
Triple-SGM: Stereo Processing using Semi-Global Matching with Cost Fusion

Jan Kallwies Torsten Engler Bianca Forkel Hans-Joachim Wuensche

Autonomous Systems Technology (TAS)

University of the Bundeswehr Munich

{jan.kallwies, torsten.engler, bianca.forkel, jw}@unibw.de

Abstract

In this work, we propose an extension of the Semi-Global

Matching framework for three images from a triplet-stereo

rig consisting of a horizontal and vertical camera pair. Af-

ter calculating the matching costs separately for both im-

age pairs, these are merged at cost level using cubic spline

interpolation. For cost values near the left/bottom image

boundaries, we propose an advanced weighting strategy.

Subsequently, the fused matching can be used directly for

the cost aggregation and disparity estimation.

The benefits of the proposed fusion strategy are demon-

strated by an evaluation based on synthetic and real-world

data. To encourage further comparisons on triple stereo al-

gorithms, the dataset used for evaluation is made publicly

available.

1. Introduction

Today, 3D reconstruction and recognition is a vital task.

Many technical systems depend on accurate and reliable 3D

information. One possibility to provide this information is

to use stereo vision systems. Compared to many other mea-

surement principles, e.g. LiDAR or Radar, stereo systems

have a high spatial resolution. Additionally, the color infor-

mation for each point is directly available for further pro-

cessing.

However, stereo vision systems have two major draw-

backs: Firstly, the accuracy strongly depends on the dis-

tance to the object. Secondly, the aperture problem due to

visually similar parts of the scene (i.e. periodic structures

or objects with low texture) leads to wrong or missing mea-

surements.

A solution is a larger baseline and the extension of the

camera rig with a third camera. While horizontal stereo

pairs are ideal to capture vertical structures, they often

fail in capturing horizontal structures, as it can be seen in

Fig. 1a. For that reason, the camera is placed above or below

one of the existing cameras to create a new vertical stereo

pair. Its baseline is aligned perpendicular to the baseline of

the horizontal camera pair.

(a) Horizontal disparity (b) Vertical disparity

(c) Fused disparity (our result)

Figure 1: Disparity maps for one scene using a horizontal

stereo pair, a vertical pair and our Triple-SGM. The dispar-

ity overlay colors range from red for high values to blue for

low values. Note the missing disparities in (a) and (b).

As shown in Fig. 1b, the vertical pair is superior to

the horizontal pair in the detection of horizontal structures

while being poor at vertical structures. Fusing the results

of those two stereo systems can combine the advantages of

both, as it can be seen in Fig. 1c. It also improves matching

of periodic structures, as it is more unlikely, that the period-

icity is identical in both image directions.

The resulting disparities can be fused based on a confi-

dence measure, e.g. the final matching cost [17]. However,

we argue that fusion should be done as early in the algo-

rithm as possible. With proper alignment of the cost maps,

the cost can be fused directly, and the minimum search can

be done on a single cost map. The benefit is an unambigu-

ous result in the disparity. Moreover, regions which suffer

from occlusion and have no valid cost entry in one stereo

system may be completely visible in the other stereo rig.

Therefore we introduce an extension of the popular

stereo framework Semi-Global Matching (SGM) [15] for

the disparity estimation from three input images using cost

fusion. Additionally, a trinocular rectification approach is

described. We further provide a synthetic dataset for the

evaluation of triple stereo algorithms. Our quantitative eval-

uation is based on this synthetic as well as real-world data.

192

2. Related work

One of the most popular and widely used stereo algo-

rithms is Semi-Global Matching by Hirschmueller [15]. He

introduced mutual information as a matching cost between

pixels and implemented a cost aggregation across the entire

image. Thereby, a global constraint for the disparity com-

putation is enforced leading to much higher robustness and

denseness of the disparity image. SGM achieved great re-

sults, and modified versions of it still appear in the upper

ranks of various stereo vision challenges, e.g. the Middle-

bury challenge [21] or more recently, the Robust Vision

Challenge [1].

To achieve real-time performance, SGM was ported to

various hardware. Gehring et al. [8] for example use a

FPGA. Many efforts have been made to implement SGM on

graphics cards using OpenGL [7] or CUDA [10, 3, 19, 14].

