
Optimizing Through Learned Errors for Accurate Sports Field Registration

Wei Jiang1 Juan Camilo Gamboa Higuera2 Baptiste Angles1

Weiwei Sun1 Mehrsan Javan3 Kwang Moo Yi1

1Visual Computing Group, University of Victoria 2McGill University 3SPORTLOGiQ Inc.

{jiangwei, bangles, weiweisun, kyi}@uvic.ca, {gamboa}@cim.mcgill.ca, {mehrsan}@sportlogiq.com

Abstract

We propose an optimization-based framework to regis-

ter sports field templates onto broadcast videos. For accu-

rate registration we go beyond the prevalent feed-forward

paradigm. Instead, we propose to train a deep network

that regresses the registration error, and then register im-

ages by finding the registration parameters that minimize

the regressed error. We demonstrate the effectiveness of

our method by applying it to real-world sports broadcast

videos, outperforming the state of the art. We further apply

our method on a synthetic toy example and demonstrate that

our method brings significant gains even when the problem

is simplified and unlimited training data is available. 1

1. Introduction

Estimating the relationship between a template and an

observed image with deep learning [9, 38, 24, 46] has re-

ceived much attention recently, due to the success of deep

learning in many other areas in computer vision [17, 16, 40].

Registration of a sports field template onto a camera view is

not an exception [6, 19, 42], where deep learning has shown

promising results compared to traditional baselines. Despite

the recent advancements, there is room for further improve-

ment, especially for augmented reality and sport analytics.

For mixed and augmented reality, even the slightest inac-

curacies in estimates can break immersion [31]. For sports

analytics, good alignment is crucial for detecting the impor-

tant events – e.g. offsides in soccer.

Existing methods have also acknowledged this limita-

tion, and have sought to improve accuracy. For example,

some rely on a hierarchical strategy [38, 24]. In these meth-

ods, the refinement network is used on top of a rough pose

estimator, where both are feed-forward networks. However,

as we will demonstrate through our experiments, there is an

alternative way to enhance performance.

1 Code is available at https://github.com/vcg-uvic/

sportsfield_release.

In order to achieve more accurate registration, we

take a different route to the commonly used feed-forward

paradigm. Inspired by classic optimization-based ap-

proaches for image registration [37, 30, 28, 35], we propose

optimizing to reduce the estimated registration error. Op-

posed to traditional methods, we rely on a deep network for

estimating the error.

Specifically, as illustrated in Fig. 1, we propose a two-

stage deep learning pipeline, similar to existing meth-

ods [38, 24], but with a twist on the refinement network.

The first-stage network, which we refer to as the initial

registration network, provides a rough estimate of the reg-

istration, parameterized by a homography transform. For

the second-stage network, instead of a feed-forward refine-

ment network, we train a deep neural network that regresses

the error of our estimates – registration error network. We

then use the initial registration network to provide an ini-

tial estimate, and optimize the initial estimate using the gra-

dients provided by differentiating through the registration

error network. This allows much more accurate estimates

compared to the single stage feed-forward inference.

In addition, we propose not to train the two networks

together. While end-to-end and joint training is often pre-

ferred [39, 36], we find that it is beneficial to train the two

networks separately – decoupled training. We attribute this

to two observations: the two networks – initial registration

network and registration error network – aim to regress dif-

ferent things – pose and error; it is useful for the registration

error network to be trained independently of the initial reg-

istration network so that it does not overfit to the mistakes

the initial registration network makes while training.

We demonstrate empirically that our framework consis-

tently outperforms feed-forward pipelines. We apply our

method to sports field registration with broadcast videos.

We show that not only our method outperforms feed-

forward networks in a typical registration setup, it is also

able to outperform the state of the art even when training

data is scarce – a trait that is desirable with deep networks.

We further show that our method is not limited to sport

fields registration. We create a simple synthetic toy dataset
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Figure 1. Illustration of our framework. We train two deep networks each dedicated for a different purpose. We first obtain an initial pose

estimate from a feed-forward network that regresses directly to the homography parameterization h – DNN on the left in blue. We then

warp our sports field template according to this initial estimate and concatenate it with the input image. We feed this concatenated image

to a second deep neural network – DNN on the right in red – that estimates the error of the current warping. We then differentiate through

this network to obtain the direction in which the estimated error is minimized, and optimize our estimated homography accordingly – red

arrow. This optimization process is repeated multiple times until convergence. All figures in this paper are best viewed in color.

of estimating equations of a line in the image, and show that

even in this simple case when unlimited train data is avail-

able, our method brings significant advantage.

