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Abstract

We present a simple yet effective prediction module for

a one-stage detector. The main process is conducted in a

coarse-to-fine manner. First, the module roughly adjusts

the default boxes to well capture the extent of target objects

in an image. Second, given the adjusted boxes, the module

aligns the receptive field of the convolution filters accord-

ingly, not requiring any embedding layers. Both steps build

a propose-and-attend mechanism, mimicking two-stage de-

tectors in a highly efficient manner. To verify its effective-

ness, we apply the proposed module to a basic one-stage

detector SSD. We empirically show that our module signif-

icantly lifts the detection accuracy with marginal parame-

ter overhead. Our final model achieves an accuracy com-

parable to that of state-of-the-art detectors while using a

fraction of their model parameter and computational over-

heads. Moreover, we found that the proposed module has

two strong applications. 1) The module can be successfully

integrated into a lightweight backbone, further pushing the

efficiency of the one-stage detector. 2) The module also

allows train-from-scratch without relying on any sophisti-

cated base networks as previous methods do.

1. Introduction

Object detection has achieved significant advances with

the introduction of convolutional neural networks (CNN).

The recent detection frameworks can be divided into two

categories: (i) two-stage detectors [7, 24] and (ii) one-stage

detectors [19, 23, 16].

In two-stage detectors, the first stage proposes a sparse

set of candidate object regions. After a feature pool-

ing operation in the second stage, the proposed candi-

dates are further classified and regressed. Two-stage de-

tectors [7, 24, 3, 9] have achieved top performance on sev-

eral challenging benchmarks, such as PASCAL VOC [5] or

MS COCO [17]. On the other hand, one-stage detectors di-

rectly classify and regress from the initial predefined default

boxes. Recent one-stage detectors [19, 23] have achieved

promising results with faster speed and lower memory-

footprint. However, the accuracy of the one-stage detectors

usually lags behind that of two-stage detectors [12].

We argue that this performance gap can be mainly at-

tributed to an architectural limitation of the one-stage de-

tectors, i.e., the lack of the propose-and-attend mechanism

that is included in two-stage detectors. Due to the lack of

this mechanism, one-stage detectors struggle with two main

issues: 1) a heuristic box matching strategy, and 2) a mis-

match between the receptive field of the prediction module

and object-features.

During training, positive default boxes are selected only

when their intersection over union (IoU) with their ground-

truth box is above a certain threshold (e.g., 0.5). Thus,

carefully setting the initial sizes and locations of the de-

fault boxes is crucial for the detection performance. Oth-

erwise, an inferior initial default box configuration leads

to few or imbalanced training samples. In two-stage ap-

proaches [24, 3, 9], the issue is addressed by the region pro-

posal step [24] (i.e., propose-mechanism). However, one-

stage detectors cannot handle this issue. Therefore, most

approaches [19, 23, 16] use a large number of initial de-

fault boxes with varying scales and aspect ratios, which not

only requires exhaustive parameter and computation over-

heads but also is heuristic. For this, we suggest a propose-

mechanism for one-stage detectors; it adjusts the initial

default boxes to fit well with target objects in an adap-

tive manner. The process effectively imitates the region

proposal step [24] of two-stage detectors without stage-

discrimination, ensuring high efficiency.

In addition to the adjustment of the default boxes, there

is another issue of mismatch between the receptive field of

the prediction module and the object-features proposed by

the adjusted default boxes. The two-stage approaches han-

dle the misalignment issue through a feature pooling oper-

ation (e.g., RoI pooling [7]), by which the prediction mod-

ule can accurately attend to the object-features (i.e., attend-

mechanism). However, one-stage detectors have no such

operation due to the fixed receptive field of the prediction

module regardless of the adjustment of the default boxes.

To address this issue, we suggest an attend-mechanism for

one-stage detectors; it modulates the receptive field of the
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prediction module according to the adjusted default boxes

to accurately capture object-features.

By putting all together, we propose a novel prediction

module, called propose-and-attend (P&A) prediction mod-

ule, for one-stage detectors. To demonstrate its effective-

ness, we apply the module to a basic SSD framework [19]

with a feature pyramid network backbone [15], leading to

our final detector called PASSD. The PASSD achieves a

propose-and-attend mechanism in the two-stage detector

in an efficient manner. We empirically validate that our

approach is a simple yet effective solution to significantly

boost the detection accuracy of one-stage detectors with

marginal parameter overhead (i.e., +5.5 mAP with +0.05M

params). We also show that our prediction module can be

successfully applied to a lightweight backbone to further

push the efficiency of the one-stage detectors and succeed

in training from scratch.

