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Abstract

Temporal action localization is an important step to-

wards video understanding. Most current action localiza-

tion methods depend on untrimmed videos with full tem-

poral annotations of action instances. However, it is ex-

pensive and time-consuming to annotate both action labels

and temporal boundaries of videos. To this end, we propose

a weakly supervised temporal action localization method

that only requires video-level action instances as supervi-

sion during training. We propose a classification module to

generate action labels for each segment in the video, and a

deep metric learning module to learn the similarity between

different action instances. We jointly optimize a balanced

binary cross-entropy loss and a metric loss using a standard

backpropagation algorithm. Extensive experiments demon-

strate the effectiveness of both of these components in tem-

poral localization. We evaluate our algorithm on two chal-

lenging untrimmed video datasets: THUMOS14 and Ac-

tivityNet1.2. Our approach improves the current state-of-

the-art result for THUMOS14 by 6.5% mAP at IoU thresh-

old 0.5, and achieves competitive performance for Activi-

tyNet1.2.

1. Introduction

Video action recognition and action localization are ac-

tive areas of research. There are already impressive results

in the literature for classifying action categories in trimmed

videos [5, 41, 40], and important contributions have been

made in action localization in untrimmed videos [50, 43, 6].

Temporal action localization is a much harder task than ac-

tion recognition due to the lack of properly labelled datasets

for this task and the ambiguity of temporal extents of ac-

tions [29]. Most current temporal action localization meth-

ods are fully supervised, i.e., the temporal boundaries of ac-

tion instances must be known during training. However, it

is very challenging to create large-scale video datasets with

such temporal annotations. On the other hand, it is much

easier to label video datasets with only action instances,

since billions of internet videos already have some kind of

weak labels attached. Hence, it is important to develop al-

gorithms that can localize actions in videos with minimum

supervision, i.e., only using video-level labels or other weak

tags.

In this paper, we propose a novel deep learning ap-

proach to temporally localize actions in videos in a weakly-

supervised manner. Only the video-level action instances

are available during training, and our task is to learn a model

that can both classify and localize action categories given an

untrimmed video. To achieve this goal, we propose a novel

classification module and a metric learning module. Specif-

ically, given an untrimmed video, we first extract equal-

length segments from the video, and obtain segment-level

features by passing them through a feature extraction mod-

ule. We feed these features into a classification module that

measures segment-level class scores. To calculate the clas-

sification score of the whole video, we divide the video into

several equal-length blocks, combine the block-level classi-

fication scores to get the video-level score, and then apply

a balanced binary cross-entropy loss to learn the parame-

ters. To facilitate the learning, we also incorporate a met-

ric learning module. We propose a novel metric function

to make frames containing the same action instance closer

in the metric space, and frames containing different classes

to be farther apart. We jointly optimize the parameters of

both of these modules using the Adam optimizer [21]. An

overview of our model is shown in Fig. 1.

The proposed method exhibits outstanding performance

on the THUMOS14 dataset [18], outperforming the current

state of the art by 6.5% mAP at IoU threshold 0.5, and

showing comparable results even to some fully-supervised

methods. Our method also achieves competitive results on

the ActivityNet1.2 [4] dataset.

2. Related Work

Video Action Analysis. There has been significant

progress in the field of action recognition and detection,

particularly due to the introduction of large-scale datasets

[18, 4, 34, 22, 13, 37] and the development of deep learning

models. For example, two-stream networks [35], 3D convo-

lutional networks (C3D) [39] and recently I3D networks [5]
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Figure 1: Our algorithm extracts features from video segments and feeds them into classification and metric learning modules.

We optimize these jointly to learn the network weights.

have been extensively applied to learn video representations

and have achieved convincing performance. For temporal

action localization, various deep learning based methods in-

clude temporal segment networks [43], structured segment

networks [50], predictive-corrective networks [9], and TAL-

Net [6]. Most of these techniques use temporal annotations

during training, while we aim to use only video-level labels

for action localization.

Deep Metric Learning. The objective of metric learn-

ing is to learn a good distance metric such that the distance

between the same type of data is reduced and the distance

between different types of data is enlarged. Traditional met-

ric learning approaches rely on linear mapping to learn the

distance metric, which may not capture non-linear mani-

folds in complex tasks like face recognition, activity recog-

nition, and image classification. To solve this problem, ker-

nel tricks are usually adopted [47, 24]. However, these

methods cannot explicitly obtain nonlinear mappings, and

also suffer from scalability problems. With the advent of

deep learning, deep neural network-based approaches have

been used to learn non-linear mappings in metric learning.

