
the image. From the source dataset we calculate h, =
{m1,ma,...,m.}, to represent mean size of each class,
where

1
(1) x H x

N H W
m; S22 0> W@y} @
Jj=1 rz=1y=1
N stands for total images, and indicator function 1} is 1
if j*" image has class i, otherwise zero. For each target
image I;, we compute SISC pseudo-labels Y; and use it to
compute array h;. PWL vector for image I; is an indicator
vector cPL, s.t. " = 1if hy(i) > nhs (i) otherwise zero.
n is a small value chosen by the user. However, we are
determined to make this process learn-able in future.

3.3.2 PWL Loss

Given any image [, an image classification module F; is
designed to input the latent space representation (in this
case of ResNet-38), and predict labels (Fig. 2(c)). Instead
of softmax, we use sigmoid so that it can predict multiple
labels for the image and use binary cross-entropy loss func-
tion given in Eq.5 .

C
Lp, (I,¢) = —é > (e)log(Fer(I)) + (1 —c;)log(1 — Fu(I)) (5)
i=1

For the source images I, indicator vector c represents im-
age level label crated from ground truth segmentation la-
bels. For the images in target domain I;, image level weak-
labels cP*! are created as detailed in Sec. 3.3.1.

3.4. Final Loss Function

The overall loss function for segmentation network and
category-based image classification network for source do-
main is the composition of both 1 and 5, and is given by

Lemp(L,Y,¢) = Lseg(1,Y) + Ar LF,, (1, ¢) ©)

where Ar,, is the scaling factor and c is image level label.
The combined loss function for self-supervised and weakly-
supervised learning is given bys;

LSTWL(IS7 Y;, It, i/t, C) = Lcmp(l:u )/37 C) + i/cmp(lt,- ?;5,- C)
@)
Eq. 7, is minimized using criteria described in Sec. 3.2.

4. Experiments

In this section, we present experimental details and dis-
cuss the main results of our proposed UDA methods.

4.1. Experimental setup
4.1.1 Datasets

We follow the synthetic-to-real setup for UDA. We use
GTA-V [3] and SYNTHIA [2] as our source domain syn-
thetic datasets and Cityscapes [1] as real-world target do-
main dataset. GTA-V consist of 24966 synthetic frames of
spatial resolution 1052 x 1914 extracted from a video game.
All the 24966 frames have pixel level labels available for 33
categories, but we used 19 categories compatible with real-
world Cityscapes dataset. Similarly, we use SYNTHIA-
RAND-CITYSCAPES set having 9400 synthetic frames of
size 760 x 1280 from SYNTHIA dataset. We train and eval-
uate our baseline and proposed models with 16 common
classes in SYNTHIA and Cityscapes. We also report the 13
classes evaluation as described in [14] and [13].

In both the experiments, we use the Cityscapes train-
ing set without labels for unsupervised domain adaptation
and evaluate the adapted models on Cityscapes separate
validation set having 500 images. We use standard mean
Intersection-over-Union (mloU) as our evaluation metric.

4.1.2 Model architecture

We use ResNet-38 [30] as our baseline semantic segmen-
tation model. The pre-trained ResNet-38 (trained on Ima-
geNet [33]) is trained for semantic segmentation on GTA-V
and SYNTHIA datasets. The ResNet-38 contains 7-blocks
(convolutional, residual and pooling), followed by two seg-
mentation layers and an upsampling layer. We also call the
ResNet-38 as encoder for segmentation network and refer
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Table 1. Semantic segmentation performance when the model trained on GTA-V dataset is adapted to Cityscapes dataset. We present
the results of our proposed SISC pseudo-labels based self-supervised learning and PWL augmented self-training. We use the competitive
baseline model and show a thorough comparison with existing state-of-the-art methods. The abbreviations ”ST” and ”Adv” indicates the
self-training (self-supervised learning) and adversarial learning respectively.

