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Abstract

Handwritten Text Recognition (HTR) is still a challeng-

ing problem because it must deal with two important dif-

ficulties: the variability among writing styles, and the

scarcity of labelled data. To alleviate such problems, syn-

thetic data generation and data augmentation are typically

used to train HTR systems. However, training with such

data produces encouraging but still inaccurate transcrip-

tions in real words. In this paper, we propose an unsuper-

vised writer adaptation approach that is able to automat-

ically adjust a generic handwritten word recognizer, fully

trained with synthetic fonts, towards a new incoming writer.

We have experimentally validated our proposal using five

different datasets, covering several challenges (i) the docu-

ment source: modern and historic samples, which may in-

volve paper degradation problems; (ii) different handwrit-

ing styles: single and multiple writer collections; and (iii)

language, which involves different character combinations.

Across these challenging collections, we show that our sys-

tem is able to maintain its performance, thus, it provides

a practical and generic approach to deal with new doc-

ument collections without requiring any expensive and te-

dious manual annotation step.

1. Introduction

Handwritten Text Recognition (HTR) is a difficult task to

automate by means of computer vision and machine learn-

ing techniques, mainly because of both the inter- and intra-

class variability. Different instances of the same word, writ-

ten by different people, will inevitably be composed by a

succession of rather different glyphs, and thus, will end up

looking very disparate from one sample to another. In the

same sense, the same character written by the same writer,

might look very different depending on the context when

it was written. We humans, once we learn how to read

scripted words, perform quite well at reading handwritten

Hoss fasl werder

↓ ↓ ↓
those part under

REIUIL eUOROV MONSEASe

↓ ↓ ↓
results emotion nonsense

oleuus olous 1000

↓ ↓ ↓
depuis dans vous

Ilargarivia lhicenhar favanye

↓ ↓ ↓
Margarida llicentia parayre

Todfenglodu MihIOw SIGIN

↓ ↓ ↓
Todtenglocke minion sagen

Figure 1: Handwritten word recognition results with our

model trained only using synthetically generated word sam-

ples. We show the transcription before and after (in bold-

face) the unsupervised writer adaptation, for the GW, IAM,

RIMES, Esposalles and CVL datasets respectively.

texts produced by individuals with handwriting styles that

we have never seen before. However, computational mod-

els strive at being so generic unless they are supplied with

huge amounts of training data coming from many different
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writers.

But, gathering such huge annotated collections of train-

ing data quickly becomes too expensive. Although in the lit-

erature some publicly available benchmarking datasets have

been established, such as IAM [20] or RIMES [3], their vol-

umes are still far away from nowadays large scale datasets

like ImageNet or Open Images V5, that contain millions of

annotations. Without such large amount of training data,

deep learning architectures for HTR are prone to overfit to

the seen writers and not generalize well. In order to cope

with such lack of training data, on the one hand, some au-

thors propose to engineer realistically looking data augmen-

tation techniques [34, 36, 28], so that the amount of samples

in the training dataset grows exponentially. On the other

hand, an even cheaper and ever-growing strategy is to use

fully synthetic training sets. Truetype electronic fonts that

are designed with calligraphic styles are used to render ran-

domly selected word images. Such approaches have been

successfully leveraged to pre-train both scene and hand-

written text recognition and retrieval systems [14, 1, 18].

However, even if the synthetic fonts are carefully selected,

the extracted visual features will most likely differ from

the ones one might find when dealing with real handwrit-

ten text. In that sense, a final adjustment step is needed in

order to bridge the representation gap between the synthetic

and the real samples.

Such issue raised awareness of the document analy-

sis community, that has researched on the topic of writer

adaptation since the early nineties [21, 27, 10]. The

main motivation of such applications, consist in adapting

a generic writer-independent HTR system, trained over a

large enough source dataset, towards a new distribution of a

particular writer. Especially interesting are the approaches

that ara able to yield such writer adaptation step in an unsu-

pervised manner, that is, without needing any ground-truth

labels from the new target writer.

Our main application contribution stems for the use of

unsupervised domain adaptation to forge an annotation-free

handwriting recognition system. Our proposed approach

is fully trained with synthetically generated samples that

mimic the specific characteristics of handwritten text. Later,

it is unsupervisedly adapted towards any new incoming tar-

get writer. In particular, the system produces transcriptions

(without the need of labelled real data) that are competi-

tive even compared to supervised methods. Text being a

sequential signal, several temporal pooling alternatives are

proposed to redesign current domain adaptation techniques

so that they are able to process variable-length sequences.

All in all it represents a step towards the practical success

of HTR in unconstrained scenarios.