Other work regarding SGM is done on its extension with

Convolutional Neural Networks (CNN), e.g. [22, 5, 25].

These modern CNN methods deliver very good results, but

are usually far too slow for real-time applications. In addi-

tion, they have to be explicitly trained for the case of appli-

cation and thus need prior knowledge.

Another approach to improve the results of stereo match-

ing is to use more than two cameras. Maitre et al. [18]

use camera arrays to optimize the resulting depth structure.

Additional cameras increase the processing load and make

the algorithm difficult to apply in real-time scenarios. One

of the most important factors for real-time applications of

stereo algorithms is rectification. After rectification, corre-

sponding image pixels are on the same row/column of the

image, respectively. However, image rectification is only

unambiguous for up to three cameras. More cameras can

only be rectified if their optical centers lie on the same

plane, leading to high production constraints of the camera

array. Otherwise, the image rectification for every camera

can only be computed in a least squares manner, thus intro-

ducing rectification errors.

A compromise between computational effort and the re-

sulting depth quality can be achieved using a rack of three

cameras. Furthermore, the rectification of three cameras is

always well defined. Examples of trinocular image recti-

fication can be found in [12] and [2]. Baik et al. offer an

intuitive solution to the rectification problem but constrain

the angle between the upper and the right image to 45◦ [2].

While this constraint simplifies the disparity computation,

it is over-restrictive in our case.

In order to calculate the disparity in three camera images,

different strategies can be applied. The most straightfor-

ward solution is the fusion of the resulting disparity images.

Hirschmueller [15] suggested multi-baseline matching by

separately computing the disparities for all image pairs and

fusing them afterwards. He takes the mean value of the

different disparities, weighted with the baseline of the cor-

responding stereo pair. In [17] the disparities are calculated

separately and then fused based on a peakness confidence

measure. However, late fusion is still susceptible to local

optima in each of the calculations. Additionally, the run-

time is increased, because each calculation step has to be

executed twice.

An alternative is a direct fusion on a cost basis. One

of the first cost-based approaches was presented in [20].

The authors added the cost each disparity produced in both

(horizontal and vertical) image pairs and searched for the

globally optimal solution. The costs were based on the cor-

relation of a window around the pixels without taking any

global constraint into account. Heinrichs et al. proposed a

cost fusion for image triplets based on SGM [13]. While the

results are promising, the runtime is quite large (about 100 s
per image triplet), and the algorithm is only applicable for

camera triplets with two identical baseline lengths.

3. Trinocular rectification

Image rectification is the process of aligning the image

planes of all cameras. We adapted the rectification process

described in [2] for the use of arbitrary baselines. The goal

of trinocular rectification is to align the epipolar lines with

the horizontal and vertical axis of the image plane. This can

be achieved by moving the epipoles to infinity what means

in turn that the following constraints are satisfied:

1. The images planes of all three cameras are coplanar

and parallel to the plane spanned by the three camera

centers.

2. The x-axis of all cameras are parallel to the line be-

tween the left and right camera center.

In the following, we assume that the full calibration of

all three cameras is known and that they can be modeled as

pinhole cameras. We use the left camera as the common

reference.

CL

e′x

e′y

CR

CT

(a) Raw, unrectified cameras

C′
L

C′
R

C′
T

β

(b) Rectified cameras

Figure 2: Schematic illustration of the rectification process.

The x-axis of each camera is shown as a bold arrow and the

desired orientation of the rectified cameras is depicted by

the basis vectors e′x and e′y . The camera center points did

not move by the rectification. Only the orientations of all

three cameras have been modified.

193

Thus, the projection matrices are:

PL = KL [I|0] (1)

PR = KR [RR| −CR] (2)

PT = KT [RT| −CT] , (3)

where KL, KR and KT denote the camera matrices, RR

and RT the rotation matrices of the right and the top camera

relative to the left camera and CR and CT the camera center

center points relative to the left camera.

In order to satisfy the constraints mentioned above, a

common orientation of all three cameras is required. That

orientation can be described by the three basis vectors e′x,

e′y and e′z , which can be determined as follows [2]:

1. The new x-axis is parallel to the horizontal baseline.

e′x =
CR

||CR||
(4)

2. The new z-axis is perpendicular to the plane spanned

by the three camera centers.

e′z =
CR ×−CT

||CR ×−CT||
(5)

3. The new y-axis is determined by the new x- and z-axis.

e′y = e′z × e′x (6)

Thus, the common rotation matrix for all three rectified

cameras is given by:

R′ =
[

e′x e′y e′z
]⊤

. (7)

Please note, that this matrix is completely determined by

the positions of the camera centers and has no degree of

freedom.