2. Related Work

Object Detection. Sliding-window approaches, in which

a classifier is applied to a dense image grid, have domi-

nated the pre-deep-learning era. However, since the arrival

of deep learning, the conventional approaches have been re-

placed by convolutional neural network (CNN) based de-

tectors. In particular, they can be divided into two main

streams: two-stage and one-stage.

Two-Stage Detectors. Two-stage detectors [24, 3] are com-

posed of two parts. The first part generates a sparse set of

region proposals, and the second part further classifies and

regresses the proposals. These two-stage detectors have oc-

cupied top entries of challenging benchmarks [3, 15, 9].

One-Stage Detectors. OverFeat [26] is one of the earli-

est one-stage detectors based on deep learning. Afterward,

YOLO [22] and SSD [19] were proposed with promising

accuracy and real-time speed. RetinaNet [16] further im-

proves the accuracy by modifying the standard loss func-

tion, addressing the extreme class imbalance problem dur-

ing training. However, we argue that they all suffer from the

issues caused by the lack of the propose-and-attend mech-

anism, as mentioned in Sec.1. Recently, the RefineDet

framework [33] suggests exploiting the default box refine-

ment module to mimic the propose mechanism of the two-

stage detectors. However, the RefineDet framework does

not consider the way to provide diverse training samples

during training phase, and it further misses the attend mech-

anism in its design; however, both are crucial for achieving

high detection accuracy, as will be shown.

Receptive Field. A previous study on the receptive

field [20] shows that the size of the effective receptive field

is much smaller than the theoretical one (i.e., resembling

a 2D Gaussian shape). This implies that the mismatch be-

tween the receptive field of the prediction module and real

object-features can lead to severe performance degradation.

While two-stage detectors mitigate the problem via feature

pooling operation [7], one-stage detectors are prone to miss

exact object-features. In this work, we resolve the issue

with the efficient and effective attend-mechanism that en-

ables the accurate extraction of object-features in the pre-

diction module of one-stage detectors.

3. Method

PASSD is a one-stage detection framework composed of

an FPN [15] backbone network and the proposed propose-

and-attend (P&A) prediction module. The overall pipeline

is shown in Figure. 1. The backbone network generates

multi-scale convolutional feature maps and is an off-the-

shelf CNN. The P&A prediction module produces final de-

tection results based on the output of the backbone network.

The final model features a simple yet effective design. We

describe the details of the model in the following.

4. Backbone Network

To improve the scale-invariance of the model, we adopt

the feature pyramid network (FPN) [15, 30] as our backbone

network. We apply the FPN on top of three base networks,

VGG-16 [29], ResNet-101 [10], and MobileNet [11]. In or-

der to capture large objects, we add two extra convolution

blocks (i.e., conv8; stride=2, conv9; stride=2) to the end of

the truncated VGG-16 [29], one extra bottleneck residual

block (i.e., res6; stride=2, channel=512) to the end of the

truncated ResNet-101 [10], and one extra depthwise convo-

lution (i.e., stride=2, channel=512) to the end of the trun-

cated MobileNet [11], respectively. For the VGG-16 base

network and its extra layers, we follow same configuration

in SSD [19]. We also use the same L2 normalization tech-

nique to scale the feature norm of the VGG-16 following

SSD [19]. To build the FPN, we use four 1 feature maps

with the stride sizes of {8, 16, 32, 64} pixels from the base

networks and their extra layers. Each feature map is se-

lected right after the last layer that holds the corresponding

stride size. We follow Lin et al. [15] for the details of the

pyramid with a few minor modifications2. As in [15], we

use 256 channels for all pyramid levels.

5. Default Boxes and Matching

For each feature map from the backbone, we assign one

default scale for the default boxes (i.e., 4 times the stride

size of the corresponding feature map). For scale-variation

of the objects, we associate each feature map cell with the

1For a model with an input size of 768, we use an additional feature

map with a stride size of {128} pixels.
2We build a top-down pathway from the top extra layer added to the

base networks, not from the top layer of base networks, for simplicity while

maintaining accuracy.
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Figure 1: Overall architecture of PASSD. The model uses a feature pyramid network as a backbone network to generate

a multi-scale feature pyramid. We then apply the propose-and-attend (P&A) prediction module to each level of feature

pyramid to yield the final detections. The P&A module adjusts the initial default boxes to roughly capture the extent of the

target objects and modulates the sampling points of convolution filters accordingly to extract the accurate object-features.

The whole pipeline is achieved in an end-to-end manner.

default boxes with three scales {20, 21/3, 22/3}3 of the de-

fault scale, and their aspect ratios are set to {1:1}. In to-

tal, we assign A=3 default boxes for each feature map cell.

Each default box is responsible for detecting the object in

it by predicting a length C vector for multi-class classifi-

cation, where C is the number of object classes, including

the background class, and four offsets for box regression,

where offsets are encoded following the standard box pa-

rameterization [8]. During training, we assign the default

box as positive if it has a Jaccard overlap score higher than

0.5 with the ground-truth box.