To the best of our knowledge, our method is the

first method that learns to regress registration errors for

optimization-based image registration. The idea of train-

ing a deep network to regress the error and perform

optimization-based inference has recently been investigated

for image segmentation, multi-label classification, and ob-

ject detection [13, 23]. While the general idea exists, it is

non-trivial to formulate a working framework for each task.

Our work is the first successful attempt for sport field reg-

istration, thanks to our two-stage pipeline and the way we

train the two networks.

To summarize, our contributions are:

• we propose a novel two-stage image registration

framework where we iteratively optimize our estimate

by differentiating through a learned error surface;

• we propose a decoupled training strategy to train the

initial registration network and the registration error

network;

• our method achieves the state-of-the-art performance,

even when the training dataset size is as small as 209

images;

• we demonstrate the potential of our method through a

generic toy example.

2. Related Work

Sports field registration. Early attempts on registering

sports field to broadcast videos [12, 11, 37] typically rely

on a set of pre-calibrated reference images. These calibrated

references are used to estimate a relative pose to the image

of interest. To retrieve the relative pose, these methods ei-

ther assume that images are of correspond to consecutive

frames in a video [12, 11], or use local features, such as

SIFT [29] and MSER [32], to find correspondences [37].

These methods, however, require that the set of calibrated

images contains images with similar appearance to the cur-

rent image of interest, as traditional local features are weak

against long-term temporal changes [47]. While learned al-

ternatives exist [50, 36, 10], their performances in the con-

text of pose estimation and registration remains question-

able [41].

To overcome these limitations, more recent methods [19,

42, 6] focus on converting broadcast videos into images that

only contain information about sports fields, e.g. known

marker lines, then perform registration. Homayounfar et

al. [19] perform semantic segmentation on broadcast im-

ages with a deep network, then optimize for the pose using

branch and bound [27] with a Markov Random Field (MRF)

formulated with geometric priors. While robust to various

scenic changes, their accuracy is still limited. Sharma et

al. [42] simplify the formulation by focusing on the edges

and lines of sports fields, rather than the complex semantic

segmentation setup. They use a database of edge images

generated with known homographies to extract the pose,

which is then temporally smoothed. Chen and Little [6]

further employ an image translation network [21] in a hi-

erarchical setup where the play-field is first segmented out,

followed by sports field line extraction. They also employ

a database to extract the pose, which is further optimized

through Lucas-Kanade optimization [30] on distance trans-

formed version of the edge images. The bottleneck of these

two methods is the necessity of a database, which hinders

their scalability.

Homography estimation between images. Traditional

methods for homography estimation include sparse feature-

based approaches [49] and dense direct approaches [30].

Regardless of sparse or dense, traditional approaches are

mainly limited by either the quality of the local fea-

tures [48], or by the robustness of the objective function

used for optimization [2].

Deep learning based approaches have also been proposed

202



for homography estimation. In [9], the authors propose to

train a network that directly regresses to the homography

between two images through self supervision. Interestingly,

the output of the regression network is discretized, allowing

the method to be formulated as classification. Nguyen et

al. [34] train a deep network in an unsupervised setup to

learn to estimate the relative homography. The main focus

of these methods, however, is on improving the inference

speed, without significant improvements on accuracy when

compared to traditional baselines.

Feed-forward 6 Degree-of-Freedom (DoF) pose estima-

tors. Pose estimators are also higly related to image regis-

tration. Deep networks have also been proposed to directly

regress the 6 DoF pose of cameras [51, 43, 25]. Despite

being efficient to compute, these methods highly depend

on their parameterization of the pose – naive parameteri-

zations can lead to bad performance, and are known to have

limited accuracy [5]. To overcome this limitation, recent

works focus on regressing the 2D projection of 3D con-

trol points [46, 38, 24]. Compared with directly predict-

ing the pose, control points based pose show improved per-

formance due to the robust estimation of parameters. Our

initial registration network follows the same idea as these

methods to obtain our initial estimate.

