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Abstract

Semantic segmentation is one of the key tasks in comput-
er vision, which is to assign a category label to each pixel
in an image. Despite significant progress achieved recently,
most existing methods still suffer from two challenging is-
sues: 1) the size of objects and stuff in an image can be very
diverse, demanding for incorporating multi-scale features
into the fully convolutional networks (FCNs); 2) the pixel-
s close to or at the boundaries of object/stuff are hard to
classify due to the intrinsic weakness of convolutional net-
works. To address the first issue, we propose a new Multi-
Receptive Field Module (MRFM), explicitly taking multi-
scale features into account. For the second issue, we design
an edge-aware loss which is effective in distinguishing the
boundaries of object/stuff. With these two designs, our Mul-
ti Receptive Field Network achieves new state-of-the-art re-
sults on two widely-used semantic segmentation benchmark
datasets. Specifically, we achieve a mean IoU of 83.0% on
the Cityscapes dataset and 88.4% mean loU on the Pascal
VOC2012 dataset.

1. Introduction

The task of semantic segmentation is one of the key tech-
nologies in visual understanding, which is widely used in
object parsing, scene parsing, human body parsing and au-
tomatic driving, etc. The task is to predict each pixel in the
image into a prescribed set of categories [4, 9, 24, 11, 14],
which is a dense per-pixel prediction task. In recent years,
compared with systems relying on hand-crafted features
[16, 29, 18, 28, 13, 36], semantic segmentation methods
based on deep FCN [26] have made tremendous progress,
and these methods have achieved very impressive results on
semantic segmentation benchmarks. Despite the success,
FCNes still have two limitations.

First, the sizes of objects/stuff in images can be very di-
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Figure 1: Illustration of challenging scenes in the Cityscpaes
dataset [9]. Various scales and indistinguishable boundaries of ob-
jects/stuff makes it challenging to accurately parse each pixel.

verse, making accurate prediction very challenging. In or-
der to solve this problem, it is necessary to capture multi-
scale features into FCNs. It is well known that multi-scale
features benefit many computer vision tasks such as image
classification, object detection and semantic segmentation.
A straightforward approach is to resize the input image to d-
ifferent scales and input each copy to a share-parameter net-
work. At some stage of the network, convolutional features
are fused by concatenation or summation [23]. The second
approach is to use skip connections to fuse features from
different layers as introduced in ResNet [15]. Deeplab-
V3 [6] proposes the ASPP module, which applies several
parallel atrous convolutions to obtain multi-scale receptive
fields. The PSPNet [41] method proposes a PSP module,
which applies multiple pooling with different sizes to obtain
multi-scale features. These two methods are widely used
and represent the current state-of-the-art methods. Howev-
er, previous works haven’t focused on how to acquire multi-
scale receptive field in the backbone. Here we propose a
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new multi-receptive field module (MRFM). Unlike previous
works, we introduce the multi-receptive field module by re-
designing the backbone work. Meanwhile, considering the
trade-off between speed and performance, we also propose
a light-weight version of MRFM, which does not introduce
computation overhead for inference.

The second problem is that it is difficult to distinguish the
boundaries of objects/stuff. Recently, some works pay extra
attention to the classification of pixels at edges, achieving
improved results. DFN [37] combines the edge detection
task with the semantic segmentation task. By observing the
fact that edge pixels tend to be incorrectly classified, we
design a new edge aware loss. The main idea is that during
the training, a pixel close to or on the edge is assigned a
weight which incurs a weighted penalty for the classifier.

Specially, our approach achieves state-of-the-art per-
formance on the Cityscapes dataset [9] and the Pascal
VOC2012 dataset [11]. Our main contributions are sum-
marized as follows.

e We propose a multi-receptive field module (MRFM),
which is crucial for improving prediction perfor-
mance. Meanwhile, considering the trade-off between
performance and inference efficiency, we design a
lightweight MRFM.

e We design an edge-aware loss to separate the boundary
more accurately. The loss function does not need ad-
ditional annotated data, but can be computed only on
existing semantic segmentation data.

e The proposed network achieves new state-of-the-art
performance on the Cityscapes and Pascal VOC2012
dataset. In particular, we achieve an mloU score of
83.0% on Cityscapes, and an mloU score of 88.4% on
the Pascal VOC2012 dataset.

