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Abstract

We present a simple yet effective prediction module for
a one-stage detector. The main process is conducted in a
coarse-to-fine manner. First, the module roughly adjusts
the default boxes to well capture the extent of target objects
in an image. Second, given the adjusted boxes, the module
aligns the receptive field of the convolution filters accord-
ingly, not requiring any embedding layers. Both steps build
a propose-and-attend mechanism, mimicking two-stage de-
tectors in a highly efficient manner. To verify its effective-
ness, we apply the proposed module to a basic one-stage
detector SSD. We empirically show that our module signif-
icantly lifts the detection accuracy with marginal parame-
ter overhead. Our final model achieves an accuracy com-
parable to that of state-of-the-art detectors while using a
fraction of their model parameter and computational over-
heads. Moreover, we found that the proposed module has
two strong applications. 1) The module can be successfully
integrated into a lightweight backbone, further pushing the
efficiency of the one-stage detector. 2) The module also
allows train-from-scratch without relying on any sophisti-
cated base networks as previous methods do.

1. Introduction

Object detection has achieved significant advances with
the introduction of convolutional neural networks (CNN).
The recent detection frameworks can be divided into two
categories: (i) two-stage detectors [7, 24] and (ii) one-stage
detectors [19, 23, 16].

In two-stage detectors, the first stage proposes a sparse
set of candidate object regions. After a feature pool-
ing operation in the second stage, the proposed candi-
dates are further classified and regressed. Two-stage de-
tectors [7, 24, 3, 9] have achieved top performance on sev-
eral challenging benchmarks, such as PASCAL VOC [5] or
MS COCO [17]. On the other hand, one-stage detectors di-
rectly classify and regress from the initial predefined default
boxes. Recent one-stage detectors [19, 23] have achieved
promising results with faster speed and lower memory-

footprint. However, the accuracy of the one-stage detectors
usually lags behind that of two-stage detectors [12].

We argue that this performance gap can be mainly at-
tributed to an architectural limitation of the one-stage de-
tectors, i.e., the lack of the propose-and-attend mechanism
that is included in two-stage detectors. Due to the lack of
this mechanism, one-stage detectors struggle with two main
issues: 1) a heuristic box matching strategy, and 2) a mis-
match between the receptive field of the prediction module
and object-features.

During training, positive default boxes are selected only
when their intersection over union (IoU) with their ground-
truth box is above a certain threshold (e.g., 0.5). Thus,
carefully setting the initial sizes and locations of the de-
fault boxes is crucial for the detection performance. Oth-
erwise, an inferior initial default box configuration leads
to few or imbalanced training samples. In two-stage ap-
proaches [24, 3, 9], the issue is addressed by the region pro-
posal step [24] (i.e., propose-mechanism). However, one-
stage detectors cannot handle this issue. Therefore, most
approaches [19, 23, 16] use a large number of initial de-
fault boxes with varying scales and aspect ratios, which not
only requires exhaustive parameter and computation over-
heads but also is heuristic. For this, we suggest a propose-
mechanism for one-stage detectors; it adjusts the initial
default boxes to fit well with target objects in an adap-
tive manner. The process effectively imitates the region
proposal step [24] of two-stage detectors without stage-
discrimination, ensuring high efficiency.

In addition to the adjustment of the default boxes, there
is another issue of mismatch between the receptive field of
the prediction module and the object-features proposed by
the adjusted default boxes. The two-stage approaches han-
dle the misalignment issue through a feature pooling oper-
ation (e.g., Rol pooling [7]), by which the prediction mod-
ule can accurately attend to the object-features (i.e., attend-
mechanism). However, one-stage detectors have no such
operation due to the fixed receptive field of the prediction
module regardless of the adjustment of the default boxes.
To address this issue, we suggest an attend-mechanism for
one-stage detectors; it modulates the receptive field of the
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prediction module according to the adjusted default boxes
to accurately capture object-features.

By putting all together, we propose a novel prediction
module, called propose-and-attend (P&A) prediction mod-
ule, for one-stage detectors. To demonstrate its effective-
ness, we apply the module to a basic SSD framework [19]
with a feature pyramid network backbone [15], leading to
our final detector called PASSD. The PASSD achieves a
propose-and-attend mechanism in the two-stage detector
in an efficient manner. We empirically validate that our
approach is a simple yet effective solution to significantly
boost the detection accuracy of one-stage detectors with
marginal parameter overhead (i.e., +5.5 mAP with +0.05M
params). We also show that our prediction module can be
successfully applied to a lightweight backbone to further
push the efficiency of the one-stage detectors and succeed
in training from scratch.

2. Related Work

Object Detection. Sliding-window approaches, in which
a classifier is applied to a dense image grid, have domi-
nated the pre-deep-learning era. However, since the arrival
of deep learning, the conventional approaches have been re-
placed by convolutional neural network (CNN) based de-
tectors. In particular, they can be divided into two main
streams: two-stage and one-stage.