For example, Hu et al. [16] trained a deep neural network to

learn hierarchical non-linear mappings for face verification.

Bell and Bala [1] learned visual similarity using contrastive

embedding [14]. Schroff et al. [30] used triplet embedding

[45] on faces for face verification and clustering.

Weakly-Supervised Temporal Localization. Weakly

supervised deep learning methods have been widely stud-

ied in object detection [2, 8, 26], semantic segmentation

[15, 20], visual tracking [51], and video summarization

[15]. However, there are only a few weakly supervised

methods in temporal action localization that rely only on

video-level labels during training. It should be noted that

there are different types of weak supervision for the tempo-

ral localization task. For example, some works use movie

scripts or subtitles as weak supervision [3, 10], whereas

others use the temporal order of actions during training

[28, 17]. We do not use any information about temporal

ordering in our model. Our approach only uses a set of ac-

tion classes for each video during training.

Wang et al. [42] proposed a model named Untrimmed-

Nets consisting of a classification module that predicts the

classification scores for each video clip and a selection

module that detects important video segments. The algo-

rithm uses a Softmax function to generate action propos-

als, which is not ideal for distinguishing multiple action

classes. It is also based on a temporal segments network

[43] that considers a fixed number of video segments, which

is not effective for variable-length video datasets. Nguyen

et al. [25] added a sparsity-based loss function and class-

specific action proposals (contrary to class-agnostic propos-

als in UntrimmedNets). However, the sparsity constraint for

attention weights that they propose would hurt localization

performance in videos that contain very few background ac-

tivities.

Shou et al. [32] introduced Outer-Inner-Contrastive Loss

to automatically predict the temporal boundaries of each

action instance. Paul et al. [27] proposed techniques that

combine Multiple Instance Learning Loss with Co-activity

Similarity Loss to learn the network weights. Our proposed

method is similar to this work with novel contributions in

several important areas. In particular, we adopt a block-

based processing strategy to obtain a video-level classifica-

tion score, and propose a novel metric function as a simi-

larity measure between activity portions of the videos. Su

et al. [38] proposed shot-based sampling instead of uniform

sampling and designed a multi-stage temporal pooling net-

work for action localization. Zeng et al. [49] proposed an

iterative training strategy to use not only the most discrimi-

native action instances but also the less discriminative ones.
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Liu et al. [23] recently proposed a multi-branch architecture

to model the completeness of actions, where each branch is

enforced to discover distinctive action parts. They also used

temporal attention similar to [25] to learn the importance

of video segments, showing a minor performance improve-

ment over [27].

3. Proposed Algorithm

In this section, we introduce the detailed pipeline of our

proposed algorithm. We first describe the data processing

and feature extraction modules. We then present the clas-

sification and deep metric learning modules and introduce

loss functions to jointly optimize them 1.

Problem Formulation. We consider an untrimmed

video as a collection of segments, where each segment con-

tains an equal number of frames. Let a video V be rep-

resented as a collection of segments {ci}
n
i=1, where n is

the total segment length, and an associated activity class

set with nc unique activity instances represented as a =
{ak}nc

k=1, where ak ∈ A, the set of all action classes in the

dataset. The training data set contains N videos {Vi}
N
i=1

with their associated labels {ai}
N
i=1. The length and activ-

ity instances in the video can vary significantly, and we only

have video-level labels during the training period. Given a

test video, the model will predict a set of action labels with

corresponding start time, end time and confidence score.

3.1. Feature Extraction

We extract segment-level features {xi}
n
i=1, where xi ∈

R
d is a d-dimensional feature vector, and n is the segment

length of the video. Two-stream networks have become

common for action recognition and detection [5, 11]. Fol-

lowing [25], we use the I3D network [5] pretrained on the

Kinetics dataset [19] to extract features from each video

segment. Both the RGB and optical flow streams are used

for feature extraction, and we fuse them together to get a

single feature vector for each video segment. We use the

TV-L1 algorithm [44] to extract the flow. We do not use

any fine-tuning on this feature extractor network.