1.1. Related Works

Models based on Fully Convolution Networks [26]
have achieved high performance on several segmentation
benchmarks[11, 9]. Here we review some works most rel-
evant to ours, focusing on the issues of receptive fields and
improving edge pixel classification.

Receptive Field: It is well known that the size of re-
ceptive fields is critically important for high-level computer
vision tasks. In dense prediction tasks like semantic seg-
mentation, depth estimation, it is crucial for each predic-
tion pixel to have a receptive field that is sufficiently large
such that context information can be considered for mak-
ing a correct prediction. To enlarge the receptive field, the
feature map’s output stride is set to 8, or 16 of the input
size in semantic segmentation. On the other hand, as one
has to upsample the output to the original input size, a large

output stride may degrade the accuracy of per-pixel predic-
tion. That is one of the reasons why multi-scale receptive
field, corresponding to multi-scale features, can be benefi-
cial for per-pixel prediction. Another interpretation is that,
to make the network robust to a certain degree of invari-
ance to translation, FCNs employ convolutions with stride
and/or pooling for this purpose. However, this translation
invariance is very harmful to accurately predict the labels
of pixels at the edge as a shift of several pixels may result
in the same feature for pixel classification. This is dilem-
ma. To use features from different levels of layers can par-
tially alleviate this problem, which is essentially the same
as using multiple different scales of features. In order to
aggregate multi-scale context, the work of [38] employs a
series of atrous convolution with increasing rates. Follow-
ing [38], deeplabv2 [20] proposes a astrous spatial pyramid
pooling (ASPP) which applies four parallel atrous convolu-
tion with different rates at the bottom of ResNet [15]. With
the evolution of Deeplab architectures, ASPP forms several
parallel atrous convolutions and an global average pooling
structure, and all of operations contain batch normalization.
ASPP has shown its sucess in extracting features of differ-
ent scales. Besides, Dense ASPP [35] proposes an improved
ASPP which is inspired by DenseNet [17]. RefinNet [22]
proposes an chained residual pooling which captures back-
ground context from a large image region. PSPNet [41]
proposes a Spatial Pyramid Pooling (PSP) to extract fea-
ture maps with different sizes of pooling, then concatenates
all the feature maps after upsampling. Notably, all of these
modules are placed at the end of the backbone. We design
a different approach that achieves multi-receptive field by
interleaving in the backbone.

Objects/stuff Edge: In the traditional image segmenta-
tion task, many methods attempt to use edge or low-level
information to improve performance. For the semantic seg-
mentation method based on deep learning, the use of edges
can be divided into two categories. The first one is using
an Encoder-Decoder architecture that refines the final pre-
diction with low-level features. Low-level features make
the results sharper. For examples, SegNet [1] utilizes the
saved pool indices to recover the reduced spatial informa-
tion. Unet [27] uses different spatial information by skip
connection. MSCI [21] aggregates features form different
scales with two LSTM chains. The other is multi-task that
shares parameters for both semantic segmentation and edge
detection, such as DFN [37]. The work of [44] shows that
an auxiliary task (the edge agreement head) leads to faster
training of the mask segmentation task.

2. Methods

In this section, we introduce our proposed Multi-
Receptive Field module in detail first. Then, we present the
Edge Aware Loss. Finally, we describe the complete net-
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Figure 2: The structure of standard Multi-Receptive Field module.
Each Conv represents a basic unit in backbone, such as bottleneck
in ResNet. Each path has different receptive field. The output of
each path is added by the weight. Each color represents a path.

work architecture.

2.1. Multi-Receptive Field Module

Most of the methods capture multi-receptive field by
modifying the structure at the end of the network [20, 41,
35]. However, previous works have not pay much atten-
tion on how to design a backbone to capture multi-receptive
field. Therefore, we propose the multi receptive field mod-
ule (MRFM) by redesigning the backbone, illustrated in the
Figure 2.