GTA-V — Cityscapes

= 20 = 3}
. g g ° <, £ £ g - o] =

Methods < % & = E & & & E F £ » & & U FE @ £ = A E

ResNet-38 [30] - [700 237 678 154 181 402 419 253 788 117 314 629 298 60.1 215 268 7.7 281 120354
AdaptSetNet [17] | Adv | 86.5 360 799 234 233 239 352 148 834 333 756 585 27.6 737 325 354 39 301 281|424
Saleh etal [31] ST | 798 293 778 242 216 69 235 442 805 380 762 527 222 830 323 413 270 193 277 | 425
MinEnt [14] ST | 862 186 803 272 240 234 335 247 833 310 756 546 256 852 300 109 0.1 213 37.1 | 423
DLOW [27] Adv | 87.1 335 80.5 245 132 298 295 266 826 267 818 559 253 780 335 387 0.0 229 345|423
CLAN [32] Adv | 870 27.1 796 273 233 283 355 242 836 274 742 586 280 762 331 367 67 319 314|432
All Structure [28] | Adv | 915 475 825 313 256 330 337 258 827 288 827 624 308 852 277 345 64 252 244|454
CBST-SP[13] ST | 88 562 77 274 224 407 473 409 824 216 603 502 204 838 35 51 152 206 37 | 462
Ours (SISC) ST [ 910 493 799 244 279 379 451 451 813 190 617 639 280 865 239 423 419 33.1 444 | 487
Ours (SISC-PWL) | ST | 89.0 452 782 229 273 374 461 438 829 186 612 604 267 854 359 449 364 372 493 | 49.0
its output as latent space representation. The two convolu- art UDA methods are presented in this section. Our pro-

tion layers comprises of 3 x 3 filters with depth of 512 and C
(number of classes to segment). At the end, the upsampling
layer up-scales the output using bi-linear interpolation.

Similarly, the image classification part discussed in Sec-
tion 3.3 is a category (object/stuff) based image classifica-
tion module augmented with ResNet-38. The image classi-
fication module consist of two convolution layers with fil-
ters [1 x 1,3 x 3] with depth 2048 each. A global average
pooling (GAP) layer is applied to capture the global nature
of the feature map channels. The output of GAP is passed
through two fully connected layers of depth 512 and C re-
spectively. Relu activation function is applied except the
last layer where sigmoid is used.

4.1.3 Implementation and training details

We use MxNet [34] deep learning framework and a single
Core-i5 machine with 32GB RAM and a GTX 1080 GPU
with 8GB of memory to implement the proposed methods
for domain adaptation of semantic segmentation. Our pro-
posed model uses SGD optimizer for training with an initial
learning rate of 1 x 10~%. To generate SISC pseudo-labels,
K = 50 is chosen (e.g. 50 sub-images of a target image
are selected randomly). For SISC pseudo-labels based self-
supervised learning, a batch size of 2 is chosen while the
weakly-supervised setup described in section 3.3 processes
a single image only. To optimize the joint loss function
given in Eq. 7, the value of Ag, is investigated thoroughly
(as shown in Section 4.3) and chosen as 0.025 to limit the
image classification loss to back propagate large gradients.
Ar,, also controls the speed of adaptation with trade-off to
segmentation performance, so the mentioned nominal value
is used for all followed experiments. The iterative process
of MLSL is repeated for 6 rounds where each rounds is
composed of 2 epochs.

4.2, Experimental results

The experimental results of our proposed approaches
compared to baseline ResNet-38 and existing state-of-the-

posed approaches perform superior to other methods for
domain adaptation and produce state-of-the-art results on
two benchmark datasets. We also describe in detail, the be-
haviour of proposed approaches when exploited with differ-
ent settings and different source datasets.

GTA-V to Cityscapes: Table | details the experimen-
tal results of 19 categories when adapted from GTA-V to
Cityscapes. We use standard mIoU as semantic segmenta-
tion performance measure and report results on Cityscapes
validation set. Our proposed approach of self-supervised
learning with SISC pseudo-labels, shows state-of-the-art
performance with ResNet-38 segmentation model. The
SISC approach outperforms the latest approaches for UDA
of semantic segmentation. Compared to MinEnt [ 4] which
tries to minimize the self-entropy using direct entropy mini-
mization, our SISC approach shows 13.1% improvement in
overall mloU. Similarly, compared to the self-training ap-
proach presented in [13], the proposed SISC method out-
performs it with a margin of 5.1% in mIoU.

Our weak-labels guided UDA approach tries to capture
the global image context by category (object/stuff) based
image classification. This model helps improving the over-
all performance, and especially boost the performance for
small and less occurring objects as shown in Table 1. The
consistency and accuracy of pseudo weak-labels for image
classification enable this approach to help the segmentation
model for better performance. With ResNet-38 baseline,
pseudo weak-labels when combined with CBST [13] pro-
vides 2.3% boost in mIoU compared to simple CBST. Simi-
larly, when SISC is augmented with PWL based image clas-
sification, the mloU performance increases by 5.7% from
existing stat-of-the-art CBST-SP [13] as shown in Table 1.
The ensemble of the two proposed approaches for UDA
achieve 49.0 mIoU on Cityscapes validation set, which sets
a new benchmark. The high boost in performance shows
that both the approaches are capable to extract domain in-
dependent representations and produce better segmentation
results comparatively.
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Table 2. Semantic segmentation performance of Cityscapes validation set when adapted from SYNTHIA dataset. We present mloU and
mloU* (13-categories) comparison with existing state-of-the-art methods for Cityscapes validation set.