3.2. Feature Embedding

Given a feature representation of a video V as {xi}
n
i=1,

we feed the features to a module consisting of a fully con-

nected layer followed by a ReLU and a dropout layer. This

module modifies the original features extracted from the

pre-trained feature extraction module into task-specific em-

bedded features. We keep the dimension of the embed-

ded features the same as the dimension of the extracted

features. The embedded features are denoted by {ui}
n
i=1,

where ui ∈ R
d.

1Code accompanying this paper is available at

https://github.com/asrafulashiq/wsad.git

3.3. Classification Module

Next, we learn a linear mapping Wf ∈ R
C×d and bias

b ∈ R
C followed by a clipping function ϕκ(·) to obtain

class-specific activations si ∈ R
C for each segment, where

C is the total number of class labels, i.e.,

si = ϕκ(Wfxi + b) (1)

where ϕκ(·) is defined by

ϕκ(x) =











κ if x > κ

−κ if x < −κ

x otherwise

The necessity of using a clipping function is discussed in

Sec. 3.4.

To obtain the video-level classification score, we use a

block-based processing strategy. Specifically, since the to-

tal segment length n of a video V can vary, we divide the

video into blocks, where each block is a set of an equal num-

ber of consecutive segments, i.e., V = {Bi}
nB(V)
i=1 , where

nB(V) =
⌊

n
lw

⌋

is the total number of blocks, and lw is the

number of segments in each block. We empirically chose

the value of lw (discussed in Sec. 4.4).

We calculate P (c | V), the probability of the video V

containing particular class c, as

P (c | V) = P
(

c | {Bi}
nB(V)
i=1

)

(2)

= 1−

nB(V)
∏

i=1

(1− P (c | Bi)) (3)

where P (c | Bi) is the probability that the i-th block con-

tains class c. One approach to obtain this probability is to

pick the highest class activation in that block. However, an

activity would likely cover several video segments. Hence,

following [27], we compute the average of the k-max class

activation scores in the block as

P (c | Bi) = σ





1

k
max
l⊂Ii

k
∑

j=1

sclj



 (4)

where Ii contains the segment indices for the i-th block,

σ(·) is the sigmoid activation function, and sclj is the class

activation score for the lj-th segment.

We compute P (c | V) for each class c ∈ {1, 2, . . . , C}.

As a video can contain multiple activities, this is a multi-

label classification problem. Hence, the binary cross-

entropy loss (BCE) is an obvious choice. However, we

found through experiments that the standard BCE loss per-

forms poorly in this case, mainly due to the class-imbalance
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problem. Xie and Tu [46] first introduced a class-balancing

weight to offset the class-imbalance problem in binary cross

entropy. Similar to them, we introduce a balanced bi-

nary cross-entropy loss, which produces better results in

practice. We calculate the balanced binary cross-entropy

(BBCE) loss as

LBBCE =

∑C

c=1 yc logP (c | V)
∑C

c=1 yc
(5)

+

∑C

c=1(1− yc) log(1− P (c | V))
∑C

c=1(1− yc)
(6)

Here, yc is set to 1 if the video contains class c, otherwise

it is set to 0. The effectiveness of LBBCE is demonstrated in

Sec. 4.

3.4. Metric Learning Module

Here, we first give a brief review of distance metric learn-

ing, and how it is incorporated in our algorithm.

Distance Metric Learning. The goal of metric learning

is to learn a feature embedding to measure the similarity be-

tween input pairs. Let X = {xi}
n
i=1 be input features and

Y = {yi}
n
i=1 be corresponding labels. We want to learn

a distance function D(xi,xj) = f(θ;xi,xj), where f is

the metric function and θ is a learnable parameter. Vari-

ous loss functions have been proposed to learn this metric.

Contrastive loss [7, 14] aims to minimize the distance be-

tween similar pairs and penalize the negative pairs that have

distance less than margin α:

Lcontrastive(xi,xj) = 1(yi = yj)D
2(xi,xj) + (7)

1(yi 6= yj)[α−D2(xi,xj)]+ (8)

where [·]+ indicates the hinge function max(0, ·).
On the other hand, triplet loss [45] aims to make the

distance of a negative pair larger than the distance of a

corresponding positive pair by a certain margin α. Let

{xa
i ,x

p
i ,x

n
i } be a triplet pair such that xa

i and x
p
i have the

same label and x
a
i and x

n
i have different labels. The triplet

loss is defined as:

Ltriplet(x
a
i ,x

p
i ,x

n
i ) = [D2(xa

i ,x
p
i )−D2(xa

i ,x
n
i ) + α]+

(9)

Motivation. A set of videos that have similar activity

instances should have similar feature representations in the

portions of the videos where that activity occurs. On the

other hand, portions of videos that have different activity

instances should have different feature representations. We

incorporate the metric learning module to apply this char-

acteristic in our model.