The intrinsic parameters of the rectified cameras can be

chosen freely. However, they have to be equal for all three

cameras in order to satisfy the constraints for rectification:

K′ =





fu s cu
0 fv cv
0 0 1



 . (8)

Since real-world camera setups are never perfectly

aligned, i.e. the angle between the right, left and top camera

is not exactly 90◦, the epipolar lines of the rectified vertical

camera pair would not be aligned vertically (see angle β in

Fig. 2b). In order to compensate that, a skew factor (also

called shearing factor) has to be chosen appropriately:

s =
C′

T[x]

−C′
T[y]

= tanβ. (9)

Here, the indices [x] and [y] depict the respective com-

ponents of a vector, and C′
T is the camera center of the top

camera represented in the coordinate frame of the rectified

left camera:

C′
T = R′ ·CT. (10)

The other intrinsic parameters, namely the focal lengths

and the optical centers can be chosen freely and depend on

the actual hardware setup.

Thus, the final rectified projection matrices are:

P′
L = K′R′ [I|0] (11)

P′
R = K′R′ [RR| −CR] (12)

P′
T = K′R′ [RT| −CT] . (13)

With the given rectified camera calibrations, the images

can be transformed accordingly by applying the following

homographies to the images (see e.g. [11]):

H′
i = K′ ·R′ ·Ki

−1 with i ∈ {L,R,T} . (14)

4. Triple-SGM

An overview of our algorithm performing semi-global

matching on three images is given in the flowchart of Fig. 3.

It comprises the following steps (bold points indicate the

difference to the original SGM approach):

1. Rectification of all three images.

2. Rotation of left and top image by 90◦.

3. Census transform of all four images.

4. Calculation of horizontal (left ↔ right) and vertical

(left rotated ↔ top rotated) matching costs.

5. Interpolation and summation of matching costs.

6. Cost accumulation along image paths.

7. Minimum search (winner takes it all).

8. Optional post-processing.

4.1. Semi­global matching

Before describing our approach to process three images,

we introduce Semi-Global Matching (SGM) [15].

The energy function of the disparity image D is defined as

E(D) =
∑

p

(

C(p, dp)

+
∑

q∈Np

P1T [|dp − dq| = 1]

+
∑

q∈Np

P2T [|dp − dq| > 1]
)

, (15)

where P1 and P2 are penalty factors, p and q are image

points and Np is a local region around an image point.

194

Rectified

Left Camera

Rectified

Top Camera

Rectified

Right Camera

Census Transform

Census Transform

Matching Cost

Matching Cost

Cost Interpolation

& Fusion

Cost Aggregation
Minimum Search &

Subpixel Approximation
Post Processing

Left Image

Right Image

Rotated Top Image

Rotated Left Image

Rotated Vertical Cost

Horizontal Cost

Figure 3: Flowchart of the presented triple SGM algorithm. The yellow boxes show the components of the standard SGM

pipeline for a horizontal stereo pair. The blue boxes represent the additional components needed for vertical stereo. The red

box forms the core of our contribution – the efficient fusion of the horizontal and vertical information at cost level. Thus, the

red and blue boxes together represent the algorithmic contribution of this paper.

The first summand in Eq. (15) is the matching cost for a

certain image position and disparity. The second one rep-

resents the penalty P1 for disparity differences between ad-

jacent pixels of 1, i.e. for slanted surfaces. The third sum-

mand introduces a penalty of P2 for disparity discontinu-

ities. Here, the function T [·] is the Kronecker delta return-

ing 1 if the specified condition is met, and 0 otherwise.

The direct minimization of E(D) is computationally ex-

tremely demanding. However, it can be approximated and

solved efficiently by following 1D paths [15]. The cost of

an arbitrary path along the direction r is given by

Lr(p, d) =C(p, d) + min
(

Lr(p− r, d),

Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,

min
i 6=d±1

Lr(p− r, i) + P2

)

−min
k

Lr(p− r, k).