SYNTHIA — Cityscapes

= o = ©

y s £ 3 8 5 . T % | o | b

Bl 2 2 § § 2 2 2 p 2z £ 5 5 =z F 5|2|E
Methods < [ B /M =3 = = = = > 7 - & O M = -9 E £
ResNet-38 [30] - [326 215 465 481 003 265 148 13.1 708 603 566 3.5 741 204 89 13.1]292]336
Road [21] Adv | 777 300 775 9.6 03 258 103 156 776 798 445 166 678 145 7.0 238 | 36.2 | 41.8
AdaptSetNet [17] | Adv | 81.7 39.1 784 11.1 03 258 68 90 79.1 808 548 21.0 66.8 347 138 299 | 396 | 458
MinEnt [14] ST | 735 292 771 1.7 02 270 7.1 114 767 821 572 213 694 292 129 279 | 38.1 | 442
CLAN [32] Adv | 813 370 801 - - - 161 137 782 815 534 212 730 329 226 30.7 | - | 478
All Structure [28] Adv | 91.7 535 77.1 25 02 27.1 62 76 784 812 558 192 823 303 17.1 343 | 41.5 | 48.7
CBST [13] ST | 53.6 237 750 125 03 364 235 263 848 747 672 175 845 284 152 558 | 425 | 484
Ours (SISC) ST | 737 344 787 137 29 36.6 282 223 86.1 768 653 205 817 314 139 473|444 | 508
Ours (SISC+PWL) | ST | 592 302 685 229 1.0 362 327 283 862 754 68.6 27.7 827 263 243 527|452 | 51.0

For a more fair comparison with other UDA methods,
in Table 3, we show the mloU gain with respect to specific
baselines methods used. Compared to more complex mod-
els with very deep backbones, our approaches produces a
higher gain of +13.6 points to source model surpassing the
existing methods by a minimum margin of 20%. A com-
parison between upper-bound and our results is shown in
supplementary document. Fig. 3 shows some examples
of semantic segmentation before and after domain adapta-
tion. As illustrated in the figure, the segmentation results
improves significantly with SISC and SISC+PWL based ap-
proaches compared to source and CBST-SP methods.

Table 3. Performance (mloU, mloU*) gain comparison between
the GTA-V and SYNTHIA trained source models and the respec-
tive adapted models from GTA-V and SYNTHIA to Cityscapes.

Dataset GTA — Cityscapes \ SYN — Cityscapes
Methods Source UDA  mloU| Source UDA mloU*
only  Algo. gain | only Algo. gain
FCNinthewild [15] | 21.2  27.1 5.9 236 254 1.8
Curriculam DA [35] | 223 289 6.6 284 3482 6.42
AdaptSetNet [17] 36.6 424 58 386 467 8.1
MinEnt [14] 366 423 57 386 442 56
CLAN [32] 36.6 432 6.6 386 478 92
All Structure [28] 36.6 454 88 386 487 10.1
CBST [13] 354 462 108 | 33.6 484 1438
Ours (SISC) 354 487 133 | 336 508 172
Ours (SISC+PWL) 35.4 49 13.6 | 336 510 174

SYNTHIA to Cityscapes: SYNTHIA is a more diverse
dataset with multiple viewpoints and different spatial con-
straints compared to GTA-V and Cityscapes. In Table 2, we
present the unsupervised adaptation results on Cityscapes
validation set when adapted from SYNTHIA. The cate-
gories in SYNTHIA and Cityscapes do not fully overlap,
so we have selected the common 16 classes as done in
[13,15,24,35] for evaluation. We have also reported the per-
formance (mloU*) over the 13 common classes as used in
[13,17,32]. With ResNet-38 as baseline netwrok, our pro-
posed SISC based sef-supervised learning method performs
superior to existing state-of-the-art methods as shown in Ta-
ble 2. Compared to MinEnt [14] which uses similar entropy
minimization technique, our SISC based UDA approach
achieves 14.2% gain in mloU and 13.3% gain in mIoU*.
Similarly, compared to CBST presented in [13], our SISC

based approach gains 4.3% and 4.7% points in mIoU and
mloU* respectively. Our proposed PWL guided UDA ap-
proach combined with SISC based self-supervised learning
provides 6.0% and 5.1% boost in mIoU and mIoU* respec-
tively when compared with CBST. Compared to an ensem-
ble method (adversarial training and self-training) [14], our
composite UDA method achieves 9.8% and 7.1% gain in
mloU and mloU* respectively.