5.1. Propose­and­Attend Mechanism

5.1.1 Propose-mechanism

For the one-stage detectors, the initial configuration of the

default boxes is crucial for the performance since they

mostly rely on overlap-based training sample mining. How-

ever, the initial configuration is typically fixed [19, 6, 16];

thus, most one-stage detectors suffer from enumerating a

considerable number of default boxes over the image space.

This results in consuming exhaustive parameters and com-

putations. On the other hand, two-stage detectors employ a

region proposal step [24], which provides the model more

abundant training samples by dynamically offsetting the

3For the MS COCO benchmark, we use {2−1/3, 20, 21/3}.

default boxes. However, its internal dependency on the

proposal-wise computation significantly slows down the de-

tection speed.

To overcome this issue, we design a propose-mechanism

that can function as the region proposal step [24] of two-

stage detectors without any proposal-wise computation

(e.g., non-maximum suppression followed by top-k sort-

ing). Specifically, the main process adjusts the location

and size of the initial default boxes to fit well with the

target objects. To do this, we predict a binary objectness

score that indicates the existence of a foreground object and

four relative box offsets between the initial default box and

the ground-truth box following standard box parameteriza-

tion [8] as follows:

δx = (gx − bx)/bw, δy = (gy − by)/bh

δw = log (gw/bw), δh = log (gh/bh).
(1)

Here, the default box is represented with its location (i.e.,

center) and size as b=(bx, by, bw, bh), and the target ground-

truth box as g=(gx, gy, gw, gh). The propose-mechanism

consists of one 3×3 convolution layer with 2A filters for bi-

nary objectness classification and the other one 3×3 convo-

lution layer with 4A filters for box offsets regression (A=3

in this work). The parameters for the propose-mechanism

are shared across all the pyramid levels.

Moreover, we regularize the propose-mechanism by
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clipping the box offset regression as follows:

δ′x = tanh (δx) ·
cx
2bw

, δ′y = tanh (δy) ·
cy
2bh

(2)

Here, cx and cy are the stride sizes of each feature map

cell. We observe that clipping operation induces discrimina-

tive feature learning during training. For example, without

clipping, the positive training samples tend to focus on ob-

jects as a whole with high overlap between boxes, whereas

clipping helps diversify the positive training samples to con-

tain different parts of the objects. The impact of this opera-

tion is similar to the application of non-maximum suppres-

sion in the region proposal step [24] of two-stage detectors.

We empirically confirm that this is important for improving

the performance (refer to Table 1).

5.1.2 Attend-mechanism

After the propose-mechanism, the prediction module also

necessitates attention on the adjusted default boxes (see Fig-

ure. 1). In other words, the receptive field of the predic-

tion module should be appropriately coordinated with the

modified boxes to pick up object-features accurately. In

two-stage detectors, a feature pooling operation (e.g., RoI

pooling) is adopted to deal with this problem. However,

the standard convolutional prediction module used in most

one-stage detectors [19, 16, 33] lacks this crucial attending

operation in their design. Thus, valuable information for ac-

curate classification and bounding box regression is missed.

To resolve the problem, we propose an efficient attend-

mechanism. The main idea is to transform the sampling

points of the convolution filter according to the modified

default box. Before describing the details of the method,

we first review the operation of the standard convolutional

prediction module. For simplicity, we only describe the op-

eration in 2D space without consideration of the channel

axis, while extension to 3D is straightforward.

The classification or box regression for the i-th (i ∈
{1, . . . , A}) default box at the feature map location of po

is computed by the weighted sum of the convolution filter

(w) and the input features (x) on the sampling locations de-

fined by sampling grid (R) and po, where |R| = k2(K)
and k denotes the filter size of k×k convolution. An exam-

ple case with a 3×3 convolution filter and dilation of 1 is

shown below, where ps enumerates the elements in R:

R = {(−1,−1), (−1, 0), . . . , (1, 0), (1, 1)}

yi(po) =
∑

ps∈R

w(ps) · x(po + ps) (3)

We can clearly observe that the sampling locations of

the convolution filter are fixed over the entire input feature

map by the sampling grid (R). This works fine under fixed

initial default boxes. However, with dynamically adjusted

default boxes, it becomes problematic. It misses the accu-

rate object-features proposed by the adjusted default boxes,

which are valuable for accurate classification and box re-

gression. Moreover, it cannot explicitly take account of the

adjusted default box in the final box regression. In other

words, the box regressor is not aware of the target box it has

to regress.

To address this problem, we instead augment the fixed

grid sampling locations of the convolution filter with offsets

that cover the adjusted default box in an adaptive manner.