Multi-Receptive Field Module (MRFM): Generally,
the backbone has a basic module, such as bottleneck in
ResNet [15], the basic module in Xception [8] . Take Xcep-
tion for example. The basic module is composed of three
depthwise convolution, one skip connection or skip connec-
tion with 1 x 1 convolution. It’s easy to understand that
the basic module only captures single scale receptive field.
Therefore, it is difficult to segment multi-scale objects ac-
curately. So, we propose a multi-receptive field module (M-
RFM) that can simply replace any basic module, illustrated
in the Figure 2. MRFM is composed of two paths with d-
ifferent receptive field. One path of MRFM is the same as
the basic module, which called standard path. The other
path, called atrous path, has the same structure as the basic
module, but the convolution method is replaced by atrous
convolution. In order to adaptively choose which receptive
field is suitable, the output of each path is added by weights.
In particular, two weights are normalized. To sum up, M-
RFM is explained by Equation 1, where fi(x) denotes the
basic module in the standard path, gj(*) denotes the basic
module replaced by atrous convolution in the atrous path (&
denotes dilated rate), w; is weights of the standard path, and
wy is weights of the atrous path.

y = w1 - f1(z) + w2 - g (z) (1

Multi-Receptive Field Module Lite(MRFM-lite): In
order to achieve a trade-off between speed and performance,
we explore whether it can capture multi-scale receptive
fields without increasing parameters. The two paths of M-
RFM are exactly the same except for the dilated rate. Now
that two paths are identical except for the dilated rate, then

(a) Dual path in training
stage

(b) Remove atrous path

Figure 3: The process of Multi-Receptive Field Module Lite. Each
Conv represents a basic unit in backbone, such as bottleneck in
ResNet.

(c) FCN

(a) Image (b) Ground Truth

Figure 4: It is difficult to distinguish the boundaries of object-
s/stuff. Pixels located near the edge of Road and Pole are often
incorrectly predicted.

we share all the parameters of each path. This method can
effectively reduce the number of parameters, but it can still
capture the multi-receptive field. Therefore, the model ob-
tained through this structure training will have better perfor-
mance. The number of parameters decrease, but the compu-
tation doesn’t decrease during inference. In order to reduce
the computation during inference, thanks to sharing param-
eters, we could remove atrous path easily, then we fine tune
parameters for the better performance. In addition, when
we fine tune the parameters, we use a smaller learning rate
and fix the batch normalization. So, we call all of these pro-
cesses Multi-Receptive Field Module Lite (MRFM-lite), il-
lustrated in the Figure 3. In simple terms, the first step is
to train the network with the shared parameters dual paths,
and the second step is to remove atrous path and fine tune
the parameters. MRFM-lite achieves a trade-off between
speed and performance.

In summary, we propose two versions of MRFM. S-
tandard MRFM could replace any basic module to capture
multi-receptive field in the backbone. Although introducing
parameters, MRFM performs better. MRFM-lite does not
increase parameters and computation, but it still can cap-
ture multi-receptive field. MRFM and MRFM-lite both can
be applied to mainstream backbone, such as ResNet, Xcep-
tion.
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Figure 5: The weight map of edge aware loss. (a) shows the edge
detection result on the ground truth. (b) shows the weights map
that edge aware loss generates. The closer the edge is, the brighter
it will be.

(a)

2.2. Edge Aware Loss

By observing the results in the Figure 4, we find that
pixels near the edge of an object often tend to be incorrectly
classified. So, we propose a new edge aware loss(EAL).

The main idea is that during the training, a pixel close to
or on the edge is assigned a weight which incurs a weighted
penalty for the classifier. As shown in the Figure 5, the clos-
er the pixel to the edge, the greater the weight. Importantly,
EAL doesn’t need introduce additional annotated samples.
Here is the calculation process for EAL: First, edge is de-
tected on annotated ground truth with Sobel [10], and the
edge map is got. Second, to get the weight associated with
the pixel’s distance to the edge, we apply a k x k convolu-
tion, which is filled by 1, on the edge map. Third, to prevent
the weight from getting too large, set a threshold. The entire
calculation process can be expressed in the following Equa-
tion 2, where 2 denotes the ground truth, Cj, (*) donates the
k x k convolution filled by 1, E(x) donates the edge detec-
tion, T hreshold donates max value of the weight map. Fi-
nally, we get a weight map which incurs a weighted penalty
for classified. This weight map multiplies the output that
compute by cross entropy, as shown in Equation 3, where
y denotes the outputs of the network, w donates the weight
map.