Two-Stage Detectors. Two-stage detectors [24, 3] are com-
posed of two parts. The first part generates a sparse set of
region proposals, and the second part further classifies and
regresses the proposals. These two-stage detectors have oc-
cupied top entries of challenging benchmarks [3, 15, 9].
One-Stage Detectors. OverFeat [26] is one of the earli-
est one-stage detectors based on deep learning. Afterward,
YOLO [22] and SSD [19] were proposed with promising
accuracy and real-time speed. RetinaNet [16] further im-
proves the accuracy by modifying the standard loss func-
tion, addressing the extreme class imbalance problem dur-
ing training. However, we argue that they all suffer from the
issues caused by the lack of the propose-and-attend mech-
anism, as mentioned in Sec.l. Recently, the RefineDet
framework [33] suggests exploiting the default box refine-
ment module to mimic the propose mechanism of the two-
stage detectors. However, the RefineDet framework does
not consider the way to provide diverse training samples
during training phase, and it further misses the attend mech-
anism in its design; however, both are crucial for achieving
high detection accuracy, as will be shown.

Receptive Field. A previous study on the receptive
field [20] shows that the size of the effective receptive field
is much smaller than the theoretical one (i.e., resembling
a 2D Gaussian shape). This implies that the mismatch be-
tween the receptive field of the prediction module and real
object-features can lead to severe performance degradation.

While two-stage detectors mitigate the problem via feature
pooling operation [7], one-stage detectors are prone to miss
exact object-features. In this work, we resolve the issue
with the efficient and effective attend-mechanism that en-
ables the accurate extraction of object-features in the pre-
diction module of one-stage detectors.

3. Method

PASSD is a one-stage detection framework composed of
an FPN [15] backbone network and the proposed propose-
and-attend (P&A) prediction module. The overall pipeline
is shown in Figure. 1. The backbone network generates
multi-scale convolutional feature maps and is an off-the-
shelf CNN. The P&A prediction module produces final de-
tection results based on the output of the backbone network.
The final model features a simple yet effective design. We
describe the details of the model in the following.

4. Backbone Network

To improve the scale-invariance of the model, we adopt
the feature pyramid network (FPN) [15, 30] as our backbone
network. We apply the FPN on top of three base networks,
VGG-16 [29], ResNet-101 [10], and MobileNet [11]. In or-
der to capture large objects, we add two extra convolution
blocks (i.e., conv8; stride=2, conv9; stride=2) to the end of
the truncated VGG-16 [29], one extra bottleneck residual
block (i.e., res6; stride=2, channel=512) to the end of the
truncated ResNet-101 [10], and one extra depthwise convo-
lution (i.e., stride=2, channel=512) to the end of the trun-
cated MobileNet [11], respectively. For the VGG-16 base
network and its extra layers, we follow same configuration
in SSD [19]. We also use the same L2 normalization tech-
nique to scale the feature norm of the VGG-16 following
SSD [19]. To build the FPN, we use four ! feature maps
with the stride sizes of {8, 16, 32, 64} pixels from the base
networks and their extra layers. Each feature map is se-
lected right after the last layer that holds the corresponding
stride size. We follow Lin et al. [15] for the details of the
pyramid with a few minor modifications?. As in [15], we
use 256 channels for all pyramid levels.

5. Default Boxes and Matching

For each feature map from the backbone, we assign one
default scale for the default boxes (i.e., 4 times the stride
size of the corresponding feature map). For scale-variation
of the objects, we associate each feature map cell with the

IFor a model with an input size of 768, we use an additional feature
map with a stride size of {128} pixels.

2We build a top-down pathway from the top extra layer added to the
base networks, not from the top layer of base networks, for simplicity while
maintaining accuracy.

816



(a) base network  (b) feature pyramid network

: : : A default box with its corresponding
o o o | sampling points of convolution filter

5,8, |8.48

S — » Box offset & ' +
i 1 3 pr i o
L . (% olol | [A[4[n . 8 ©
L‘c : oo NEE o o o
R oloiolll i [¥vlv X L p
Conv offset <. S

Input feaiture Input feature
- Fmmmm - L e T

M BOX\'\iOffSCt Conv Qi"fset Box offset
- WxHx4A WxHx2KA WxHx4A
. N

1

I

I v

1 !

1 {

1 i

I

| 7

1 i

! i

! — I
| Input feature L N
1

I

1

1

1

WxHx256

Conv Binary class
WxHx2A

(c) propose-and-attend (P&A) prediction module

Figure 1: Overall architecture of PASSD. The model uses a feature pyramid network as a backbone network to generate
a multi-scale feature pyramid. We then apply the propose-and-attend (P&A) prediction module to each level of feature
pyramid to yield the final detections. The P&A module adjusts the initial default boxes to roughly capture the extent of the
target objects and modulates the sampling points of convolution filters accordingly to extract the accurate object-features.