Specifically, the offsets (Oi
o) for the i-th (i ∈ {1, . . . , A})

adjusted default box at the feature map location of po are

obtained as:

Oi
o = [R⊙ (b̂ih/k, b̂

i
w/k)]⊕ (∆yi,∆xi)−R

∆yi = bih · δiy, ∆xi = biw · δix (4)

Here, (b̂ih, b̂
i
w) and (∆yi,∆xi) denote the size and cen-

ter displacement of the adjusted default box, which are ob-

tained by decoding the box parameterization (Eqn. (1)) and

from Eqn. (4), respectively. Here, ⊙ and ⊕ are element-

wise multiplication and summation, respectively.

The given offsets (Oi
o) allow the convolution filter to ac-

curately capture the object-features in the adjusted default

box (refer to Figure. 1 for visual description where the off-

sets are denoted as ’Conv offset’):

yi(po) =
∑

ps∈R,∆ps∈Oi
o

w(ps) · x(po + ps +∆ps) (5)

Since standard convolution does not provide fractional

sampling points, we implement offset convolution follow-

ing Dai et al. [4]. Unlike [4], we enable multiple offsets

for the output prediction to accommodate multiple default

boxes at each feature map cell.

The attend-mechanism consists of one 3×3 offset con-

volution layer with CA filters for multi-class classification

including background (i.e., C is 21 or 81 for PASCAL

VOC [5] and MS COCO [17]) and the the other one 3×3

offset convolution layer with 4A filters for the final box re-

gression. The final box regression predicts the relative off-

sets between the adjusted default boxes and ground-truth

boxes.

By putting all together, we build a novel prediction

module for one-stage detectors, called propose-and-attend

(P&A) prediction module. The whole pipeline of the mod-

ule is presented in Figure. 1. The P&A prediction module

significantly boosts one-stage detectors in efficient manner

with marginal parameter overheads to the backbone net-

work.
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6. Training and Inference

6.1. Training

Data Augmentation. We follow several data augmentation

strategies from SSD [19]. In brief, we use random pho-

tometric distortion, image flipping, and both zoom-in and

zoom-out operations.

Hard Negative Mining. After the default box matching

step, most default boxes are assigned as negatives. To mit-

igate class imbalance issue, we use hard negative mining

following SSD [19]. We select hard negative samples based

on the loss value and constrain the ratio between positive

and negative default boxes to be at most 1:3. We adopt this

strategy for training both propose- and attend-mechanisms.

Loss Function. We define the total loss function as a sum

of the two losses from the propose- and attend-mechanisms,

respectively. Each loss term is formulated as follows:

L = 1

Npos
(
∑

i Lcls(pi, c
∗
i ) +

∑
i[x

∗
i ≥ 1]Lreg(ti, g

∗
i ))

Here, i is the index of the default box in a mini-batch; c∗i is

the ground truth class label of the default box i; g∗i are the

ground truth default box offsets; pi and ti are the predicted

class probability and box offsets of the default box i in each

process. Npos is the number of positive samples within the

process in a mini-batch. If Npos=0, we set the loss of the

process to 0. The classification loss Lcls is cross-entropy

loss, and we use Smooth-L1 loss [7] as the regression loss

Lreg . The Iverson bracket [x∗
i ≥ 1] outputs 1 when its con-

dition is fulfilled, i.e., only the positive samples are included

in the regression loss.

Optimization. For the initialization, we take the base

networks (i.e., VGG-16, ResNet-101 and MobileNet) pre-

trained on ImageNet. All new convolution layers are initial-

ized using Gaussian weight with σ = 0.01 and bias b = 0.

We set the batch size to 32 4 during training. The entire

network is trained using stochastic gradient descent (SGD)

with a momentum of 0.9 and a weight decay of 0.0005. To

stabilize the training process, we use a warmup strategy that

gradually increases the learning rate from 10−6 to the initial

learning rate of each dataset during the first 5 epochs. We

use an initial learning rate of 4×10−3 for PASCAL VOC [5]

and 2×10−3 for MS COCO [17].

6.2. Inference

PASSD predicts the final detection results in a fully con-

volutional manner. To ensure efficient inference, boxes

with a score threshold lower than 0.01 are discarded and

only the 200 top scoring predictions per image are selected.

Then, non-maximum suppression (nms) is applied to the

top-scoring predictions with a threshold of 0.45 for duplica-

tion removal. For MS COCO, we use soft-nms [1] to filter

out the boxes.

4For a model with an input size of 768, we use a 24 batch size due to

the limited GPU.

7. Experiments

We evaluate PASSD on two generic object detection

benchmarks: PASCAL VOC 2007 and MS COCO. PAS-

CAL VOC and MS COCO include 20 and 80 object classes,

respectively. For benchmarks, we compare our model with

other single-model entries under a single-scale evaluation

for fair comparison.