w = min{Cy(E(z)), Threshold} 2)
L = SoftmazxLoss(y; w) 3)

2.3. Network Architecture

With the multi-receptive field module, we propose a
Multi-Receptive Field Network architecture based on Xcep-
tion modified by [7] as illustrated in Figure 6 . Here we
think of [7] as a powerful backbone. Given an input image,
we use Xception model with the dilated network strategy.
Meanwhile, replace the basic module in middle flow and
exit flow’s blockl with MRFM. In addition, the final fea-
ture map spatial size is 1/16 of the input image. Then ASPP
and Decoder, which are same as [7], are also employed. At
last, we employ EAL to compute loss.

Figure 6: Overview of Multi Receptive Field Network Architec-
ture.

3. Experiments

We evaluate our approach on two public and widely used
semantic image segmentation datasets, Cityscapes [9] and
Pascal VOC2012 [11]. We first report the implementation
details. Then we perform a series of ablation experiments
on Cityscapes, and analyze the results in detail. Finally, we
report our results on Pascal VOC2012 compared with other
state-of-the-art methods.

3.1. Implementation Details

Our proposed network is based on the Xception modi-
fied by [7] pretrained on ImageNet [19]. In order to better
demonstrate the improvement of the network performance
of the module, our work is based on FCN.

Training: Following previous work [20], we use the
“poly” learning rate policy where the base learning rate is
multiplied by (1— #gﬁ)l"’“’”. The initial learning rate is
set to 0.1, and power is set to 0.9. We train the network us-
ing mini-bath stochastic gradient descent(SGD) [19]. Mo-
mentum and weight decay coefficients are set to 0.9 and
0.0004 respectively. The size of mini-batch is set to 12.
We employ crop size of 513 during Cityscapes and Pascal
VOC2012 dataset.

Data augmentation: Following [6], we use
mean subtraction, apply data augmentation by
randomly scaling the input images with 7 scales
{0.5,0.75,1,1.25,1.5,1.75,2.0} and randomly left-right
flipping during training.
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Method mloU(%)
Xception41-Baseline 72.5
Xception65-Baseline 73.1
Xception71-Baseline 74.0
Xception41+ASPP 75.0
Xception4 1+MRFM-lite-2(DP) 74.7
Xception41+MRFM-lite-2(OP) 75.2
Xception41+MRFM-lite-4(OP) 72.2
Xception4 1+MRFM-lite-4(DP) 72.4
Xception41+MRFM-2 75.7
Xception4 1+MRFM-4 75.9
Xception41+MRFM-8 72.3
Xception41+MRFM-4(Exit flow) 74.3

Xception41+MRFM-4(Middle flow) 74.2

Table 1: Investigation of MRFM with different settings. Baseline
is Xception41-based FCN in which output stride is 16. MRFM-
(*) present dilated rate in the atrous path. DP present dual path
of MRFM-lite in training stage. OP present MRFM-lite is fine
tuned with one path. MRFM(EXxit flow) is represented as replacing
the exit flow module with MRFM module. MRFM(Middle flow)
is represented as replacing the middle flow module with MRFM
module. To simplify the presentation, MRFM without special in-
structions replaces the basic module in middle flow and exit flow.

3.2. Cityscapes Dataset

Dataset and Evaluation Metrics: Cityscapes is a large
and famous city street scene semantic segmentation dataset
[9]. 19 classes of which 30 classes of this dataset are con-
sidered for training and evaluation. Each image has a high
resolution 2048 x 1024 pixels. Cityscapes has 5,000 im-
ages taken from 50 different cities which are all fine anno-
tation. In these 5,000 images, there are 2,979 images for
training, 500 images for validation and 1,525 images for
testing. There are also 19,998 images with coarse annota-
tion. Cityscapes In the same image, cityscapes have many
scale objects, such as road, sky, vehicles, persons and so
on. In the same category, persons, cars, sky and so on also
have a lot of scales. So cityscapes is a dataset that is ex-
tremely sensitive to the scale. In this challenging dataset,
our method outperforms previous methods again. For eval-
uation, mean class-wise intersection over union (mloU) is
used.