The whole pipeline is achieved in an end-to-end manner.

default boxes with three scales {20, 2'/3, 22/3}3 of the de-
fault scale, and their aspect ratios are set to {1:1}. In to-
tal, we assign A=3 default boxes for each feature map cell.
Each default box is responsible for detecting the object in
it by predicting a length C vector for multi-class classifi-
cation, where C is the number of object classes, including
the background class, and four offsets for box regression,
where offsets are encoded following the standard box pa-
rameterization [8]. During training, we assign the default
box as positive if it has a Jaccard overlap score higher than
0.5 with the ground-truth box.

5.1. Propose-and-Attend Mechanism
5.1.1 Propose-mechanism

For the one-stage detectors, the initial configuration of the
default boxes is crucial for the performance since they
mostly rely on overlap-based training sample mining. How-
ever, the initial configuration is typically fixed [19, 6, 16];
thus, most one-stage detectors suffer from enumerating a
considerable number of default boxes over the image space.
This results in consuming exhaustive parameters and com-
putations. On the other hand, two-stage detectors employ a
region proposal step [24], which provides the model more
abundant training samples by dynamically offsetting the

3For the MS COCO benchmark, we use {2*1/3, 20, 21/3}.

default boxes. However, its internal dependency on the
proposal-wise computation significantly slows down the de-
tection speed.

To overcome this issue, we design a propose-mechanism
that can function as the region proposal step [24] of two-
stage detectors without any proposal-wise computation
(e.g., non-maximum suppression followed by top-k sort-
ing). Specifically, the main process adjusts the location
and size of the initial default boxes to fit well with the
target objects. To do this, we predict a binary objectness
score that indicates the existence of a foreground object and
four relative box offsets between the initial default box and
the ground-truth box following standard box parameteriza-
tion [8] as follows:

0y = (ga: - bw)/bwa 5y = (gy - by)/bh
0w = 10g (gu/bw),  On = log (gn/bn).

Here, the default box is represented with its location (i.e.,
center) and size as b=(b,, by, b., by, ), and the target ground-
truth box as g=(gx, gy, gw, gn). The propose-mechanism
consists of one 3x3 convolution layer with 2 A filters for bi-
nary objectness classification and the other one 3 x3 convo-
lution layer with 4 A filters for box offsets regression (A=3
in this work). The parameters for the propose-mechanism
are shared across all the pyramid levels.

Moreover, we regularize the propose-mechanism by

6]

817



clipping the box offset regression as follows:

5; = tanh (§T) G 7 5; — tanh (5y) Sy )

2w 2by,

Here, ¢, and ¢, are the stride sizes of each feature map
cell. We observe that clipping operation induces discrimina-
tive feature learning during training. For example, without
clipping, the positive training samples tend to focus on ob-
jects as a whole with high overlap between boxes, whereas
clipping helps diversify the positive training samples to con-
tain different parts of the objects. The impact of this opera-
tion is similar to the application of non-maximum suppres-
sion in the region proposal step [24] of two-stage detectors.
We empirically confirm that this is important for improving
the performance (refer to Table 1).

5.1.2 Attend-mechanism

After the propose-mechanism, the prediction module also
necessitates attention on the adjusted default boxes (see Fig-
ure. 1). In other words, the receptive field of the predic-
tion module should be appropriately coordinated with the
modified boxes to pick up object-features accurately. In
two-stage detectors, a feature pooling operation (e.g., Rol
pooling) is adopted to deal with this problem. However,
the standard convolutional prediction module used in most
one-stage detectors [19, 16, 33] lacks this crucial attending
operation in their design. Thus, valuable information for ac-
curate classification and bounding box regression is missed.

To resolve the problem, we propose an efficient attend-
mechanism. The main idea is to transform the sampling
points of the convolution filter according to the modified
default box. Before describing the details of the method,
we first review the operation of the standard convolutional
prediction module. For simplicity, we only describe the op-
eration in 2D space without consideration of the channel
axis, while extension to 3D is straightforward.

The classification or box regression for the ¢-th (i €
{1,...,A}) default box at the feature map location of p,
is computed by the weighted sum of the convolution filter
(w) and the input features (x) on the sampling locations de-
fined by sampling grid (R) and p,, where |R| = k%(K)
and k denotes the filter size of kxk convolution. An exam-
ple case with a 3x3 convolution filter and dilation of 1 is
shown below, where p, enumerates the elements in R:

R ={(-1,-1),(=1,0),...,(1,0),(1,1)}

yi(po) = Z W(ps) : X(po + ps) 3)
Ps€ER

We can clearly observe that the sampling locations of
the convolution filter are fixed over the entire input feature
map by the sampling grid (R). This works fine under fixed

initial default boxes. However, with dynamically adjusted
default boxes, it becomes problematic. It misses the accu-
rate object-features proposed by the adjusted default boxes,
which are valuable for accurate classification and box re-
gression. Moreover, it cannot explicitly take account of the
adjusted default box in the final box regression. In other
words, the box regressor is not aware of the target box it has
to regress.