(16)

Adding the aggregated cost of all paths leads to an ap-

proximation of the original global energy function and can

finally be used to compute the disparity at an image position

p using the winner-takes-all-strategy:

D(p) = argmin
d

∑

r

Lr(p, d). (17)

4.2. Matching cost

The SGM algorithm requires an underlying cost function

C(p, dp) to compare pixels based on their neighborhood. It

is important that this cost function is robust against illumi-

nation and brightness changes. Possible choices for the cost

function are mutual information [23], census transform or

rank transform (both introduced in [24]). It has been shown,

that census transform outperforms rank transform in terms

of SGM matching accuracy [4] and that it offers good per-

formance under illumination changes [9]. Additionally, it

is straightforward to compute in parallel. This is why we

use the census transform in this work. However, any other

matching cost could be used as well.

Census transform The census signature is a bit string de-

scribing the surroundings of each pixel. Given a pixel at

the image location i, j with the gray value g(i,j) the census

string is defined as:

C(i,j) =
[

. . . H(g(i+lv,j+lh) − g(i,j)) . . .
]

(18)

with − 0.5 (wv − 1) ≤ lv ≤ 0.5 (wv − 1)

and − 0.5 (wh − 1) ≤ lh ≤ 0.5 (wh − 1) .

Here, wh and wv are the odd horizontal and vertical sizes of

the surrounding window, and the heavyside function H(·)
is given by

H(x) :=

{

0 if x < 0
1 if x ≥ 0 .

(19)

Horizontal and vertical matching cost The matching

cost between two images is based on the census strings cal-

culated for each pixel. For each pixel in the left (resp. ro-

tated left) image g(i,j),L and each disparity 0 ≤ d < 128 px

195

the matching cost is computed by counting the number of

different bits in both census strings

Ch(i, j, dh) = ∆hamming

(

C(i,j),L, C(i,j+dh),R

)

. (20)

The result Ch(i, j, dh) is a matching cost for each pixel and

possible disparity. The same is done for the vertical pair:

Cv(i, j, dv) = ∆hamming

(

C(i,j),L, C(i+dv,j),T

)

. (21)

4.3. Fusion of matching costs for three images

The most straightforward solution to the cost addition

problem would be computing each step of SGM separately

and adding the vertical and horizontal costs right before the

winner takes it all step. However, this leads to an unneces-

sary increase in runtime (compare Section 5.4) because the

smoothing step is hard to parallelize. Therefore, the cost

addition is done before accumulating the paths of the SGM

algorithm, avoiding duplicate accumulation:

C(i, j, dh) = 0.5 · Ch (i, j, dh)+

0.5 · Cv (i, j, fb · dh) (22)

with the scaling factor fb resulting from the different base-

lines of the horizontal and vertical camera pair bh and bv:

fb =
bv

bh

. (23)

Figure 4 shows an example how the fusion of matching

costs can resolve ambiguities.

0 20 40 60 80 100 120
0

20

40

60

Disparity d in px

M
at

ch
in

g
co

st
C
(d
)

horizontal vertical

(a) Horizontal and vertical census matching costs for a single pixel.

0 20 40 60 80 100 120
0

20

40

60

Disparity d in px

M
at

ch
in

g
co

st
C
(d
)

fused

(b) Fused census matching cost for a single pixel.

Figure 4: Though the horizontal and vertical matching costs

alone would not lead to the correct disparity value, the fused

cost function shows a unique and correctly located peak.

4.3.1 Cost interpolation

The evaluation of Cv in Eq. (22) is in general done at non-

integer disparity values fb · dh, whereas the actual costs are

only available at integer steps (see Eq. (21)). The most

straightforward approach would be to do nearest-neighbor

interpolation. However, this leads to significant problems

in the final results (see Fig. 5).

Therefore, we propose to use cubic Hermite splines

(cSplines) for the interpolation:

Cv (i, j, fb · dh) = (2t3 − 3t2 + 1)p0 (24)

+ (t3 − 2t2 + t)m0

+ (−2t3 + 3t2)p1

+ (t3 − t2)m1

with

t = fb · dh − ⌊fb · dh⌋ (25)

p0 = Cv (i, j, ⌊fb · dh⌋)

p1 = Cv (i, j, ⌊fb · dh⌋+ 1)

m0 =
p0 − p−1

2
+

p1 − p0

2

m1 =
p1 − p0

2
+

p2 − p1

2

and

p−1 = Cv (i, j, ⌊fb · dh⌋ − 1) (26)

p2 = Cv (i, j, ⌊fb · dh⌋+ 2) .