Ablation Study for MRFM in Xception: In order
to evaluate the improvement of MRFM and MRFM-lite,
we carry out some experiments. As listed in the Table 1,
without more parameters, MRFM-lite-2 significantly im-
proves the segmentation performance over the Xception41-
baseline model by 2.7%. MRFM-lite is trained in two
stages, and we also provide the results of two stages. Com-
pared with baseline, MRFM-lite-2(DP) get a 2.2% pro-
motion. Compared with MRFM-lite-2(DP), MRFM-lite-
2(OP), which is fine tuned with one path, get a 0.5% pro-

Figure 8: Different receptive field. The same color represents the
same parameters. The top row shows MRFM-lite. The bottom
row shows standard MRFM. Each row shows different MRFM’s
receptive field. As shown in each row, receptive field becomes
large different by increasing dilation rate.

motion. Particularly, when we fine tune MRFM-lite, we set
the learning rate to 0.01 and fix batch normalization. We
find it is important to fix batch normalization. It is worth
noting that compared with Xception41, MRFM-lite has the
same structure, the same speed and higher performance. In
order to fairly compare the performance of MRFM under
the similar model capacity, we also give the baseline per-
formance of Xception65 and Xception71. With the increase
of model capacity, the performance of the model has been
improved, but MRFM is still better than Xcpetion71, which
has the largest model capacity. Specially, with MRFM-4,
the network is the best, which increases 3.4% that is com-
pared with Xception41, and increases 1.9% that is com-
pared with Xception71! In addition, compared with ASPP
that is famous method to capture multi-scale receptive field,
MRFM-lite is slightly better than ASPP without introduc-
ing more parameters and time, and MRFM also has a great
improvement over ASPP.

The receptive fields of both paths interact with each oth-
er. So MRFM-lite-2 is better than MRFM-lite-4. However,
in the standard MRFM, MRFM-4 is better than MRFM-2,
but MRFM-8 is very terrible. As shown in Figure 8, with
the increase of the dilated rate, the information of different
receptive field becomes more different. So, if the receptive
field of each path is much different, it is harmful. In addi-
tion, the convolution parameters of the two paths in MRFM-
lite are more relevant than those of the two paths in MRFM.
Therefore, the difference of dilated rate that is in the each
path of MRFM can be greater. It is precisely because the
receptive fields are not mutually constrained that MRFM is
0.7% higher than MRFM-lite.

Comparing the performance differences of different part-
s using MRFM. MRFM in exit flow and MRFM in middle
flow both bring about improvement than baseline. MRFM
in both middle flow and exit flow is better than MRFM in
one flow.

At last, all of experiments show that we use MRFM when
we need higher accuracy and MRFM-lite when we need
trade-off speed and accuracy. Both versions of MRFM can
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(a) Image (b) Ground Truth

(c) ASPP

(d) MRFM-lite (e) MRFM

Figure 7: Visual improvements on Cityscapes. Based on FCN, MRFM and MRFM-lite produces more accurate and detailed results.

improve the basic performance of the model.

Ablation Study for MRFM in ResNet: In order to
demonstrate the general of MRFM, we also product some
experiments on ResNet50. As illustrated in the Table 2,
all of settings are better than baseline. MRFM-4 has in-
creased 4.8% over the baseline network. Compared with
FCN, MRFM-lite-2 has improved 3.5% without any more
parameters. Compared with MRFM-lite-2(DP), MRFM-
lite-2(OP) has improved 1.8% . These experiments show M-
RFM and MRFM-lite could extend to other backbone easi-
ly. In addition, compared with ASPP, MRFM and MRFM-
lite are also standout.Through Xception and Resnet experi-
ments, we can boldly speculate that MRFM can be applied
to other backbone.