To address this problem, we instead augment the fixed
grid sampling locations of the convolution filter with offsets
that cover the adjusted default box in an adaptive manner.
Specifically, the offsets (O?) for the i-th (i € {1,..., A})
adjusted default box at the feature map location of p, are
obtained as:

O, = [R® (bj,/k,bi,/k)] @ (Ay', Az’) = R
Ay =b} -6, Azt =bi -5 )

Here, (b, bi) and (Ay’, Az') denote the size and cen-
ter displacement of the adjusted default box, which are ob-
tained by decoding the box parameterization (Eqn. (1)) and
from Eqn. (4), respectively. Here, ® and & are element-
wise multiplication and summation, respectively.

The given offsets (O?) allow the convolution filter to ac-
curately capture the object-features in the adjusted default
box (refer to Figure. 1 for visual description where the off-

sets are denoted as *Conv offset’):

yi(po) = Z

pPs€ER,Ap,€O}

W(Ds) : X(po +ps+ Aps) ()

Since standard convolution does not provide fractional
sampling points, we implement offset convolution follow-
ing Dai et al. [4]. Unlike [4], we enable multiple offsets
for the output prediction to accommodate multiple default
boxes at each feature map cell.

The attend-mechanism consists of one 3x3 offset con-
volution layer with C'A filters for multi-class classification
including background (i.e., C' is 21 or 81 for PASCAL
VOC [5] and MS COCO [17]) and the the other one 3x3
offset convolution layer with 4 A filters for the final box re-
gression. The final box regression predicts the relative off-
sets between the adjusted default boxes and ground-truth
boxes.

By putting all together, we build a novel prediction
module for one-stage detectors, called propose-and-attend
(P&A) prediction module. The whole pipeline of the mod-
ule is presented in Figure. 1. The P&A prediction module
significantly boosts one-stage detectors in efficient manner
with marginal parameter overheads to the backbone net-
work.
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6. Training and Inference
6.1. Training

Data Augmentation. We follow several data augmentation
strategies from SSD [19]. In brief, we use random pho-
tometric distortion, image flipping, and both zoom-in and
Zoom-out operations.

Hard Negative Mining. After the default box matching
step, most default boxes are assigned as negatives. To mit-
igate class imbalance issue, we use hard negative mining
following SSD [19]. We select hard negative samples based
on the loss value and constrain the ratio between positive
and negative default boxes to be at most 1:3. We adopt this
strategy for training both propose- and attend-mechanisms.
Loss Function. We define the total loss function as a sum
of the two losses from the propose- and attend-mechanisms,
respectively. Each loss term is formulated as follows:

L= 5= (3 Las(pi, ;) + 2ila} > 1Lreg(ti, 97))

Here, 7 is the index of the default box in a mini-batch; ¢} is
the ground truth class label of the default box ¢; g; are the
ground truth default box offsets; p; and ¢; are the predicted
class probability and box offsets of the default box ¢ in each
process. Np,s is the number of positive samples within the
process in a mini-batch. If V,,,=0, we set the loss of the
process to 0. The classification loss L, is cross-entropy
loss, and we use Smooth-L1 loss [7] as the regression loss
Lyeq. The Iverson bracket [z} > 1] outputs 1 when its con-
dition is fulfilled, i.e., only the positive samples are included
in the regression loss.
Optimization. For the initialization, we take the base
networks (i.e., VGG-16, ResNet-101 and MobileNet) pre-
trained on ImageNet. All new convolution layers are initial-
ized using Gaussian weight with 0 = 0.01 and bias b = 0.
We set the batch size to 32 # during training. The entire
network is trained using stochastic gradient descent (SGD)
with a momentum of 0.9 and a weight decay of 0.0005. To
stabilize the training process, we use a warmup strategy that
gradually increases the learning rate from 1076 to the initial
learning rate of each dataset during the first 5 epochs. We
use an initial learning rate of 4 x 1073 for PASCAL VOC [5]
and 2x 1073 for MS COCO [17].

6.2. Inference

PASSD predicts the final detection results in a fully con-
volutional manner. To ensure efficient inference, boxes
with a score threshold lower than 0.01 are discarded and
only the 200 top scoring predictions per image are selected.
Then, non-maximum suppression (nms) is applied to the
top-scoring predictions with a threshold of 0.45 for duplica-
tion removal. For MS COCO, we use soft-nms [1] to filter
out the boxes.

4For a model with an input size of 768, we use a 24 batch size due to
the limited GPU.