7.1. PASCAL VOC dataset

We train our model on the union of the VOC 2007

trainval set and the VOC 2012 trainval set, and

evaluate it on the VOC 2007 test set. The initial learning

rate is 4×10−3 and divided by 10 at 150 and 200 epochs.

The total number of training epochs is 250.

7.1.1 Ablation Study

In order to evaluate the effectiveness of our model, we con-

duct extensive ablation experiments. Moreover, to analyze

the detection performance across the several sizes of ob-

jects, we evaluate the models using scale criteria of: small

(area < 642), medium (642 < area < 1922), and large (area

> 1922).

Propose-mechanism. To analyze the effectiveness of the

propose-mechanism, we add the process to the standard

convolutional prediction module as shown in exp2 of Ta-

ble 1. Adding the propose-mechanism significantly im-

proves the accuracy by a large margin of 3.5 points. In ad-

dition, clipping the box offset regression further pushes the

accuracy as in exp3 of Table 1, demonstrating that diversi-

fying the training samples is important. The results indicate

that the propose-mechanism is the key part for one-stage

detectors.

We also visualize the impact of the propose-mechanism

on positive training samples in Figure. 2. We can clearly

observe that the number of matched default boxes (i.e.,

positive training samples) significantly increased compared

to the initial default box setting (Figure. 2 (left)). More-

over, the normalized version (Figure. 2 (right)) demon-

strates that the propose-mechanism distributes the positive

training samples somewhat evenly across the object scales,

effectively reducing the imbalance between them. To sum

up, the propose-mechanism provides a large number of

well-balanced positive training samples during the training

phase, which is especially effective for small and medium-

sized objects.

Attend-mechanism. For the attend-mechanism, we com-

pare our approach with two different methods that can also

adjust the sampling points of the convolution filter: dilated

convolution [32] and deformable convolution [4]. Dilated

convolution increases its sampling points with a fixed dis-

crete dilation value, whereas deformable convolution ad-
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exp

prediction module

params mAP mAPS mAPM mAPL
propose-mechanism attend-mechanism

w/o box offset clip w/ box offset clip fixed sampling adaptive sampling

1 Conv(dilation=1) 24.82M 75.5 48.8 72.6 85.5

2 X Conv(dilation=1) 24.87M 79.0 51.8 77.1 86.2

3 X Conv(dilation=1) 24.87M 79.8 54.6 78.2 86.0

4 X Conv(dilation=2) 24.87M 79.7 53.4 78.0 86.7

5 X Conv(dilation=3) 24.87M 79.9 53.7 78.0 87.4

6 X Deformable Conv 24.91M 80.2 55.0 78.4 86.9

7(Ours) X Ours 24.87M 81.0 56.5 79.4 87.5

overall improvement +0.05M +5.5 +7.7 +6.8 +2.0

Table 1: Ablation experiments for propose-and-attend (P&A) prediction module. We train all models on the union of

VOC2007 trainval set and VOC2012 trainval set, and evaluate them on the VOC 2007 test set.

attend-mechanism params mAP.5 mAP.6 mAP.7 mAP.8

Conv(dilation=1) 24.87M 79.8 74.3 63.8 44.0

Conv(dilation=2) 24.87M 79.7 74.5 63.1 42.9

Conv(dilation=3) 24.87M 79.9 74.1 62.9 42.6

Deformable Conv 24.91M 80.2 75.9 64.8 46.6

Ours 24.87M 81.0 75.9 65.6 47.3

Table 2: Box regression capability of different attend-

mechanismes over several IoU threshold.

prediction module params mAP mAPS mAPM mAPL

Conv 24.82M 75.5 48.8 72.6 85.5

Conv(1)-Conv 26.00M 75.3 48.9 72.4 84.8

Conv(2)-Conv 27.19M 75.0 48.7 71.6 85.0

ResBlock(1)-Conv 27.19M 75.2 50.6 71.1 84.5

ResBlock(2)-Conv 29.55M 75.3 48.7 71.4 85.5

P&A 24.87M 81.0 56.5 79.4 87.5

Table 3: Impact of increasing the depth of the standard con-

volutional prediction module. The number in parentheses

denotes the number of intermediate layers of each type.

justs its sampling points in an adaptive manner using an ad-

ditional dedicated offset prediction layer, where the supervi-

sion signal for the offset prediction is given from the target

task implicitly. The results are shown from exp4 to exp7

in Table 1. We observe that both dilated and deformable

convolution have little impact on the accuracy in compari-

son to standard convolution (exp3 Table 1). Whereas, our

attend-mechanism brings a significant accuracy improve-

ment over a wide range of object scales. Note that the ac-

curacy gain does not come from the additional model ca-

pacity compared to standard convolution (exp3 in Table 1),

demonstrating its effectiveness.