Optimizing with learned neural networks. Incorporating

optimization into deep pipelines is a current topic of inter-

est. BA-Net [45] learns to perform Levenberg-Marquardt

optimization within the network to solve dense bundle ad-

justment. LS-Net [7] learns to predict the directions to im-

prove a given camera pose estimate. Han et al. [14] also

learn to estimate the Jacobian matrix from an image pair to

update the 6 DoF camera pose. In contrast to these meth-

ods, which propose learning a function to update a camera

pose estimate, we propose to learn an error function that

predicts how well two images are aligned. Using the er-

ror function we can obtain the update direction via differ-

entiation. The most similar work to ours is the deep value

networks [13], where they train a network to estimate inter-

section over union (IoU) between the input and ground truth

masks regarding image segmentation. While sharing a sim-

ilar idea, it is non-trivial to extend and adapt their method

to image registration. For example, their method is limited

to a static initial estimate, which requires a longer optimiza-

tion trajectory than ours. This may become a problem when

applied to sport field registration, where the broadcast view

change drastically even when there is small camera rotation.

We show through experiments that just having an error net-

work is not enough, as we will show later in Table 2.

3. Method

For clarity in presentation, we first assume that our mod-

els are pre-trained and detail our overall framework at infer-

ence time. We then provide details on the training setup and

the architectural choices.

3.1. Inference

Overview. Our pipeline is depicted in Fig. 1. We assume a

known planar sports field template and undistorted images,

so that we can represent the image-template alignment with

a homography matrix. The framework can be broken down

into two stages: the first stage provides an initial estimate

of the homography matrix, the second iteratively optimizes

this estimate. The first stage follows a typical feed-forward

paradigm [9, 46], and we utilize a deep neural network.

However, any method can be used here instead, such as a

database search [42, 6].

The distinctiveness of our model comes from the sec-

ond stage of the pipeline. Using the first stage estimate,

we warp the sports field template to the current view. We

concatenate this warped image with the current observed

image, and evaluate the registration error through a second

neural network. We then backpropagate the estimated error

to the the homography parameters to obtain the gradient,

which gives the direction in which the parameters should

be updated to minimize the registration error. Then, using

this gradient, we update the homography parameters. This

process is performed iteratively until convergence or until

a maximum number of iterations is met. This inference

through optimization allows our method to be significantly

more accurate than a typical feed-forward setup, provided

that our error model gives reasonable error predictions.

Details – initial registration. We follow the recent trend of

using projected coordinates for pose parameterization [9, 5].

In the case of homographies, this can be done with 4

points [1]. We parameterize the homography h defining

the relationship between the input image I and the target

template m through the coordinate of the four control points

on the current input image when warped onto the sports

field template. Specifically, considering a normalized image

coordinate system where the width and height of the image

is set to one, and the centre of the image is at the origin,

we use (−0.5, 0.1), (−0.5, 0.5), (0.5, 0.5), and (0.5, 0.1),
that is, the corners of the lower three-fifths of the image as

our reference control points. We write the reference control

points href as,

href = [−0.5, 0.1,−0.5, 0.5, 0.5, 0.5, 0.5, 0.1]
⊤

. (1)

We use the lower parts of the image as sports field broadcast

videos are typically in a setup where the camera is looking

down on the field, as shown in Fig. 2.

Let (uk, vk) denote the k-th control point of the current

image I projected onto the sports field template m. We then

write the homography h as

h = [u1, v1, u2, v2, u3, v3, u4, v4]
⊤

. (2)
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Figure 2. Illustration of control points. The yellow dots on the left

are the control points we use on the normalized image coordinate,

and the red dots on the right are the control points after they are

transformed via the homography h. Our initial registration net-

work regresses the positions of the red dots.

We obtain the actual transformation matrix T from h and

href through direct linear transformation [15].

Given an initial registration network fΦ (·), we obtain a

rough homography estimate ĥ
(0) for image I as

ĥ
(0) = fΦ (I) , (3)

where the superscript in parenthesis denote the optimization

iteration.