7. Experiments

We evaluate PASSD on two generic object detection
benchmarks: PASCAL VOC 2007 and MS COCO. PAS-
CAL VOC and MS COCO include 20 and 80 object classes,
respectively. For benchmarks, we compare our model with
other single-model entries under a single-scale evaluation
for fair comparison.

7.1. PASCAL VOC dataset

We train our model on the union of the VOC 2007
trainval set and the VOC 2012 trainval set, and
evaluate it on the VOC 2007 test set. The initial learning
rate is 4x 1073 and divided by 10 at 150 and 200 epochs.
The total number of training epochs is 250.

7.1.1 Ablation Study

In order to evaluate the effectiveness of our model, we con-
duct extensive ablation experiments. Moreover, to analyze
the detection performance across the several sizes of ob-
jects, we evaluate the models using scale criteria of: small
(area < 642), medium (642 < area < 1922?), and large (area
> 1922).

Propose-mechanism. To analyze the effectiveness of the
propose-mechanism, we add the process to the standard
convolutional prediction module as shown in exp2 of Ta-
ble 1. Adding the propose-mechanism significantly im-
proves the accuracy by a large margin of 3.5 points. In ad-
dition, clipping the box offset regression further pushes the
accuracy as in exp3 of Table 1, demonstrating that diversi-
fying the training samples is important. The results indicate
that the propose-mechanism is the key part for one-stage
detectors.

We also visualize the impact of the propose-mechanism
on positive training samples in Figure. 2. We can clearly
observe that the number of matched default boxes (i.e.,
positive training samples) significantly increased compared
to the initial default box setting (Figure. 2 (left)). More-
over, the normalized version (Figure. 2 (right)) demon-
strates that the propose-mechanism distributes the positive
training samples somewhat evenly across the object scales,
effectively reducing the imbalance between them. To sum
up, the propose-mechanism provides a large number of
well-balanced positive training samples during the training
phase, which is especially effective for small and medium-
sized objects.

Attend-mechanism. For the attend-mechanism, we com-
pare our approach with two different methods that can also
adjust the sampling points of the convolution filter: dilated
convolution [32] and deformable convolution [4]. Dilated
convolution increases its sampling points with a fixed dis-
crete dilation value, whereas deformable convolution ad-
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prediction module
propose-mechanism attend-mechanism
exp w/o box offset clip \ w/ box offset clip | fixed sampling \ adaptive sampling params | mAP | mAPs  mAPy  mAP;

1 Conv(dilation=1) 24.82M | 75.5 48.8 72.6 85.5
2 v Conv(dilation=1) 24.87TM | 79.0 51.8 77.1 86.2
3 v Conv(dilation=1) 24.87TM | 79.8 54.6 78.2 86.0
4 v Conv(dilation=2) 24.87TM | 79.7 53.4 78.0 86.7
5 v Conv(dilation=3) 24.87TM | 79.9 53.7 78.0 87.4
6 v Deformable Conv | 24.91M | 80.2 55.0 78.4 86.9
7(Ours) v Ours 24.87M | 81.0 56.5 79.4 87.5
overall improvement +0.05M | +5.5 +7.7 +6.8 +2.0

Table 1: Ablation experiments for propose-and-attend (P&A) prediction module. We train all models on the union of
VOC2007 trainval set and VOC2012 trainval set, and evaluate them on the VOC 2007 test set.

attend-mechanism | params | mAPs; [ mAPs mAP; mAPg
Conv(dilation=1) | 24.87M 79.8 74.3 63.8 44.0
Conv(dilation=2) | 24.87M 79.7 74.5 63.1 42.9
Conv(dilation=3) | 24.87M 79.9 74.1 62.9 42.6
Deformable Conv | 24.91M 80.2 75.9 64.8 46.6
Ours 24.87TM 81.0 75.9 65.6 47.3

Table 2: Box regression capability of different attend-
mechanismes over several IoU threshold.

prediction module | params | mAP [ mAPs mAPy mAPL
Conv 24.82M | 755 48.8 72.6 85.5
Conv(1)-Conv 26.00M | 75.3 48.9 724 84.8
Conv(2)-Conv 27.19M | 75.0 48.7 71.6 85.0
ResBlock(1)-Conv | 27.19M | 75.2 50.6 71.1 84.5
ResBlock(2)-Conv | 29.55M | 75.3 48.7 71.4 85.5
P&A 24.87M | 81.0 56.5 79.4 87.5

Table 3: Impact of increasing the depth of the standard con-
volutional prediction module. The number in parentheses
denotes the number of intermediate layers of each type.

justs its sampling points in an adaptive manner using an ad-
ditional dedicated offset prediction layer, where the supervi-
sion signal for the offset prediction is given from the target
task implicitly. The results are shown from exp4 to exp7
in Table 1. We observe that both dilated and deformable
convolution have little impact on the accuracy in compari-
son to standard convolution (exp3 Table 1). Whereas, our
attend-mechanism brings a significant accuracy improve-
ment over a wide range of object scales. Note that the ac-
curacy gain does not come from the additional model ca-
pacity compared to standard convolution (exp3 in Table 1),
demonstrating its effectiveness.