Note that values of Cv outside the valid disparity range

are padded.

(a) Resulting 3D point cloud

without cSpline fit of the ver-

tical cost vectors.

(b) Resulting 3D point cloud

with cSpline fit of the vertical

cost vectors.

Figure 5: Influence of the cSpline fit of the cost vectors.

Without the interpolation, the necessary scaling of the base-

line and thus of the disparity values leads to significant

pixel-locking effects.

196

4.3.2 Handling of image boundary regions

In stereo algorithms, the disparity for parts of the left image

cannot be calculated correctly. Assume an object close to

the stereo rig with a high disparity d, located close to the

left boundary of the left image. It would only be visible in

the right image if it holds j > d. With a maximum disparity

of 127 px, the first 127 px of the left image cannot be cal-

culated safely. Some algorithms like OpenCV Blockmatch-

ing crop this part of the disparity image, which is the save

choice to do. Others interpolate and generate inaccurate re-

sults at best, and wrong results (if they miss an object en-

tirely) at worst, e.g. [14]. The left-right consistency check,

proposed by Hirschmüller [15] is able to remove most of

the wrong results.

In the triplet case, more options are possible. The invalid

area in one pair (horizontal or vertical) is often valid in the

other. We propose to augment the costs in the invalid area

with confidence measures av and ah = 2− av, in the range

of [0, 2] decreasing linearly to the edge of the image. The

cost is weighted according to the confidences:

C(i, j, dh) = ah · 0.5 · Ch(i, j, dh)+

av · 0.5 · Cv(i, j, fb · dh) (27)

with

av =
1

128



















irot if irot < 128 ∧ j ≥ 128

2 · 128− j if irot ≥ 128 ∧ j < 128

irot − j + 128 if irot < 128 ∧ j < 128

128 otherwise

(28)

and

irot = h− i− 1. (29)

5. Experimental results

The implementation we utilized to evaluate the effective-

ness of our Triple-SGM algorithm as described in this sec-

tion is based on libSGM, available at https://github.

com/fixstars/libSGM. We used cost aggregation

along four paths (aligned horizontally and vertically) with

penalties of P1 = 10 and P2 = 200 (see Eq. (15)).

Subpixel approximation is done using a local parabola

fit of the accumulated costs. Furthermore, we use a median

filter on the final disparity image as suggested in [16] with

a window size of 5 px. Only in case of purely horizontal or

vertical stereo matching, a left-right consistency check [16]

is performed.

We compare our Triple-SGM based on cost fusion to the

disparity fusion proposed in [17] applied to standard SGM

disparity images.

5.1. Experimental setup

We add a third camera above the left camera to an au-

tonomous vehicle and thus create a vertical stereo pair with

a baseline perpendicular to the existing horizontal stereo

pair. To obtain good precision, the horizontal baseline is

chosen relatively large with 80 cm, while the vertical base-

line is limited to 20 cm due to the mechanical setup. For

comparability between the stereo pairs, the disparity errors

of the vertical pair are scaled by factor 4 accordingly.

To evaluate the triplet stereo approach, we created a

synthetic dataset using the autonomous driving simulator

CARLA [6]. This way, we obtain accurate ground truth

depth information for quantitative evaluation. Some exam-

ple images of the dataset can be seen in Table 2. The com-

plete synthetic dataset containing 2000 scenes with three

camera views each, along with the corresponding ground

truth disparity image, is freely available at https://

www.mucar3.de/wacv2020-triple-sgm .

To assess Triple-SGM in real-world, we compare our

triple stereo results with accumulated depth information

from the LiDAR sensor Velodyne HDL-32E.

5.2. Qualitative evaluation

Experimental results obtained from real-world data can

be seen in Fig. 6. The following observations can be made:

• The occlusion resulting from the large horizontal base-

line is reduced by the combination with the vertical

camera pair, e.g. (A).