Method mloU(%)
ResNet50-Baseline 65.9
ResNetS0+ASPP 69.3

ResNet50+MRFM-lite-2(DP) 67.2
ResNet50+MRFM-lite-2(OP) 69.4
ResNet50+MRFM-4 70.7

Table 2: In order to demonstrate the generalization ability of the
MREFM better, ResNet experiments are conduct

Ablation Study for Receptive Field: As illustrated in
the Table 3, some experiments are organized to represent
the effects of different receptive field methods. Inception-
V4 [31] uses a lot of pooling operations, and the operation
of pooling will result in the loss of details. So the result of
InceptionV4 [31] is very poor. ResNet50-DCN [42] applies
deformable convolution in the stage2, stage3 and stage4. D-
CN [42] effectively improved performance by 2.6%. How-
ever, MRFM-lite is still 0.9% better than ResNet50-DCN,
and MRFM is still 2.2% better than ResNet50-DCN. We
think that DCN is an implicit way to learn multi-scale in-
formation, but MRFM and MRFM-lite are an explicit way
to learn multi-scale information, so MRFM and MRFM-lite

perform better.
Method mloU(%)
InceptionV4 51.5
ResNet50 65.9
ResNet50-DCN 68.5
ResNet50+MRFM-lite-2 69.4
ResNet50+MRFM-4 70.7

Table 3: Much work has been done to obtain different scales of
the receptive field. The experiments are conduct. DCN present the
deformable convolution [42]. The output stride of InceptionV4
[31] s 16.

Ablation Study for Edge Aware Loss: The intro-
duced EAL helps to detect object contour while not affect-
ing learning process in the main master. In particular, as
we have mentioned before, EAL doesn’t require additional
annotations. In the Table 4, compared with baseline, EAL
brings 1.6% improvement. DFN [37] proposed the mul-
ti task methods, including edge segmentation task and se-
mantic segmentation task. So EAL is also compared with
edge branch method. When adding edge branch, the model
shares the backbone, and each task has its own two convo-
lution operations. As illustrated in the Table 4, the result
is almost similar with Cross Entropy. Because differen-
t tasks have its own unique parameters, It’s hard for edge
branch to influence the main task. In addition, edges can be
considered as difficult samples, so we also compare OHEM
[30, 34]. Compared with OHEM [30, 34], EAL brings 1.1%
improvement. Lovas loss solves the gap between loss func-
tion and mloU in semantic segmentation. To better illustrate
the effectiveness of EAL, we also compared the difference
with Lovas loss. Compared with Lovas loss, EAL brings
1.3% improvement. In the Figure 9, with EAL, edges can
be clearly seen. When using EAL, two hyperparameters are
added. One is k, which determines the longest distance of
the edge, and the other is m, which determines the maxi-
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Method mloU(%)
Cross Entropy 72.5
Edge Branch 72.7

OHEM [30, 34] 73.0
Lovas Loss [2] 72.8
EAL 74.1

Table 4: Different loss functions brings different improvement. To
prove EAL’s more efficient, some experiments are conduct.

Method k m mloU(%)
Baseline 78.1

EAL 5 3 78.6
EAL 7 3 78.5

Table 5: In order to demonstrate the influence of the different hy-
perparameters, experiments are conduct. Except that backbone
is replaced with Xception41, the rest of baseline is the same as
deeplabv3+.

Figure 9: Visual improvements with EAL. (a) shows RGB image;
(b) shows feature map with EAL; (c) shows feature map without
EAL.

mum weight. In the Table 5, it shows that EAL can improve
steadily under different hyperparameters.