Our Approach. We use embedded features and class-

activation scores to calculate the aggregated feature for

a particular class. Let Bc = {Vk}
N
k=1 be a batch of

videos containing a common class c. After feeding the

video segments to our model, we extract embedded features

{uk,i}
nk

i=1 and class activation scores {sk,i}
nk

i=1 for the k-th

video, where nk is the length of the video. Following [27],

we calculate the aggregated feature vector for class c from

video Vk as follows:

z
c
k =

nk
∑

i=1

πc
k,iuk,i and z

¬c
k =

nk
∑

i=1

1− πc
k,i

nk − 1
uk,i

where πc
k,i =

exp(sck,i)∑nk
i′=1

exp(sc
k,i′

)
. Here, sck,i is the class acti-

vation of the i-th segment for class c in video Vk. Hence,

z
c
k is aggregated from feature vectors that have high proba-

bility of containing class c, and z
¬c
k is aggregated from fea-

ture vectors that have low probability of containing class c.

We normalize these aggregated features to a d-dimensional

hypersphere to calculate z̃
c
k and z̃

¬c
k , i.e. ||z̃ck||2 = 1 and

||z̃¬c
k ||2 = 1. Here, we can see the motivation behind ap-

plying a clipping function in Eqn. 1. If the clipping function

is not applied, there might be a segment ih with a very high

class score sck,ih , and the value of πc
k,ih

, which is the output

of a Softmax function, will be close to 1 for that segment

and close to 0 for other segments. Hence, the aggregated

features will be calculated mostly from the segment with

maximum class score, even though there are other segments

that can have high class score for a particular class. There-

fore, we apply a clipping function to limit the class score to

have a certain maximum and minimum value.

Next, the average distances for positive and negative

pairs from a batch of videos with common class c are cal-

culated as

d+,c =
1

nk(nk − 1)

∑

1≤j,j′≤nk

j 6=j′

D2
c (z̃

c
j , z̃

c
j′),

d−,c =
1

nk(nk − 1)

∑

1≤j,j′≤nk

j 6=j′

D2
c (z̃

c
j , z̃

¬c
j′ )

Instead of using cosine distance as the distance func-

tion, our intuition is that Dc should be different for different

classes, and hence we define Dc(u,v) = ||Wc
f (u − v)||2,

where W
c
f ∈ R

1×d is the c-th row of the weight matrix of

the final fully-connected layer of our model. To clarify why

this is a proper distance function in this case, we can write

Dc(·, ·) as:

Dc(u,v) =
√

(u− v)⊤(Wc
f )

⊤

Wc
f (u− v) (10)

=
√

(u− v)⊤Mc(u− v) (11)

where M
c = (Wc

f )
⊤

W
c
f is a symmetric positive semi-

definite matrix. Hence, Eqn. 10 is actually a Mahalanobis
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type distance function, where the metric M
c is calculated

from the weights of a neural network. Additionally, the

class score for class c is calculated from the weight Wc
f ;

hence M
c is a metric that can be used in the distance mea-

sure only for class c. We show in the ablation studies that

our proposed distance function is a better metric in this set-

ting.

Finally, we calculate either the triplet loss Lc
triplet =

[d+,c − d−,c + α]+ or contrastive loss Lc
contrastive = d+,c +

[α − d−,c]+ as the metric loss function. We found through

experiments that triplet loss performs slightly better than

contrastive loss. Hence, we use triplet loss unless stated

otherwise.

3.5. Temporal Localization

Given an input test video, we obtain the segment level

class score yci = σ(sci ) where σ(·) is the sigmoid function,

and calculate the video-level class score ȳc for each class c

following Eqn. 2. For temporal localization, we detect ac-

tion instances for each class in a video separately. Given

class scores yci for the i-th segment and class c, we first

discard all segments that have class score less than thresh-

old 0.5. The one-dimensional connected components of

the remaining segments denote the action instances of the

video. Specifically, each action instance is represented by

(is, ie, c, q) where is is the start index, ie is the end index,

c is the action class, and q is the class score calculated as

q = max({yci }
ie
i=is

) + γȳc, where γ is set to 0.7.