• Artifacts are reduced significantly in case of cost fu-

sion compared to classical stereo as well as disparity

fusion, e.g. (B).

• Disparities on objects with low texture (C) and peri-

odic structures (D) are significantly improved using

cost fusion.

• Using cost fusion leads to better representation of ob-

ject outlines, e.g. (E).

• The boom barrier (F) can not be detected using only a

horizontal camera pair. Although being detected better

using the vertical camera pair, the measurements are

very inaccurate and still quite sparse, even if combined

with the horizontal pair by disparity fusion. With the

same input data, cost fusion detects the barrier com-

pletely and shows the most accurate measurements.

5.3. Quantitative evaluation

Evaluating our Triple-SGM on 2000 images of our syn-

thetic dataset, we see a significant increase in pixels with

correct disparity. Figure 7a shows, that a median of 88% of

the image has a disparity error below 2 px compared to 82%
using only a traditional horizontal stereo pair. The vertical

pair performs worse due to its smaller baseline and the more

frequent occurrence of vertical structures.

197

A

DC

E
F

(a) Left camera image

A

B

D

C

FE

(b) Horizontal (c) Vertical (d) Disparity fusion [17]

A

B

C

D

E F

(e) Cost fusion (ours)

Figure 6: Qualitative results of real-world scenes shown in (a). The 3D point clouds shown in top-down view in (b) – (e) are

derived from the different disparity images. The color of a point encodes its height with blue being near the ground and red

being above a height of 2.2m.

Max. disparity error 0.25px 0.5px 1px 3px

Horizontal 51.6% 70.8% 80.9% 85.2%

Vertical 27.0% 49.7% 73.3% 84.5%
Disparity fusion [17] 44.6% 69.4% 86.3% 91.7%
Cost fusion (ours) 46.0% 71.1% 87.1% 92.0%

Table 1: Percentage of correct pixels for different thresholds

for the maximum disparity error.

It can be seen in Fig. 7b that the horizontal stereo pro-

vides a few more very accurate disparity pixels; but as of

allowing an error in the disparity of about 0.5 px, Triple-

SGM outperforms traditional stereo. And, as Table 1 shows,

our triple stereo based on cost fusion surpasses the disparity

fusion of [17] in all cases. The fact that the different meth-

ods shown in Fig. 7b do not converge to a common rate of

correct pixels can be explained by the different sizes of the

occluded areas. While the classic stereo methods always

suffer from occluded image areas, the combination of hor-

izontal and vertical stereo can largely compensate that and

thus shows an ultimately higher percentage of valid pixels.

A selection of the evaluation results for scenes from our

synthetic dataset as well as real-world images is given in

Table 2. The worse results for the real-world data can result

from an inaccurate localization of the camera within the ac-

cumulated point cloud. It shows that the combination of

horizontal and vertical stereo pairs is beneficial for the de-

tection of objects represented by higher correct pixel rates.

The accuracy (represented by the RMSE) of the vertical

stereo rig is worse than that of the horizontal one due to the

smaller baseline. This also results in slightly higher RMSE

values for the triple case compared to horizontal stereo. A

higher vertical baseline would mitigate this issue. Further,

the results show that our proposed cost-based fusion algo-

rithm is superior to disparity fusion [17].

5.4. Timing

We tested the code on a Nvidia GeForce GTX 1050Ti

with an input image size of 926 px× 276 px, averaged over

300 runs. Despite having to calculate the disparity of two

stereo pairs instead of one, the new step of matching cost

fusion takes only 7.2ms. This results in a total runtime for

our Triple-SGM algorithm of 25ms compared to 17ms for

standard dual camera SGM. The most time-consuming part,

the cost accumulation along the scanlines in SGM, remains

unchanged with 14ms. This is a major advantage over dis-

parity fusion [17], where SGM has to be executed twice.

Although each pixels’ added cost can be calculated in paral-

lel, there are overlapping memory accesses which slow the

algorithm down. Therefore it is important to accumulate the

costs before the actual scanning.

6. Conclusion

In this work, an extension of the SGM framework for

the processing of image triplets is presented. The matching

costs from a horizontal and a vertical stereo pair are fused

by a simple weighted sum. This saves computation time

because the cost aggregation of the original SGM algorithm

has to be run only once and improves the overall results.