Details – optimization. With the current homography esti-

mate ĥ
(i) at optimization iteration i, we warp the play-field

template m to obtain an image of the template in the current

view, using a bilinear sampler [22] to preserve differentia-

bility. We concatenate the result of this warping operation

W
(

m, ĥ(i)
)

and the image I, and pass it as input to the

model gΨ (·) to obtain a prediction of the registration error

ǫ̂(i) as

ǫ̂(i) = gΨ

([

I;W(m, ĥ(i))
])

, (4)

where [ ; ] denotes concatenation along the channel direc-

tion of two images. We then retrieve the gradient of ǫ̂(i)

with respect to ĥ
(i) and apply this gradient to retrieve an

updated estimate. In practice, we rely on Adam [26] for a

stable optimization.

Note here that our registration error network is not

trained to give updates. It simply regresses to the correct-

ness of the current estimate. We show empirically in Sec-

tion 4.3 that this is a much more effective than, for exam-

ple learning to provide a perfect homography, or learning to

correct erroneous estimates.

3.2. Training

To avoid overfitting, we propose to purposely decouple

the training of two networks. We show in Section 4.3 that

this is necessary in order to obtain the best performance.

Initial registration network. To train the initial registra-

tion network, we directly regress the four control points of

our template warped into a given view using the ground

truth homography. With the ground truth homography hgt,

we train our deep network to minimize

Linit =
∥

∥

∥
hgt − ĥ

(0)
∥

∥

∥

2

2
= ‖hgt − fΦ (I)‖

2
2 . (5)

Note that while we use a deep network to obtain the initial

homography estimate, any other method can also be used in

conjunction, such as nearest neighbor search.

Registration error network. To train the registration er-

ror network, we create random perturbations on the ground

truth homography. We then warp the target template to

the view using the perturbed ground truth homography, and

concatenate it with the input image to be used as input data

for training. The network model is trained to predict a reg-

istration error metric, e.g. the IoU. We detail our design

choice of error metric in Section 4.3.

In more detail, with the ground truth homography hgt,

we create a perturbed homography hpert by applying uni-

form noise hierarchically: one for global translation, and

one for local translation of each control point. Specifi-

cally, we add a global random translation αg ∼ U(−δg, δg),
where αg ∈ R2, to all control points, and add a local ran-

dom translation of αl ∼ U(−δl, δl), where αl ∈ R
8 in-

dividually to each control point. We then warp the target

template according to the perturbed homography to create

our input data for training. Thus, the input to the registra-

tion error network for training is [I;W (m,hpert)]. Then,

to train the network, we minimize

Lerror =‖Err (I,W(m,hpert))

− gΨ ([I;W(m,hpert)]) ‖
2
2 ,

(6)

where Err (·, ·) is the error metric, for example the IoU

value.

4. Sports field registration results

We apply the proposed method to sports field registra-

tion. We first discuss the datasets, baselines, the metrics

used for our evaluation, as well as implementation details.

We then present qualitative and quantitative results of our

method, compared to the state of the art. We then provide

experimental insights to our method.

4.1. Experimental setup

Datasets. To validate our method, we rely on two datasets.

The World Cup dataset [20] is a dataset made of broadcast

videos of soccer games. It has 209 images for training and

validation, and 186 images for testing. This dataset is ex-

tremely small, making it challenging to apply deep meth-

ods. The state of the art for this dataset [6] relies on learn-

ing to transfer the input image to look similar to the sports

field template, then searching a database of known homo-

graphies and warped templates to retrieve the estimate. For
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our method, we use 39 images from the train-valid split as

validation dataset, and respect the original test split for test-

ing. The Hockey dataset is composed of broadcast videos

of NHL ice hockey games [19]. This is a larger dataset than

the World Cup dataset, having 1.67M images in total. Of

this large dataset, we use two sequences of 800 consecutive

images as validation and testing sets. By using consecutive

frames, we ensure that images from one game do not fall

into different splits. See Fig. 3 for example images.

Baselines. We compare our method against three existing

works for sports field registration [19, 42, 6]. As there is no

publicly available implementation of the two methods [19,

42], we take the results reported on the respective papers for

the World Cup dataset. For [6], we use the authors’ public

implementation. For [19] with the Hockey dataset, we use

the reported results as a reference2.