4. Experiments

In this section, we first describe the benchmark datasets

and evaluation setup. Then, we discuss implementation de-

tails and comparisons of our results with state-of-the-art

methods. Finally, we analyze different components in our

algorithm.

4.1. Datasets and Evaluation

We evaluate our method on two popular action localiza-

tion datasets, namely THUMOS14 [18] and ActivityNet1.2

[4], both of which contain untrimmed videos (i.e., there are

many frames in the videos that do not contain any action).

The THUMOS14 dataset has 101 classes for action

recognition and 20 classes for temporal localization. As in

the literature [25, 32, 27], we use 200 videos in the valida-

tion set for training and 213 videos in the testing set for eval-

uation. Though this dataset is smaller than ActivityNet1.2,

it is challenging since some videos are relatively long, and

it has on average around 15.5 activity segments per video.

The length of activity also varies significantly, ranging from

less than a second to minutes.

The ActivityNet1.2 dataset has 100 activity classes con-

sisting of 4,819 videos for training, 2,383 videos for vali-

dation, and 2,480 videos for testing (whose labels are with-

held). Following [42], we train our model on the training

set and test on the validation set.

We use the standard evaluation metric based on mean

Average Precision (mAP) at different intersection over

union (IoU) thresholds for temporal localization. Specifi-

cally, given the testing videos, our model outputs a ranked

list of localization predictions, each of which consists of an

activity category, start time, end time, and confidence score

for that activity. If a prediction has correct activity class

and significant overlap with a ground truth segment (based

on the IoU threshold), then the prediction is considered to

be correct; otherwise, it is regarded as a false positive.

4.2. Implementation Details

We first sample a maximum of 300 segments of a video,

where each segment contains 16 frames with no overlap.

If the video contains more than 300 segments, we sample

300 segments from the video randomly. Following [25],

we use a two-stream I3D network to extract features from

each stream (RGB and flow), and obtain 2048-dimensional

feature vectors by concatenating both streams. The total

loss function in our model is:

L = LBBCE + λLmetric (12)

We set λ = 1. We use α = 3 in the metric loss func-

tion, block size lw = 60, and k = 10 (Section 3.3). For

the videos that have total segment length less than 60, we

set lw to be equal to the total segment length and k to be

min(10, lw). We use batch size 20 with 4 different activity

instances per batch such that at least 5 videos have the same

activity. The network is trained using the Adam optimizer

[21] with learning rate 10−4.

4.3. Comparisons with State­of­the­Art

We compare our result with state-of-the-art fully-

supervised and weakly-supervised action localization meth-

ods on the THUMOS14 dataset in Table 1. Our method

outperforms other approaches by a significant margin. In

particular, it achieves 6.5% more mAP than the current best

result at IoU threshold 0.5, and consistently performs better

at other thresholds as well. Our approach even outperforms

several fully-supervised methods, though we are not using

any temporal information during training.

Table 2 shows our result on the ActivityNet1.2 validation

set. Here, we see the performance is comparable with the

state-of-the-art. We achieve state-of-the-art performance on

IoU 0.1 and 0.3, and the results on other IoUs are very

close to the current best results. Due to the significant dif-

ference between these two datasets, our algorithm does not

produce as impressive results for ActivityNet1.2 as it does

for THUMOS14 at all IoU thresholds. However, the THU-

MOS14 dataset has a large number of activity instances per
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Table 1: Comparison of our algorithm with other state-of-

the-art methods on the THUMOS14 dataset for temporal

action localization.

Supervision Method
IoU

0.1 0.3 0.5 0.7

Full

S-CNN [33] 47.7 36.3 19.0 5.3

CDC [31] - 40.1 23.3 7.9

R-C3D [48] 54.5 44.8 28.9 -

CBR-TS [12] 60.1 50.1 31.0 9.9

SSN [50] 60.3 50.6 29.1 -

Weak

Hide-and-Seek [36] 36.4 19.5 6.8 -

UntrimmedNets [42] 44.4 28.2 13.7 -

STPN [25] 52.0 35.5 16.9 4.3

AutoLoc [32] - 35.8 21.2 5.8

W-TALC [27] 55.2 40.1 22.8 7.6

Su et al. [38] 44.8 29.1 14.0 -

Liu et al. [23] 57.4 41.2 23.1 7.0

Zeng et al. [49] 57.6 38.9 20.5 -

Ours 62.3 46.8 29.6 9.7

video (around 15 instances per video) compared to Activi-

tyNet1.2 which has only 1.5 instances per video. Moreover,

THUMOS14 contains around 71% background activity per

video (compared to 36% in ActivityNet1.2). Due to the high

concentration of activity instances and large background ac-

tivity, we think THUMOS14 is a better dataset for evaluat-

ing the performance of weakly supervised action detection.