Framework Details: In order to show the effect of each
module in our framework and show the continuous im-
provement with our methods, we conducted some experi-
ments, illustrated in the Table 6. Based on FCN (Xcep-
tion41) and deeplabv2 (Xception41+ASPP) [20], MRFM,
MRFM-lite and EAL could bring improvement. Based on
powerful deeplabv3+ (Xception65) [7], our MRFM could
bring 1.4%. It is noteworthy that MRFM has continued to
improve with ASPP. Although MRFM has acquired multi-
scale information in backbone, as shown in the Table 6,
ASPP can still obtain multi-scale information. Since ASP-
P is located behind backbone and is closer to output, it is
meaningful to obtain multi-scale in any part of the network.
We can also see that MRFM does improve the performance
of backbone, so MRFM does have the prospect of improv-
ing segmentation baseline. In addition, we speculate that re-
placing ASPP with better modules will lead to better result-
s, such as replacing DPC [5], DRN [43], etc. The highest
performance MRFM can be improved by 0.5% with EAL
and get a mloU of 80.2% on the validation. At last, we get
the best performance model, which contains deeplabv3+,
MRFM-4 and EAL.

Baseline ASPP MRFM-lite-2 MRFM-4 EAL mloU
Xception41 725
Xception41 v 75.2
Xception41 v 75.9
Xception41 v 75.0
Xception41 v v 76.2
Xception41 v v v 76.3
Xception4 | v v 76.7
Xception41 v v v 711
Xception65+Decoder v 78.4
Xception65+Decoder v v 79.7
Xception65+Decoder v v v 80.2

Table 6: Ablation Study for the each module.

Figure 10: Visualization results on Cityscapes test set.

Ablation Study for different scale testing: In order to
show more clearly that MRFM performs better than single-
scale model in different scales, we organized a group of
experiments. Image sent to the network are scaled to for-
m different scales. Illustrated in the Tabel 7, the results of
each scale are more better than the results of single-scale
model. Moreover, by calculating the standard deviation, it
is found that the results fluctuate less in each scale, so it can
be proved that MRFM is robust for multi-scale.

Method 0.5s 0.75s 1.0s 1.25s 1.5s 1.75s 2.0s ‘ STD

Baseline 727 76.8 784 788 786 719 76.6 | 1.97
MRFM 751 784 798 803 800 796 78.1 | 1.68

Table 7: Each column represents how many times the input image
is the original image. The results show that MRFM is superior
to single-scale model in different scales. The baseline is same as
Deeplabv3+.

Comparing with State-of-the-art: We further com-
pare our method with the state-of-the-art methods on the
Cityscapes test set. For maximum performance, we use the
best structure in the Table 6, which consists of Deeplab-
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Methods road swalk build. wall fence pole tlight sign veg terrain sky person rider car truck bus train mbike bike | IoU
DUC [33] 985 859 932 577 611 672 737 78.0 934 72.3 95.4 85.9 705 959 761 90.6 83.7 67.4 75.7 | 80.1
DEN [37] 98.6 859 932 596 61.0 666 732 782 935 71.6 95.5 86.5 705 961 771 899 847 68.2 76.5 | 80.3
ResNet38 [34] 98.7 869 933 604 629 676 750 787 937 73.7 95.5 86.8 71.1  96.1 752 876 819 69.8 76.7 | 80.6
PSPNet [41] 98.7 869 935 584 637 677 761 805 93.6 722 95.3 86.8 719 962 777 915 836 70.8 715 | 81.2
Deeplabv3 [6] 98.6  86.2 935 552 632 700 771 813 938 723 95.9 87.6 734 963 751 904 85.1 72.1 783 | 81.3
AdapNet++ [32] 98.6  86.2 933 578 620 673 750 796 93.6 72.3 95.3 86.4 722 962 815 924 880 71.2 76.6 | 81.3
Mapillary [3] 98.4  85.0 936 617 639 677 774 808 937 719 95.6 86.7 72.8 957 799 931 89.7 72.6 782 | 82.0
Deeplabv3+ [7] 987 870 939 595 637 714 782 822 940 730 958 88.0 733 964 78.0 909 839 738 789 | 82.1
AutoDeeplab [25] | 988  87.6 938 614 644 712 776 809 94.1 72.7 96.0 87.8 728 965 782 909 884 69.0 77.6 | 82.1
DPC [5] 98.7 87.1 938 577 635 710 780 821 94.0 733 95.4 88.2 745  96.5 81.2 933 89.0 74.1 79.0 | 82.7
DRN [43] 988 877 940 651 642 701 774 816 939 73.5 95.8 88.0 749 965 80.8 921 885 72.1 78.8 | 82.8
Ours 98.8  88.0 942 638 647 723 783 818 942 739 95.7 88.3 746 964 795 922 88.1 72.8 78.6 | 83.0

Table 8: Results on Cityscapes testing set. Methods are trained using both fine and coarse data.

in gray color.(Note: the methods that only use cityscapes dataset are included.)