Propose-and-Attend Mechanism. Putting all together, our
final model significantly improves the standard convolu-
tional prediction module by a large margin of +5.5 points
with marginal parameter overheads (+0.05M), demonstrat-
ing that building the propose-and-attend mechanism itself,
which is missed in most one-stage detectors, is indeed cru-
cial for achieving a high detection accuracy. Note that the
whole process is achieved in a single feed-forward manner
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Figure 2: Impact of the propose-mechanism on positive
training samples. The left figure shows matched default
boxes in terms of scale of ground-truth boxes. The right
figure is a normalized version of the left figure. The aver-
age is represented by the dashed line.

without stage-discrimination as in two-stage detectors [24],
ensuring high efficiency.

Box Regression Capability. To analyze the impact of
the proposed attend-mechanism in final box regression, we
compare our approach with other methods under differ-
ent IoU thresholds. As shown in Table 2, our approach
achieves better accuracy than all other methods over all loU
thresholds, demonstrating its higher box regression capabil-
ity. Note that the accuracy gap between methods with fixed
sampling points and methods with adaptive sampling points
becomes larger as the IoU threshold increases, showing
that dynamic attend-mechanism, which is missed in most
one-stage detectors, is essential for accurate box regression.
Our approach successfully performs this mechanism with-
out adding any parameter overheads to the standard con-
volution (first row in Table 2), revealing both the signifi-
cance of the mechanism itself and the effectiveness of our
approach.

Deeper Prediction Module. Here, we explore another di-
rection in improving the standard convolutional prediction
module, i.e., increasing the depth of the prediction mod-
ule. Specifically, we add two types of intermediate layers
into the standard convolutional prediction module: 1) con-
volution and 2) residual block [10], where the convolution
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model ‘ backbone ‘ input size ‘#boxes‘ fps ‘params ‘ mAP

Two-stage:
Faster R-CNN [24] VGG-16 ~ 1000x600 300 7 135M | 732
OHEM [28] VGG-16 ~ 1000x600 300 7 - 74.6
Faster R-CNN [24] | ResNet-101 | ~ 1000x600 300 2.4 - 76.4
R-FCN [3] ResNet-101 | ~ 1000x600 300 9 5IM 80.5
Deep Regionlets [31] | ResNet-101 | ~ 1000x600 300 - - 82.0
CoupleNet [37] ResNet-101 | ~ 1000x600 300 8.2 - 82.7

One-stage:
SSD300 [19] VGG-16 300%300 8732 46 27TM 77.2
YOLOV2 [23] Darknet-19 544 x544 845 40 67M 78.6
DSSD321 [6] ResNet-101 321x321 17080 | 9.5 - 78.6
SSD512 [19] VGG-16 512x512 24564 19 27TM 79.8
RefineDet320 [33] VGG-16 320%320 6375 | 40.3 - 80.0
RFBNet300 [18] VGG-16 300%300 11620 83 37M 80.5
SSD513 [6] ResNet-101 513x513 43688 | 6.8 - 80.6
DSSD513 [6] ResNet-101 513x513 43688 | 5.5 - 81.5
RefineDet512 [33] VGG-16 512x512 16320 | 24.1 - 81.8
RFBNet512 [18] VGG-16 512512 32756 38 3™ 822
PASSD-320 VGG-16 320%320 6375 50 25M 81.0
PASSD-512 VGG-16 512x512 16320 | 31.3 | 25M 82.4

Table 4: Object detection results on PASCAL VOC 2007
test set.

intermediate layer is followed by ReLU activation. Both
intermediate layers use 3x3 filter and preserve the output
channels to be same as the input feature (i.e., 256 in this
work). Also, their parameters are independent for classifi-
cation and box regression branch, respectively. As shown
in Table 3, merely increasing the network depth has little
improvement compared to the prediction module with a sin-
gle convolution layer (first row of Table 3). Whereas, our
P&A prediction module shows significantly higher accu-
racy with marginal parameter overheads, demonstrating that
building the propose-and-attend mechanism into the one-
stage detector is indeed crucial.