We showed the effectiveness of the proposed fusion strategy

using synthetic and real-world data. The synthetic dataset

used for the evaluation is made publicly available in order to

allow further comparison and development of triple stereo

algorithms.

ACKNOWLEDGMENT

The authors gratefully acknowledge funding by the Fed-

eral Office of Bundeswehr Equipment, Information Tech-

nology and In-Service Support (BAAINBw).

198

Horizontal Vertical Cost fusion

65%

70%

75%

80%

85%

90%

95%

Co
rre

ct
 p

ixe
ls

(a)

0 0.5 1 1.5 2 2.5 30%

20%

40%

60%

80%

100%

Horizontal
Vertical
Cost fusion

Threshold for max. disparity error

Co
rre

ct
 p

ixe
ls

(b)

Figure 7: (a) Percentage of correct pixels when considering pixels with disparity errors under 2 px as correct. (b) Development

of the correct pixels with varying threshold for the maximum disparity error.

Horizontal 71.2% 0.51 px Horizontal 71.3% 0.54 px Horizontal 70.0% 0.47 px

Vertical 73.0% 0.89 px Vertical 69.1% 0.74 px Vertical 72.5% 0.65 px

Disparity fusion [17] 81.3% 0.55 px Disparity fusion [17] 79.0% 0.54 px Disparity fusion [17] 82.4% 0.54 px

Cost fusion (ours) 83.3% 0.53 px Cost fusion (ours) 83.7% 0.54 px Cost fusion (ours) 83.0% 0.54 px

Horizontal 82.3% 0.44 px Horizontal 83.2% 0.41 px Horizontal 70.9% 0.38 px

Vertical 82.1% 0.66 px Vertical 85.1% 0.70 px Vertical 71.4% 0.62 px

Disparity fusion [17] 91.1% 0.47 px Disparity fusion [17] 91.5% 0.42 px Disparity fusion [17] 81.1% 0.54 px

Cost fusion (ours) 91.7% 0.45 px Cost fusion (ours) 92.9% 0.40 px Cost fusion (ours) 83.7% 0.50 px

Horizontal 73.0% 0.99 px Horizontal 66.5% 1.03 px Horizontal 65.4% 0.74 px

Vertical 65.5% 1.00 px Vertical 36.8% 1.10 px Vertical 49.0% 1.13 px

Disparity fusion [17] 82.5% 0.73 px Disparity fusion [17] 62.4% 1.06 px Disparity fusion [17] 74.0% 0.84 px

Cost fusion (ours) 84.2% 0.83 px Cost fusion (ours) 79.3% 1.01 px Cost fusion (ours) 77.3% 0.74 px

Table 2: Quantitative results for example scenes from our synthetic dataset as well as real-world images. The first column

under each image represents the percentage of pixels with a disparity error below 2 px. The second column gives the root-

mean-square error (RMSE) of all those pixels.

199

References

[1] Robust Vision Challenge. http://www.robustvision.net/,

2018. 2

[2] Y. K. Baik, J. Choi, and K. M. Lee. An Efficient Trinocu-

lar Rectification Method for Stereo Vision. Proceedings of

Frontiers of Computer Vision (FCV), 2007. 2, 3

[3] C. Banz, H. Blume, and P. Pirsch. Real-Time Semi-Global

Matching Disparity Estimation on the GPU. In Proceed-

ings of IEEE International Conference on Computer Vision

(ICCV), pages 514–521, Nov. 2011. 2

[4] C. Banz, P. Pirsch, and H. Blume. Evaluation of Penalty

Functions for Semi-Global Matching Cost Aggregation. In-

ternational Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences (ISPRS, pages 1–6, July

2012. 4

[5] Z. Chen, X. Sun, L. Wang, Y. Yu, and C. Huang. A Deep Vi-

sual Correspondence Embedding Model for Stereo Matching

Costs. In Proceedings of IEEE International Conference on

Computer Vision (ICCV), page 972–980, Dec. 2015. 2

[6] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and

V. Koltun. CARLA: An Open Urban Driving Simulator. In

Proceedings of the 1st Annual Conference on Robot Learn-

ing, page 1–16, 2017. 6

[7] I. Ernst and H. Hirschmüller. Mutual Information Based

Semi-Global Stereo Matching on the GPU. In International

Symposium on Visual Computing (ISVC), 2008. 2

[8] S. K. Gehrig, F. Eberli, and T. Meyer. A Real-Time Low-

Power Stereo Vision Engine Using Semi-Global Matching.