Propose-and-Attend Mechanism. Putting all together, our

final model significantly improves the standard convolu-

tional prediction module by a large margin of +5.5 points

with marginal parameter overheads (+0.05M), demonstrat-

ing that building the propose-and-attend mechanism itself,

which is missed in most one-stage detectors, is indeed cru-

cial for achieving a high detection accuracy. Note that the

whole process is achieved in a single feed-forward manner

Figure 2: Impact of the propose-mechanism on positive

training samples. The left figure shows matched default

boxes in terms of scale of ground-truth boxes. The right

figure is a normalized version of the left figure. The aver-

age is represented by the dashed line.

without stage-discrimination as in two-stage detectors [24],

ensuring high efficiency.

Box Regression Capability. To analyze the impact of

the proposed attend-mechanism in final box regression, we

compare our approach with other methods under differ-

ent IoU thresholds. As shown in Table 2, our approach

achieves better accuracy than all other methods over all IoU

thresholds, demonstrating its higher box regression capabil-

ity. Note that the accuracy gap between methods with fixed

sampling points and methods with adaptive sampling points

becomes larger as the IoU threshold increases, showing

that dynamic attend-mechanism, which is missed in most

one-stage detectors, is essential for accurate box regression.

Our approach successfully performs this mechanism with-

out adding any parameter overheads to the standard con-

volution (first row in Table 2), revealing both the signifi-

cance of the mechanism itself and the effectiveness of our

approach.

Deeper Prediction Module. Here, we explore another di-

rection in improving the standard convolutional prediction

module, i.e., increasing the depth of the prediction mod-

ule. Specifically, we add two types of intermediate layers

into the standard convolutional prediction module: 1) con-

volution and 2) residual block [10], where the convolution
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model backbone input size # boxes fps params mAP

Two-stage:

Faster R-CNN [24] VGG-16 ∼ 1000×600 300 7 135M 73.2

OHEM [28] VGG-16 ∼ 1000×600 300 7 - 74.6

Faster R-CNN [24] ResNet-101 ∼ 1000×600 300 2.4 - 76.4

R-FCN [3] ResNet-101 ∼ 1000×600 300 9 51M 80.5

Deep Regionlets [31] ResNet-101 ∼ 1000×600 300 - - 82.0

CoupleNet [37] ResNet-101 ∼ 1000×600 300 8.2 - 82.7

One-stage:

SSD300 [19] VGG-16 300×300 8732 46 27M 77.2

YOLOv2 [23] Darknet-19 544×544 845 40 67M 78.6

DSSD321 [6] ResNet-101 321×321 17080 9.5 - 78.6

SSD512 [19] VGG-16 512×512 24564 19 27M 79.8

RefineDet320 [33] VGG-16 320×320 6375 40.3 - 80.0

RFBNet300 [18] VGG-16 300×300 11620 83 37M 80.5

SSD513 [6] ResNet-101 513×513 43688 6.8 - 80.6

DSSD513 [6] ResNet-101 513×513 43688 5.5 - 81.5

RefineDet512 [33] VGG-16 512×512 16320 24.1 - 81.8

RFBNet512 [18] VGG-16 512×512 32756 38 37M 82.2

PASSD-320 VGG-16 320×320 6375 50 25M 81.0

PASSD-512 VGG-16 512×512 16320 31.3 25M 82.4

Table 4: Object detection results on PASCAL VOC 2007

test set.

intermediate layer is followed by ReLU activation. Both

intermediate layers use 3×3 filter and preserve the output

channels to be same as the input feature (i.e., 256 in this

work). Also, their parameters are independent for classifi-

cation and box regression branch, respectively. As shown

in Table 3, merely increasing the network depth has little

improvement compared to the prediction module with a sin-

gle convolution layer (first row of Table 3). Whereas, our

P&A prediction module shows significantly higher accu-

racy with marginal parameter overheads, demonstrating that

building the propose-and-attend mechanism into the one-

stage detector is indeed crucial.

7.1.2 Comparison to State of the Art

We compare our final model with the state-of-the-art de-

tection models in Table 4. PASSD with low resolution in-

put (i.e., 320×320) achieves 81.0 mAP. This result is much

better than those of several two-stage methods, such as R-

FCN [3], which uses a larger input size and a deeper back-

bone (i.e., ResNet-101). With a larger input (i.e., 512×512),

PASSD produces 82.4 mAP, surpassing all detection mod-

els, including both one-stage and two-stage, except Cou-

pleNet [37] with a marginal gap (0.3 mAP). Note that Cou-

pleNet uses a larger input size (∼1000×600) and adopts

a deeper backbone ( i.e., ResNet-101) than PASSD-512.