7.1.2 Comparison to State of the Art

We compare our final model with the state-of-the-art de-
tection models in Table 4. PASSD with low resolution in-
put (i.e., 320x320) achieves 81.0 mAP. This result is much
better than those of several two-stage methods, such as R-
FCN [3], which uses a larger input size and a deeper back-
bone (i.e., ResNet-101). With a larger input (i.e., 512 x512),
PASSD produces 82.4 mAP, surpassing all detection mod-
els, including both one-stage and two-stage, except Cou-
pleNet [37] with a marginal gap (0.3 mAP). Note that Cou-
pleNet uses a larger input size (~1000x600) and adopts
a deeper backbone ( i.e., ResNet-101) than PASSD-512.
Compared to other one-stage detectors, such as SSD or
DSSD, our model achieves better accuracy with fewer de-
fault boxes (e.g., 43,688 default boxes in DSSD513 vs.
16,320 default boxes in PASSD-512). This implies that
PASSD can handle various object scales effectively. Fi-
nally, our model uses fewer parameters than almost any
other models, showing that the superiority of our model
does not come from the mere high model capacity, but from
the effective architecture design.

We also report the inference time of our model in the fifth
column of Table 4. The inference time is evaluated with a

batch size of 1 on NVIDIA Titan X GPU, CUDA 8.0, and
cuDNN v7. PASSD can process an image in 20 ms (50
fps) and 32 ms (31.3 fps) with input sizes of 320x320 and
512x512, respectively. While it is hard to perform apple-to-
apple comparisons due to inconsistent environments ( i.e.,
different hardware and software libraries), PASSD shows
real-time capability.

7.2. MS COCO dataset

To further validate the proposed PASSD in a large-scale
setting, we evaluate our model on MS COCO. We also re-
port the results of the model using the ResNet-101 back-
bone to see the effect of adopting a deeper backbone. We
train our model on t rainval35k and report the main re-
sults on test-dev. The initial learning rate is 2x 1073
and divided by 10 at 80 and 100 epochs. The total number
of training epochs is 120.

7.2.1 Comparison to State of the Art

The results are shown in Table 5. PASSD achieves 31.4 AP
with an input size of 320x320 and VGG-16 backbone. The
accuracy of PASSD is further improved by 35.3 AP when a
larger input size (i.e., 512x512) is used. Meanwhile, adopt-
ing a deeper backbone (i.e., ResNet-101) further pushes the
accuracy of PASSD; it results in 32.7 AP, 37.8 AP, and 40.3
AP for 320x320, 512x512, and 768768 input sizes re-
spectively. The PASSD-768 achieves results competitive
to state-of-the-art models by adding only marginal parame-
ter overheads to the backbone network, resulting in a much
lighter model than competitive approaches. This shows that
the superiority of our model does not come from the mere
high model capacity, but from the effective architecture de-
sign. In particular, our best model shows state-of-the-art
accuracy on APsy and APs, and it occupies top-entries
on APz5. It also runs faster than most competitive meth-
ods. The results indeed demonstrate the effectiveness of
the proposed method. In addition, recent ideas of designing
a better backbone (M2Det [34]), applying a better training
procedure (Libra R-CNN [21]), and applying the prediction
module in a cascade manner (Cascade R-CNN [2]) are or-
thogonal to our approach of designing an effective predic-
tion module, having potential to be used in a complemen-
tary manner.