Therefore, we will concentrate mostly on THUMOS14 for

evaluating our algorithm.

Table 2: Comparison of our algorithm with other state-

of-the-art methods on the ActivityNet1.2 validation set for

temporal action localization.

Supervision Method
IoU

0.1 0.3 0.5 0.7

Full SSN [50] - - 41.3 30.4

Weak

UntrimmedNets [42] - - 7.4 3.9

AutoLoc [32] - - 27.3 17.5

W-TALC [27] 53.9 45.5 37.0 14.6

Liu et al. [23] - - 36.8 -

Ours 60.5 48.4 35.2 16.3

4.4. Ablation Study

In this section, we present ablation studies of several

components of our algorithm. We use different values of

hyperparameters that give the best result for each architec-

tural change. We perform all the studies in this section using

the THUMOS14 [18] dataset.

Choice of classification loss function. As discussed in

Sec. 3.3, we use the balanced binary cross-entropy (BBCE)

loss instead of binary cross-entropy (BCE) and softmax

loss. Figure 2 presents the effectiveness of BBCE loss over

other choices. The same block-based processing strategy

for the classification module is also included in the experi-

ment. Our intuition is that the BBCE loss gives equal im-

portance to both foreground activities and background ac-

tivities, so it can solve the class imbalance problem in a

video more accurately.

0.1 0.3 0.5 0.7
IoU threshold

10

20

30

40

50

60

m
AP

BCE + Triplet
Softmax + Triplet
BBCE + Triplet

Figure 2: The mAP performance at different IoU thresholds

on the THUMOS14 dataset for different classification loss

functions. For the same metric loss function, BBCE per-

forms better than BCE and Softmax loss. Here the Softmax

loss is calculated according to the multiple-instance learn-

ing loss in [27].

Effect of metric learning module. To clarify, the goal

of using a distance function here is to introduce an extra

supervising target, which is especially useful in the weakly-

supervised setting. In Table 3, we show the performance of

our model without any metric loss, with contrastive met-

ric loss, and with triplet loss, respectively. We see sig-

nificant increases in the overall performance when metric

loss is applied. In particular, the average mAP increases

by 13.17% when the contrastive metric loss is applied and

13.32% when the triplet loss is applied.

Table 3: Experiments to show the effect of metric function

on the THUMOS14 testing set for different IoU thresholds.

Here, ‘Avg’ denotes the average mAP over IoU thresholds

0.1, 0.3, 0.5 and 0.7.

Method
IoU

0.1 0.3 0.5 0.7 Avg

Ours, LBBCE 48.7 29.3 14.0 3.1 23.78

Ours, LBBCE + LContrastive 61.7 46.6 28.4 9.3 36.95

Ours, LBBCE + LTriplet 62.3 46.8 29.6 9.7 37.10

To validate the effectiveness of our proposed metric over

other metric functions, we perform experiments by replac-

ing our distance function with cosine distance, Euclidean

distance, and a custom learnable distance function. For the

custom distance function, we propose a learnable parameter

M ∈ R
C×d×d, which is updated through back-propagation,

where C is the total number of classes, and set the metric

M
c = M(c, :, :) in Eq. 11. Recall that when M

c = Id,

where Id is the d-dimensional identity matrix, the metric

function becomes the Euclidean distance function. In Fig. 3,

we present the results for different distance functions. From

552



the figure, we see that the performances of cosine distance

and Euclidean distance are quite similar, and the custom dis-

tance performs better than both of them since it has learn-

able parameters. However, our distance metric consistently

performs the best at all IoU thresholds. In our algorithm,

we are using a Mahalanobis type distance function, and the

metric in the distance function comes from the weights of

the classification module. Although the custom metric has

the capability, at least in theory, to learn the same metric as

our proposed distance function, the direct coupling between

the classification module and the metric learning module

creates an extra boost in our algorithm that improves the

performance.