Compared to other one-stage detectors, such as SSD or

DSSD, our model achieves better accuracy with fewer de-

fault boxes (e.g., 43,688 default boxes in DSSD513 vs.

16,320 default boxes in PASSD-512). This implies that

PASSD can handle various object scales effectively. Fi-

nally, our model uses fewer parameters than almost any

other models, showing that the superiority of our model

does not come from the mere high model capacity, but from

the effective architecture design.

We also report the inference time of our model in the fifth

column of Table 4. The inference time is evaluated with a

batch size of 1 on NVIDIA Titan X GPU, CUDA 8.0, and

cuDNN v7. PASSD can process an image in 20 ms (50

fps) and 32 ms (31.3 fps) with input sizes of 320×320 and

512×512, respectively. While it is hard to perform apple-to-

apple comparisons due to inconsistent environments ( i.e.,

different hardware and software libraries), PASSD shows

real-time capability.

7.2. MS COCO dataset

To further validate the proposed PASSD in a large-scale

setting, we evaluate our model on MS COCO. We also re-

port the results of the model using the ResNet-101 back-

bone to see the effect of adopting a deeper backbone. We

train our model on trainval35k and report the main re-

sults on test-dev. The initial learning rate is 2×10−3

and divided by 10 at 80 and 100 epochs. The total number

of training epochs is 120.

7.2.1 Comparison to State of the Art

The results are shown in Table 5. PASSD achieves 31.4 AP

with an input size of 320×320 and VGG-16 backbone. The

accuracy of PASSD is further improved by 35.3 AP when a

larger input size (i.e., 512×512) is used. Meanwhile, adopt-

ing a deeper backbone (i.e., ResNet-101) further pushes the

accuracy of PASSD; it results in 32.7 AP, 37.8 AP, and 40.3

AP for 320×320, 512×512, and 768×768 input sizes re-

spectively. The PASSD-768 achieves results competitive

to state-of-the-art models by adding only marginal parame-

ter overheads to the backbone network, resulting in a much

lighter model than competitive approaches. This shows that

the superiority of our model does not come from the mere

high model capacity, but from the effective architecture de-

sign. In particular, our best model shows state-of-the-art

accuracy on AP50 and APS , and it occupies top-entries

on AP75. It also runs faster than most competitive meth-

ods. The results indeed demonstrate the effectiveness of

the proposed method. In addition, recent ideas of designing

a better backbone (M2Det [34]), applying a better training

procedure (Libra R-CNN [21]), and applying the prediction

module in a cascade manner (Cascade R-CNN [2]) are or-

thogonal to our approach of designing an effective predic-

tion module, having potential to be used in a complemen-

tary manner.

7.3. Discussion

7.3.1 Lightweight Backbone

Our final model features a simple design with marginal pa-

rameter overheads to the backbone network. Therefore, we

apply our propose-and-attend (P&A) prediction module to

a lightweight backbone to further improve efficiency. We

train our PASSD with MobileNet [11] as the backbone on

MS COCO with the same training setting. As shown in Ta-

ble 6, PASSD significantly outperforms other lightweight
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model data backbone input size fps params size AP50 AP75 AP APS APM APL

Two-stage:

R-FCN [3] trainval ResNet-101 ∼ 1000× 600 9 - 206MB 51.9 - 29.9 10.8 32.8 45.0

CoupleNet [37] trainval ResNet-101 ∼ 1000× 600 8.2 - - 54.8 37.2 34.4 13.4 38.1 50.8

Deformable R-FCN [4] trainval Aligned-Inception-ResNet ∼ 1000× 600 - - - 58.0 40.8 37.5 19.4 40.1 52.5

Faster R-CNN w FPN [15] trainval35k ResNet-101 ∼ 1000× 600 5.8 61M 232MB 59.1 39.0 36.2 18.2 39.0 48.2

Deep Regionlets [31] trainval ResNet-101 ∼ 1000× 600 - - - 59.8 - 39.3 21.7 43.7 50.9

Mask R-CNN [9] trainval35k† ResNet-101 ∼ 1280× 800 4.8 63M 242MB 60.3 41.7 38.2 20.1 41.1 50.2

Libra R-CNN [21] trainval35k ResNet-101 ∼ 1280× 800 - 61M 233MB 62.1 44.7 41.1 23.4 43.7 52.5

Cascade R-CNN [2] trainval35k ResNet-101 ∼ 1280× 800 7.1 88M 337MB 62.1 46.3 42.8 23.7 45.5 55.2

One-stage:

YOLOv2 [23] trainval35k Darknet-19 416× 416 40 67M - 44.0 19.2 21.6 5.0 22.4 35.5

SSD512 [19] trainval35k VGG-16 512× 512 22 36M 137MB 48.5 30.3 28.8 10.9 31.8 43.5