The best entry in each columns is marked

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mloU
RefineNet [22] 950 732 935 781 84.8 956 898 941 437 920 772 908 934 88.6 88.1 70.1 929 643 877 188 84.2
ResNet38[34] | 962 752 954 744 817 937 899 925 482 920 799 90.1 955 91.8 912 730 905 654 887 80.6 | 849
PSPNet [41] 958 727 950 789 844 947 920 957 431 910 803 913 963 923 90.1 715 944 669 888 820 | 84
Deeplabv3 [6] 9.4 766 927 778 816 967 902 954 475 934 763 914 972 91.0 92.1 713 909 689 908 793 | 857
EncNet [39] 953 769 942 802 853 965 908 963 479 939 80.0 924 96.6 90.5 915 709 936 665 877 80.8 | 859
DFN [37] 9.4 786 955 79.1 8.4 97.1 914 950 477 929 772 910 96.7 922 91.7 765 931 644 883 812 | 862
SDN [12] 969 786 960 796 8.1 971 919 966 485 943 789 936 955 92.1 91.1 750 938 648 89.0 846 | 86.6
Deeplabv3+[7] | 97.0 77.1 97.1 793 893 974 932 966 569 950 792 93.1 97.0 94.0 92.8 713 929 724 91.0 849 | 878
ExFuse [40] 96.8 803 97.0 825 878 963 926 964 533 943 784 941 949 91.6 923 817 948 703 90.1 838 | 879
MSCI [21] 96.8 76.8 97.0 80.6 893 974 938 971 567 943 783 935 97.1 94.0 92.8 72.3 926  73.6 90.8 854 88.0
Ours 97.1 786 97.1 806 8.7 973 936 967 3590 954 8L.I 932 975 94.2 92.9 723 931 742 910 850 884

Table 9: Per-class results on PASCAL VOC2012 testing set. Methods are all pre-trained on MS-COCO. The best entry in each columns is
marked in gray color.(Note: the methods that use the public dataset are included.)

V3+(Xception65), MRFM and EAL. In particular, we use
only fine-coarse data training networks, and submit our re-
sults to the official evaluation server. Results are shown in
Table 8. The result shows that our method is better than
previous method in some categories, such as building, pole,
traffic light, terrain, person. Because these classes have di-
verse scales.

3.3. Pascal VOC2012 Dataset

Pascal VOC2012: The Pascal VOC2012 is well-known
object segmentation dataset that includes 20 object cate-
gories and one background categories. There are 1,464 im-
ages for training, 1,449 images for evaluation and 1,456 im-
ages for testing. According to the common convention, we
augment the training set by additional annotated VOC im-
ages provided in [14] and the MS COCO dataset [24].

We follow the same strategy to train our model on
the Pascal VOC2012 dataset. The model used in Pascal
VOC dataset is the same as the model used in cityscapes
dataset. Table 9 indicates the experiment results on Pas-
cal VOC2012 testing set. Our proposed network achieves
88.4% mloU, outperforming other previous state-of-the-
art methods. Compared with [7], it increases 0.6% with
MRFM-lite. The results show that our method is better than
the previous method for the variable scales object, such as
aeroplane, bird, cow, horse, person.

Figure 11: Visualization results on Pascal VOC2012 test set.

4. Conclusion

In this paper, we have presented a Multi-Receptive Field
Network for semantic segmentation. In order to capture
multi-receptive field, the Multi-Receptive Field Module is
proposed as a general module. Furthermore, MRFM-lite
could achieve the trade-off between performance and speed.
You can use different versions of the MRFM according to
your needs. We have also provided an Edge Aware Loss
which is effective in distinguishing the boundaries of objec-
t/stuff. At last, We hope our method could help all tasks of
semantic segmentation improve the overall baseline.
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