In M. Fritz, B. Schiele, and J. H. Piater, editors, Computer

Vision Systems, pages 134–143. Springer Berlin Heidelberg,

2009. 2

[9] D. Hafner, O. Demetz, and J. Weickert. Why Is the Cen-

sus Transform Good for Robust Optic Flow Computation?

In A. Kuijper, K. Bredies, T. Pock, and H. Bischof, editors,

Scale Space and Variational Methods in Computer Vision,

pages 210–221. Springer Berlin Heidelberg, 2013. 4

[10] I. Haller and S. Nedevschi. GPU optimization of the SGM

stereo algorithm. In Proceedings of IEEE International Con-

ference on Intelligent Computer Communication and Pro-

cessing (ICCP), pages 197–202, Aug. 2010. 2

[11] A. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2 edition,

2006. 3

[12] M. Heinrichs and V. Rodehorst. Trinocular Rectification for

Various Camera setups. In Symposium of ISPRS Commission

III-Photogrammetric Computer Vision PCV, volume 6, page

43–48, 2006. 2

[13] M. Heinrichs, V. Rodehorst, and O. Hellwich. Efficient

Semi-Global Matching for Trinocular Stereo. Proceedings

of Photogrammetric Image Analysis, Jan. 2007. 2

[14] D. Hernandez-Juarez, A. Chacón, A. Espinosa, D. Vázquez,

J. Moure, and A. López. Embedded Real-time Stereo Es-

timation via Semi-global Matching on the GPU. Procedia

Computer Science, 80:143–153, 2016. International Confer-

ence on Computational Science (ICCS). 2, 6

[15] H. Hirschmueller. Accurate and Efficient Stereo Processing

by Semi-Global Matching and Mutual Information. In Pro-

ceedings of IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2005. 1, 2, 3, 4, 6

[16] H. Hirschmüller. Semi-Global Matching: Motivation, De-

velopment and Applications, Sept. 2011. 6

[17] J. Kallwies and H.-J. Wuensche. Effective Combination of

Vertical and Horizontal Stereo Vision. In Proceedings of

IEEE Winter Conference on Applications of Computer Vi-

sion (WACV), Lake Tahoe, NV/CA, USA, Mar. 2018. 1, 2,

6, 7, 8

[18] M. Maitre, Y. Shinagawa, and M. N. Do. Symmetric Multi-

View Stereo Reconstruction from Planar Camera Arrays. In

Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2008. 2

[19] M. Michael, J. Salmen, J. Stallkamp, and M. Schlipsing.

Real-time stereo vision: Optimizing Semi-Global Matching.

In Proceedings of IEEE Intelligent Vehicles Symposium (IV),

pages 1197–1202, June 2013. 2

[20] J. Mulligan, V. Isler, and K. Daniilidis. Trinocular Stereo: a

Real-Time Algorithm and its Evaluation. International Jour-

nal of Computer Vision (IJCV), 47(1-3):51–61, 1 2002. 2

[21] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl,

N. Nešić, X. Wang, and P. Westling. High-resolution Stereo

Datasets with Subpixel-Accurate Ground Truth. In Proceed-

ings of German Conference on Pattern Recognition (GCPR),

page 31–42. Springer, 2014. 2

[22] A. Seki and M. Pollefeys. SGM-Nets: Semi-Global Match-

ing with Neural Networks. In Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

page 6640–6649, July 2017. 2

[23] P. Viola and W. M. Wells. Alignment by Maximization of

Mutual Information. In Proceedings of IEEE International

Conference on Computer Vision (ICCV), page 16–23, June

1995. 4

[24] R. Zabih and J. Woodfill. Non-parametric Local Transforms

for Computing Visual Correspondence. In J.-O. Eklundh,

editor, Proceedings of European Conference on Computer

Vision (ECCV), page 151–158. Springer Berlin Heidelberg,

1994. 4

[25] J. Zbontar and Y. LeCun. Stereo Matching by Training a

Convolutional Neural Network to Compare Image Patches.

Journal of Machine Learning Research, 17:1–32, 2016. 2

200