In addition, we compare our method against feed for-

ward baselines – single stage feed-forward network (SSF)

and a two-stage feed-forward refinement network (FFR).

We further explore whether the error registration network

can be used alone by retrieving the initial estimate by

searching a database of known poses, e.g. the traing set,

and using the example which gives the lowest error esti-

mate. We will refer to the initial estimate obtained through

nearest neighbor search as NN, and the fully optimized es-

timate as NNo. To do a nearest neighbor search we eval-

uate the registration error for the query image with all the

training homographies using the trained registration error

network, and return the homography with lowest estimated

error. Although this method is not scalable because the

computational requirement grows linearly with the size of

the database, it provides insight into the capability of the

trained registration error network.

Metrics. As existing literature use different metrics [19, 42,

6], IoUpart and IoUwhole, we report both values. IoUpart

is the intersection over union when only the visible region

is considered, while IoUwhole is the same considering the

entire sports field template.

4.2. Implementation details

Initial registration network. Following a recent trend [39,

16], we base our network on the ResNet-18 architec-

ture [18]. Instead of the classification head, we simply re-

place the last fully connected layer to estimate 8 numbers

which represent the homography, h. We use the pretrained

weights for the network trained on ImageNet [8], and fine-

tune.

Registration error network. For the registration error net-

work, we also rely on the ResNet-18 architecture, but with

2 No information is provided by the authors on how the the train, valida-

tion, and test splits are created, thus the results are not directly comparable.

spectral normalization [33] on all convolutional layers, and

take as input a 6-channel image, that is, the concatenation

of the input image and the warped target template. Spectral

normalization smooths the error predictions by constraining

the Lipschitz constant of the model, which limits the mag-

nitude of its gradients. As the output of the registration er-

ror network cannot be negative, we use sigmoid function as

the final activation function for the IoU-based error metrics,

and squaring function for reprojection error metric. For the

registration network, as the input is very different from a

typical image-based network, we train from scratch.

Hyperparameters. We train our networks with the

Adam [26] optimizer, with default parameters β1 = 0.9 and

β2 = 0.999, and with a learning rate of 0.0001. We train

until convergence, and use the validation dataset to perform

early stopping. For the noise parameters δg and δl in Sec-

tion 3.2 we empirically set δg = 0.05 and δl = 0.02, by

observing the validation dataset results. For inference, we

again use Adam, but with a learning rate of 10−3. We run

our optimization for 400 iterations, and return the estimate

that gave the lowest estimated error predicted by the trained

registration error network.

4.3. Results

Comparison against existing pipelines. Qualitative high-

lights are shown in Fig. 3 and Fig. 4, with quantitave re-

sults summarized in Table 1. In Table 1, for the World Cup

dataset, our method performs best in all evaluation metrics.

For the Hockey dataset, our method delivers near perfect

results.

Comparison against feed-forward baselines. As shown

in Table 1, having an additional feed-forward refinement

network (FFR) only provides minor improvement over the

initial estimate (SFF). This phenomenon is more obvious in

the WorldCup dataset results, where training data is scarce.

By contrast, our method is able to provide significant reduc-

tion in the registration error.

Effect of different target error metrics. We also com-

pare results when different target error is used for the train-

ing of the registration error network in Table 2. We com-

pare regressing to IoUwhole, IoUpart, and the average repro-

jection error of all pixels inside the current view (Reproj.).

Interestingly, regressing to IoUpart does not guarantee best

performance in terms of IoUpart. In all cases, regressing to

IoUwhole gives best performance.

Coupled training. It is a common trend to train multiple

components together. However, our framework does not

allow joint training, as the two networks are aiming for

entirely different goals. Nonetheless, we simultaneously

trained the two networks, thus allowing the registration er-

ror network to see all the mistakes that the initial registration

network makes during training (Coupled). Coupled train-
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Figure 3. Qualitative highlights of our method. (Top) red lines are the sports field lines overlayed on the current view using estimated

homographies. (Bottom) current view overlayed on sports field template. Our method can handle various sports fields and camera poses.