To make a more fair comparison with existing methods,
Table 3 shows the baseline, after adaptation, and gain in
terms of mloU*. It is fair to say, that our proposed methods
outperforms the existing state-of-the-art methods achieving
the gain over baseline with a minimum margin of 16.3%.
In Fig. 4, some examples of semantic segmentation before
and after UDA are shown. As illustrated, the segmentation
results improves significantly with SISC and SISC+PWL
based approaches compared to source and CBST methods.

4.3. Ablation experiments

Relative frequency based pseudo-labels: Besides the
adapted methodology in Section 3.2, we also generated
pixel classification relative frequency based pseudo-labels.
The randomly selected patches like SISC are segmented and
recombined in the large output map. A count is made for
each pixel with respect to assigned category in each patch,
and then relative frequency is calculated. This relative fre-
quency is used as prediction probability and incorporated in
pseudo-labels generation. Due to hard decision, the pseudo-
labels generated were not effective and lead to a decline in
the performance.

Table 4. Influence of Ar,, and 1 on overall performance.
GTA-V — Cityscapes

Xr, 01 005 0025 0001
SISC|PWL 460 481 490 4824

n 00 01 005 0025
SISCHPWL 455 460 490 4733

Patch size selection: Our base models for semantic seg-
mentation in both cases are trained on 500 x 500 random
patches selected from the whole image randomly. Follow-
ing that nominal size, we have chosen 512 x 512 as our
patch size for pseudo-label generation. We also tried with
256 x 256 patch size but on high resolution Cityscapes im-
ages, these small image patches were not contributing. For
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Target Image Gound Truth ResNet-38 [30]

CBST-SP [13]

Ours (SISC)
Figure 3. Segmentation results on Cityscapes validation set when adapted from GTA to Cityscapes.

Ours (SISC+PWL)

Gound Truth
Figure 4. Segmentation results on Cityscapes validation set when adapted from SYNTHIA to Cityscapes.

Target Image ResNet-38 [30]

patch size greater than 512 x 512 there were GPU mem-
ory limitations. Similarly, we selected 25, 50 and 100
patches per image randomly for SISC pseudo-labels gen-
eration. 25 patches were not enough to capture the high
resolution Cityscapes images and 100 patches were taking
the process very slow with negligible gain over 50 patches.
Therefore, for all experiments, we have chosen 50 random
patches per image. Category based image classification
loss weight: Since image classification is added as a sup-
porting module to segmentation network, the loss contribu-
tion by this module should also be limited. We tried mul-
tiple weight factors, and selected Ap,, = 0.025 (Table 4).
Pseudo-weak-label generation: For category based image
classification loss, the PWL are generated from segmenta-
tion pseudo-labels. Since it is difficult to set a minimum
number of pixels limit for a category to be labeled as present
in an image. Therefore, we exploited the category distribu-
tion of source datasets and assigned pseudo weak-labels to
present categories based on source data distribution. For
GTA-V to Cityscapes, we select a category to be labeled
as present in an image if, it has more pixels compared to
the 5% of mean category pixels of the same category in the
source dataset. A detailed comparison along with respective
mloU is shown in Table 4.

5. Conclusions

In this paper, we have proposed, Multi-level self learn-
ing strategy (MLSL) for UDA of semantic segmentation by

CBST-SP [13] Ours (SISC) Ours (SISC+PWL)

generating pseudo-labels at fine-grain pixel-level and im-
age level, helping identify domain invariant features at both
latent and output space. Using a reasonable assumption
that labels of objects and stuff should be same regardless
of their location, we generate Spatially independent but Se-
mantically Consistent Labels. Image level labels, called
pseudo weak-label (PWL) are generated and used as con-
sistency check over SISC pseudo-labels. Pixel-wise object
label distribution in the source domain images is used to
regularize PWL. Binary cross-entropy loss using PWL en-
forces latent space to preserve the information about the ob-
jects, helping domain adapt for small objects. This multi-
level pseudo-label generation for self-supervised learning,
allows the network to learn domain-invariant features at
different hierarchical levels. The rigorous experimentation
demonstrates that the proposed SISC based self-supervised
method alone outperforms the existing state-of-the-art al-
gorithms on benchmark datasets: mloU* improves from
46.2 to 48.7 and 48.4 to 50.8 on GTA-V & SYNTHIA
to Cityscapes respectively. This includes both, ones using
self-supervision or adversarial learning. Augmented with
a PWL based image classification module, our proposed
method further improves the performance, especially in the
small objects. Effectiveness of SISC and PWL is high-
lighted by the substantial improvement of mean IOU over
the base model, which is significantly more than previous
state-of-methods.
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