RFBNet300 [18] trainval35k VGG-16 300× 300 - - - 49.3 31.8 30.3 11.8 31.9 45.9

RetinaNet500 [16] trainval35k ResNet-101 ∼ 832× 500 11.1 57M 217MB 53.1 36.8 34.4 14.7 38.5 49.1

RFBNet512 [18] trainval35k VGG-16 512× 512 - 47M - 54.2 35.9 33.8 16.2 37.1 47.4

RefineDet512 [33] trainval35k VGG-16 512× 512 22.3 - 137MB 54.5 35.5 33.0 16.3 36.3 44.3

ExtremeNet [35] (flip) trainval35k Hourglass-104 511× 511 3.1 - 758MB 55.5 43.2 40.2 20.4 43.2 53.1

RFBNet512-E [18] trainval35k VGG-16 512× 512 - 59M 191MB 55.7 36.4 34.4 17.6 37.0 47.6

CornerNet [14] (flip) trainval35k Hourglass-104 511× 511 4.1 201M 768MB 56.5 43.1 40.5 19.4 42.7 53.9

RefineDet512 [33] trainval35k ResNet-101 512× 512 - - 315MB 57.5 39.5 36.4 16.6 39.9 51.4

RetinaNet800 [16] trainval35k ResNet-101 ∼ 1280× 800 5.1 57M 217MB 59.1 42.3 39.1 21.8 42.7 50.2

M2Det [34] trainval35k VGG-16 800× 800 11.8 147M 506MB 59.7 45.0 41.0 22.1 46.5 53.8

PASSD-320 trainval35k VGG-16 320× 320 40 25M 96MB 51.6 33.6 31.4 12.0 35.1 45.8

PASSD-512 trainval35k VGG-16 512× 512 22.2 25M 96MB 56.9 38.4 35.3 19.2 39.0 45.5

PASSD-320 trainval35k ResNet-101 320× 320 34.5 47M 181MB 52.1 35.3 32.7 10.8 36.5 50.2

PASSD-512 trainval35k ResNet-101 512× 512 22.2 47M 181MB 59.1 41.4 37.8 19.3 42.6 51.0

PASSD-768 trainval35k ResNet-101 768× 768 11.9 48M 184MB 62.1 44.7 40.3 24.2 44.8 50.3

Table 5: Object detection results on MS COCO test-dev set. ”†” denotes the use of additional pixel-level supervision.

”flip” indicates that the model is evaluated on both original and flipped input image.

model backbone fps params AP AP50 AP75

YOLOv2-416 [23] DarkNet-19 40 67.4M 21.6 44.0 19.2

SSD-300 [19] VGG-16 43 34.3M 25.1 43.1 25.8

SSD-300 [19] MobileNet 80 6.8M 18.8 - -

SSDlite-300 [25] MobileNet v2 61 4.3M 22 - -

PASSD-320 MobileNet 63 6.7M 25.3 43.6 26.3

Table 6: Object detection results with lightweight backbone

on MS COCO test-dev.

model backbone prediction module mAP

DSOD-300 [27] DS/64-192-48-1 Conv 77.7

ScratchDet-300 [36] Root-ResNet-18 Conv 78.5

PASSD-320 VGG-16-BN
Conv 73.2

P&A 79.1

Table 7: Comparison to other train-from-scratch models on

VOC 2007 test set.

detectors, even surpassing the models with advanced back-

bone such as DarkNet-19 [23] and VGG-16 [29]. More-

over, recent works on designing a better lightweight back-

bone (e.g., MobileNet v2 [25]) are complementary to our

approach of designing the better prediction module. The

result demonstrates its great potential for low-end devices.

7.3.2 Training from Scratch

We also observe that a model integrated with the proposed

P&A prediction module can be trained from scratch (i.e.

w/o ImageNet pre-training). Recently, Shen et al. [27]

showed that training one-stage detectors without a pre-

trained backbone network is hard. To address this, recent

approaches have attempted to carefully design a backbone

network that is suitable for this setting. Apart from recent

approaches [27, 36], we found that simply integrating our

proposed P&A prediction module into the network enables

successful training. As seen in Table 7, we achieved fa-

vorable results by only inserting batch normalization [13]

in the backbone network without using any sophisticated

backbone design. Note that without the P&A prediction

module, the accuracy significantly drops, implying that the

P&A prediction module indeed provides a rich supervisory

signal during training.

8. Conclusion

In this work, we analyze the propose-and-attend mech-

anism which is missed in one-stage detectors as the major

performance bottleneck of them. To resolve this, we present

the propose-and-attend prediction module that builds such

mechanism in a highly efficient manner. It significantly

lifts the detection accuracy with marginal parameter over-

head. We verify its efficacy via extensive ablation studies

and evaluation on several challenging benchmarks.
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