Initial registration Step #20 Step #40 Step #60

Figure 4. Qualitative example demonstrating the effect of number of optimization iterations on registration accuracy. From left to right,

example registration result at iterations 0, 20, 40 and 60. Notice the misalignment near the center circle. As more optimization iterations

are performed, the registration becomes more accurate.

ing, however, performs worse than decoupled training, as

shown in Table 2. In case of the Hockey dataset, coupled

training performs even worse than feed-forward refinement.

This is because while the initial registration network is con-

verging, it is making predictions with smaller and smaller

mistakes, thus the registration error network is learning a

narrow convergence basin due to the small perturbations it

sees. The estimates that fall out of the convergence basin

can not be optimized using the learned error. Therefore, it

is necessary to have a decoupled training setup to stop this

from happening.

Using only the error estimation network. The two vari-

ants, NN and NNo, provide insights into the capability of

the registration error networks. Due to the limited size

of the database, i.e. training data, NN provides initial es-

timates with lower accuracy than the single stage feed-

forward network SFF. However, with optimization (NNo),

the registration results are even comparable to the results

from our full pipeline. This observation shows that the

registration error network can provide a wide convergence

basin, and can optimize for inaccurate initial estimates.

Note that we only test these methods on the World Cup

dataset, as applying the method on Hockey dataset requires

too much computation due to the larger database to search.

Inference performance We perform all experiments on

an Nvidia GTX 1080Ti GPU. To optimize one frame, our

method achieves 41.76 optimization iterations per second,

thus 9.58 seconds per frame. Our method also supports

batch inference. To optimize a batch with 64 frames, it

achieves 4.66 optimization iterations per second, thus in av-
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[19] [42] [6] SFF FFR Ours

W
o

rl
d

C
u

p

Io
U

w
h
o
le mean 83 – 89.2 83.9 84.0 89.8

median – – 91.0 85.7 86.2 92.9

Io
U

p
ar

t

mean – 91.4 94.7 90.2 90.3 95.1

median – 92.7 96.2 91.9 92.1 96.7

H
o

ck
ey

Io
U

w
h
o
le mean 822 – – 86.5 93.0 96.2

median – – – 87.3 94.0 97.0

Io
U

p
ar

t

mean – – – 90.4 96.0 97.6

median – – – 91.0 96.8 98.4

Table 1. Quantitative results for different methods. Best results

are in bold. Our method performs best in all evaluation metrics.

See text for details.

IoUwhole IoUpart Reproj. Coupled NN NNo

W
o

rl
d

C
u

p

Io
U

w
h
o
le mean 89.8 87.9 89.1 87.3 73.8 86.3

median 92.9 90.6 91.4 91.1 73.6 88.2

Io
U

p
ar

t

mean 95.1 94.7 95.1 94.4 87.4 94.0

median 96.7 96.3 96.5 96.5 89.5 95.7

H
o

ck
ey

Io
U

w
h
o
le mean 96.2 95.6 94.9 87.9 – –

median 97.0 96.6 95.5 89.5 – –

Io
U

p
ar

t

mean 97.6 97.3 97.1 93.6 – –

median 98.4 98.3 97.6 94.7 – –

Table 2. Quantitative results for different variants of our method.

Best results are in bold. IoUwhole, IoUpart, and Reproj. are three

target error metrics we investigate. Coupled is when we couple

the training of two networks. NN is when we use nearest neigh-

bor search and NNo is when we further optimize the homography

estimate with the registration error network after NN.

erage 1.36 seconds per frame.

4.4. Quality of the estimated error surface

To validate that the trained registration error network can

provide a convergence basin, we visualize the average esti-

mated error surface for translation over all test samples. To

do so we create a regular grid with X from [−0.5, 0.5], and

Y from [−0.5, 0.5] with resolution 50 by 50. For each point

on the grid we warp the template with ground truth homog-

raphy combined with the translation from the origin to the

point location. We then pass the observed image concate-

nated with the warped sports field to the trained registration

error network, and infer the registration error at that point

on the grid. We calculate the error surface for all the test

samples, and visualize the average.

As show in Fig. 5, the estimated error surface resembles

the ground truth one. The error is lower towards the ori-

gin where the perturbation – translation – is smaller, and is

higher towards the border where the perturbation is larger.