0.1 0.3 0.5 0.7
IoU threshold

0

10

20

30

40

50

60

m
AP

Cosine
Euclidean
Custom
Ours

Figure 3: Performance comparison on the same dataset for

different distance functions. Our metric performs better

than the cosine distance, Euclidean distance, and a custom

learnable distance.

Effect of block-based processing. We adopt a block-

based processing strategy in the classification module to

compute the classification score. In Table 4, we show

the performance without block-based processing, i.e., when

there is only one block for the whole video. From the ex-

periment, we infer that block-based processing can handle

variable length video more effectively. We still achieve su-

perior performance compared to the current state-of-the-art

without any block-based processing, mostly due to the met-

ric learning module.

Table 4: The mAP performance at different IoU thresholds

on the THUMOS14 dataset without any block-based pro-

cessing in the classification module.

IoU 0.1 0.3 0.5 0.7

mAP 59.0 43.2 25.5 7.9

Effect of block size and k value. The block size lw
and value of k for k-max class activation are important pa-

rameters in our model (see Sec. 3.3). The value of k de-

termines how many segments should be considered in each

block to calculate the class score. From Fig. 4a, we see that

at k = 10 for block size 60, we get the highest average mAP.

As k increases or decreases, the performance degrades. The

reason is that at lower k, noisy segments can corrupt the

classification score, and at higher k, the model cannot de-

tect very short-range action instances properly. Fig. 4b il-

lustrates the effect of block size lw on the final performance.

Here, we again see that there is a trade-off for the value of

lw, and we get the best performance at around lw = 60.
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Figure 4: (a) The effect of k for a fixed block size 60 on

average mAP. (b) Variations of average mAP for different

values of block size (here, k is 6% of the block size). The

average mAP is calculated by averaging the mAPs for IoU

thresholds 0.1, 0.3, 0.5, and 0.7.

Ablation on clipping threshold. Through experiments,

we found that applying a clipping function ϕκ(·) increases

the performance. In Table 5, we show the mAP performance

for different values of clipping thresholds κ, where ‘w/o

clip’ denotes the model where no clipping function ϕκ(·)
is applied (or the threshold κ is set to infinity). In particular,

we obtain 2.5% mAP improvement at IoU threshold 0.5 for

κ = 4 over no clipping.

Table 5: Experiments on clipping value κ

Clipping value κ
IoU

0.1 0.3 0.5 0.7

w/o clip 60.3 45.0 27.1 9.2

2 60.5 45.4 26.8 9.3

3 61.8 46.2 28.7 9.4

4 62.3 46.8 29.6 9.7

5 61.1 46.3 28.0 9.4

10 62.1 46.1 27.6 8.7

Qualitative results. Figure 5 represents qualitative re-

sults on some videos from THUMOS14. In Fig. 5a, there

are many occurrences of the Hammer Throw activity, and

due to the variation in background scene in the same video,

it is quite challenging to localize all the actions. We see

that our method still performs quite well in this scenario.

In Fig. 5b, the video contains several instances of the Long

Jump activity. Our method can localize most of them effec-

tively. Our method also localizes most activities in Fig. 5c

fairly well. Fig. 5d shows an example where our algorithm

performs poorly. In Fig. 5d, there are several cases where

the person swings the golf club or prepares to swing, but

does not hit the ball. It is very challenging to differentiate
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(a) Hammer Throw
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Ground-truths

Detections

Score

(c) Cliff Diving
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Figure 5: Qualitative results on THUMOS14. The horizontal axis denotes time. On the vertical axis, we sequentially plot the

ground truth detection, detection score after post-processing, and class activation score for a particular activity. (d) represents

a failure case for our method. In (d), there are several false alarms where the person actually swings the golf club, but does

not hit the ball.

actual Golf Swing and fake Golf Swing without any ground

truth localization information. Despite several false alarms,

our model still detects the relevant time-stamps in the video.

5. Conclusions and Future Work

We presented a weakly-supervised temporal action lo-

calization algorithm that predicts action boundaries in a

video without any temporal annotation during training. Our

approach achieves state-of-the-art results on THUMOS14,

and competitive performance on ActivityNet1.2. For action

boundary prediction, we currently rely on thresholding in

the post-processing step. In the future, we would like to

extend our work to incorporate the post-processing step di-

rectly into the end-to-end model.
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