7.3. Discussion
7.3.1 Lightweight Backbone

Our final model features a simple design with marginal pa-
rameter overheads to the backbone network. Therefore, we
apply our propose-and-attend (P&A) prediction module to
a lightweight backbone to further improve efficiency. We
train our PASSD with MobileNet [11] as the backbone on
MS COCO with the same training setting. As shown in Ta-
ble 6, PASSD significantly outperforms other lightweight
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model ‘ data backbone input size ‘ fps ‘ params size ‘ APsg AP;s AP ‘ APs APy APp
Two-stage:
R-FCN [3] trainval ResNet-101 ~ 1000 x 600 9 - 206MB | 51.9 - 299 | 10.8 328 450
CoupleNet [37] trainval ResNet-101 ~ 1000 x 600 | 8.2 - - 54.8 372 344 | 134 38.1 50.8
Deformable R-FCN [4] trainval Aligned-Inception-ResNet | ~ 1000 x 600 - - - 580 408 375 | 194 40.1 52.5
Faster R-CNN w FPN [15] | trainval35k ResNet-101 ~ 1000 x 600 | 5.8 61IM | 232MB | 59.1 39.0 362 | 182 39.0 482
Deep Regionlets [31] trainval ResNet-101 ~ 1000 x 600 - - - 59.8 - 393 | 21.7 437 509
Mask R-CNN [9] trainval35kf ResNet-101 ~ 1280 x 800 | 4.8 63M | 242MB | 60.3  41.7 382 | 20.1 41.1 502
Libra R-CNN [21] trainval35k ResNet-101 ~ 1280 x 800 - 6IM | 233MB | 62.1 447 41.1 | 234 437 525
Cascade R-CNN [2] trainval35k ResNet-101 ~ 1280 x 800 | 7.1 88M | 337MB | 62.1 463 428 | 23.7 455 552
One-stage:
YOLOV2 [23] trainval35k Darknet-19 416 x 416 40 67TM - 440 192 216 | 5.0 224 355
SSD512 [19] trainval35k VGG-16 512 x 512 22 36M 137MB | 485 303 288 | 109 31.8 435
RFBNet300 [18] trainval35k VGG-16 300 x 300 - - - 493 318 303 | 11.8 319 459
RetinaNet500 [16] trainval35k ResNet-101 ~ 832 x500 | I1.1 57TM | 217MB | 53.1 36.8 344 | 147 385 49.1
RFBNet512 [18] trainval35k VGG-16 512 x 512 - 4T™M - 542 359 338 | 162 371 474
RefineDet512 [33] trainval35k VGG-16 512 x 512 223 - 137MB | 545 355 330 163 363 443
ExtremeNet [35] (flip) trainval35k Hourglass-104 511 x 511 3.1 - 758MB | 555 432 402 | 204 432 53.1
RFBNet512-E [18] trainval35k VGG-16 512 x 512 - 59M 19IMB | 557 364 344|176 370 47.6
CornerNet [14] (flip) trainval35k Hourglass-104 511 x 511 4.1 20IM | 768MB | 56.5 43.1 405 | 194 427 539
RefineDet512 [33] trainval35k ResNet-101 512 x 512 - - 315SMB | 575 395 364 | 166 399 514
RetinaNet800 [16] trainval35k ResNet-101 ~ 1280 x 800 | 5.1 57M | 217MB | 59.1 423 39.1 | 21.8 4277 502
M2Det [34] trainval35k VGG-16 800 x 800 11.8 | 147M | 506MB | 59.7 450 41.0 | 22.1 46,5 53.8
PASSD-320 trainval35k VGG-16 320 x 320 40 25M 96MB | 51.6 33,6 314 | 120 351 458
PASSD-512 trainval35k VGG-16 512 x 512 222 | 25M 96MB | 569 384 353 | 192 39.0 455
PASSD-320 trainval35k ResNet-101 320 x 320 345 | 47M 181MB | 52.1 353 327 | 10.8 365 502
PASSD-512 trainval35k ResNet-101 512 x 512 222 | 4T 181IMB | 59.1 414 378 | 193 426 510
PASSD-768 trainval35k ResNet-101 768 x 768 119 | 48M 184MB | 62.1 447 403 | 242 448 503

Table 5: Object detection results on MS COCO test-dev set

. ’7” denotes the use of additional pixel-level supervision.

“flip” indicates that the model is evaluated on both original and flipped input image.

model ‘ backbone ‘ fps ‘ params ‘ AP APsy AP;s
YOLOvV2-416 [23] | DarkNet-19 | 40 | 67.4M | 21.6 440 192
SSD-300 [19] VGG-16 43 | 343M | 251 43.1 258
SSD-300 [19] MobileNet 80 | 6.8M | 18.8 - -
SSDIite-300 [25] | MobileNet v2 | 61 | 4.3M 22 - -
PASSD-320 MobileNet 63 | 6.7M | 253 43.6 263

Table 6: Object detection results with lightweight backbone
on MS COCO test-dev.

model | backbone | prediction module | mAP
DSOD-300 [27] DS/64-192-48-1 Conv 71.7
ScratchDet-300 [36] | Root-ResNet-18 Conv 78.5
Conv 73.2
PASSD-320 VGG-16-BN P&A =01

Table 7: Comparison to other train-from-scratch models on
VOC 2007 test set.

detectors, even surpassing the models with advanced back-
bone such as DarkNet-19 [23] and VGG-16 [29]. More-
over, recent works on designing a better lightweight back-
bone (e.g., MobileNet v2 [25]) are complementary to our
approach of designing the better prediction module. The
result demonstrates its great potential for low-end devices.

7.3.2 Training from Scratch

We also observe that a model integrated with the proposed
P&A prediction module can be trained from scratch (i.e.
w/o ImageNet pre-training). Recently, Shen et al. [27]
showed that training one-stage detectors without a pre-
trained backbone network is hard. To address this, recent

approaches have attempted to carefully design a backbone
network that is suitable for this setting. Apart from recent
approaches [27, 36], we found that simply integrating our
proposed P&A prediction module into the network enables
successful training. As seen in Table 7, we achieved fa-
vorable results by only inserting batch normalization [13]
in the backbone network without using any sophisticated
backbone design. Note that without the P&A prediction
module, the accuracy significantly drops, implying that the
P&A prediction module indeed provides a rich supervisory
signal during training.

8. Conclusion

In this work, we analyze the propose-and-attend mech-
anism which is missed in one-stage detectors as the major
performance bottleneck of them. To resolve this, we present
the propose-and-attend prediction module that builds such
mechanism in a highly efficient manner. It significantly
lifts the detection accuracy with marginal parameter over-
head. We verify its efficacy via extensive ablation studies
and evaluation on several challenging benchmarks.
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