Most importantly, the minima of the estimated error is very

close to the origin, which is the ground truth. This allows

our optimization-based inference to work properly.

Estimated error surface Ground truth error surface

Figure 5. Average estimated and ground truth error surface vi-

sualization for translation. See how the estimated error surface

resembles the ground truth one, including the location of the min-

ima at the centre. This allows optimization through learned errors.

5. Toy experiment – Line fitting

Beyond sport fields registration, our method could be ap-

plied to other tasks that involve parameter regression. Here,

we show briefly that, even a task as simple and generic

as fitting a line equation in an image can benefit from our

method. We hope to shed some light into the potentials of

our method.

Inspired by the experiment from DSAC [3, 4], we vali-

date our framework with the task of estimating the equation

of a line from synthetic images, as shown in Fig. 6. Un-

like DSAC, we are not learning to reject outliers via their

pixel coordinates, but rather are directly regressing to the

line equations given an image of a line.

5.1. Experimental setup

Initial network. We follow the same setup as our im-

age registration task, but instead regress two parameters

that define the equation of a line, that is, a – the angle

and b – the intercept, where the line equation is given by

v = tan(a)u+ b, and u and v are the image coordinates.

To create the synthetic images, we first generate random

lines by selecting a random pivot point in an 64×64 image,

then uniformly sample in range [−0.4π, 0.4π] to obtain its

angle. We draw this line with a random color. We then

add a random colored ellipse with random parameters as

distraction, and finally apply additive Gaussian noise. We

use VGG-11 [44] as the backbone for the initial registration

network.

Error network. We use the intercept error as the target

error metric, that is maximum error between ground-truth

and estimated intercept at u = 0 or u = 63. To gener-

ate erroneous estimates for training, we add uniform noise

αa and αb to the ground truth a and b respectively, where
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Figure 6. Estimating line equations of synthetic images. The red line represents the estimated line equation from (top row) a feed-forward

network, and (bottom row) the proposed method. The other colored line in each image is the target line. Our method provides accurate

estimates, shown by the high overlap with the thick white line. See Section 5 for details.

αa ∼ U [−0.1π, 0.1π], and αb ∼ U [−5, 5]. To render the

estimate into an image in a differentiable way, we warp the

the template image which is simply an image of a line, us-

ing the hypothesized line parameters as in the case of image

registration. We concatenate the input image with the warp

template to the error network to estimate the error, in this

case the intercept error. We also use VGG-11 as the back-

bone for the error network.

We train both networks until convergence and optimize

for 400 iterations at inference time.

5.2. Results

As shown in Fig. 6, our method estimates the line param-

eters more accurately than a feed-forward deep network.

Quantitative results are shown in Table 3. As shown, even

in this simple generic task, our method outperforms its feed-

forward counterpart. As this task can be viewed as a sim-

plified version of other computer vision tasks, it shows that

our method may be applicable outside the scope of the cur-

rent paper. We further highlight that this experimental setup

is with unlimited labeled data. Even in such a case, our

method brings significant improvement in performance.

Feed-forward Ours

mean error 5.1 3.0

median error 4.4 1.5

Table 3. Quantitative results for line fitting. Our method achieved

better accuracy than a single stage feed-forward network. This line

fitting experiment can be viewed as a general regression task.

6. Conclusions

We have proposed a two-stage pipeline for register-

ing sports field templates to broadcast videos accurately.

In contrast to existing methods that do single stage feed-

forward inference, we opted for an optimization-based in-

ference inspired by established classic approaches. The pro-

posed method makes use of two networks, one that pro-

vides an initial estimate for the registration homography,

and one that estimates the error given the observed image

and the current hypothesized homography. By optimizing

through the registration error network, accurate results were

obtained.

We have shown through experiments that the proposed

method can be trained with very sparse data, as little as 209

images, and achieve state-of-the-art performance. We have

further revealed how different design choices in our pipeline

affect the final performance. Finally, we have shown that

our framework can be translated into other tasks and im-

prove upon feed-forward strategies.

As future work, since the inference is optimization-

based, we can naturally embed temporal consistency by

reusing the optimization state for consecutive images to reg-

ister sports field for a video. We show preliminary results

of doing so in our supplementary video.
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