We show some examples of the results obtained after

such writer adaptation in Fig. 1. We observe that even

though the synthetically trained model outputs gibberish

text, the committed errors are quite understandable, since

the confusion is between letters and glyphs that are visu-

ally close. Once the unsupervised writer adaptation is ap-

plied, the text is correctly transcribed in all those cases. Our

proposal is validated by using five different datasets in dif-

ferent languages, showing that our handwritten word rec-

ognizer is adapted to modern and historic samples, single

and multi-writer collections. Our proposed adaptable hand-

written word recognition model outperforms the state of the

art, and compares quite favourably to supervised fine-tuning

methods while not needing any manually annotated label.

2. Related Work

Inspired by the speech recognition community, writer

adaptation techniques have been applied to modify early

handwritten text recognition models based on Hidden

Markov Models [10, 29, 1]. Once an omni-writer model

has been trained, the model parameters, consisting of the

Gaussian mixture means and variances, can be modified to

better fit the target data distribution. Other early works pro-

posed an Expectation-Maximization strategy [24, 32] over

a set of different character recognizers. The main advan-

tage of such techniques was that the adaptation procedure

to unseen target writers was done in an unsupervised man-

ner, without needing any target labelled data.

With the rise of deep learning, the use of Long Short-

Term Memory (LSTMs) architectures became established

for HTR. Such data hungry approaches have been com-

monly trained with the largest publicly available datasets,

and then fine-tuned to the target collection to be recognized.

Such tuning strategies [2, 11, 23] guarantee that the neural

networks can be properly trained, ending up extracting rel-

evant features from handwriting strokes, that are later re-

vamped to the target collection. But fine-tuning presents

the downside of needing manual annotations both from the

source and target datasets. In order to alleviate such pain,

the use of synthetically generated texts as source data has

lately surfaced [18, 12, 4]. By the use of synthetic fonts,

overfitting is avoided at no labelling cost. However, HTR

models fully trained on synthetically generated data still

need to be grounded with real data in order to be effective,

and thus target labels are still needed.

In order to discard target labelled data, unsupervised do-

main adaptation techniques have been proposed in the lit-

erature. Given a labeled source dataset and an unlabeled

target dataset, their main goal is to adjust the recognition

model so that it can generalize to the target domain while

taking the domain shift across the datasets into account. A

common approach to tackle unsupervised domain adapta-

tion is through an adversarial learning strategy [8, 9, 26, 33],

in which the discrepancy across different domains is mini-

mized by means of jointly training a recognizer network and

a domain discriminator network. The recognizer seeks to
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Figure 2: Architecture of the adaptable handwritten word recognizer. The model consists of an encoder, a decoder and a

discriminator. The discriminator incorporates a temporal pooling step to be able to adapt to variable-length sequences. The

blocks corresponding to the handwriting recognizer, and therefore used for inference, are highlighted in light green; the block

responsible for the unsupervised domain adaptation during training is highlighted in light magenta (best viewed in color).

correctly recognize the labeled source domain data, whereas

the discriminator has to distinguish between samples drawn

either from source or target domains. The adversarial model

is trained jointly in a min-max fashion, in which the aim is

to minimize the recognition loss while maximizing the dis-

criminator loss. For instance, Ganin et al. [9] adapted a

digit recognizer trained on handwritten digits from MNIST

to tackle other target digit datasets such as MNIST-M or

SVHN; or Yang et al. [37], who proposed an unsupervised

domain adaptation scheme for Chinese characters across

different datasets. Such strategy has been proven to be ef-

fective when dealing with classification problems, where

the source and target domains share the same classes. How-

ever it can not be straightforwardly applied to HTR applica-

tions, where, instead of a classification problem, the input

and output signals are sequential in nature.

In this paper we propose to integrate this adversarial do-

main adaptation for the recognition of cursive handwriting

recognition using an encoder-decoder framework. Thus,

both the inputs and outputs of our system are variable-

length signals formed by a sequence of characters. Al-

though the same character set has to be used for both source

and target domains, the proposed method is not restricted

to a particular output lexicon nor language. We incorporate

a temporal pooling step aimed at adjusting the adversarial

domain adaptation techniques to problems having variable-

length signals. To the best of our knowledge, just the recent

parallel work of Zhang et al. [38] proposes a similar idea.

However, they propose that both the recognition and dis-

crimination steps focus on character level. By disentangling

the recognition and discrimination processes, one working

at character and the other at word level respectively, we sig-

nificantly outperform their approach. In addition, by syn-

thetically rendering the source words with truetype fonts,

our system does not require any manually generated label,

and is trained “for free”, not requiring any real annotated

training data to be used as source domain.

3. Adaptable Handwritten Word Recognition

3.1. Problem Formulation

Our main objective is to propose an adaptable handwrit-

ten word recognizer application that is initially trained by

synthetically generated word images, and then adapted to

a specific handwriting style in an unsupervised and end-to-

end manner. Our architecture, depicted in Fig. 2, consists

of two interconnected branches, the handwriting recognizer

and the discriminator, in charge of the adaptation process.

By means of a gradient reversal layer, the two blocks will

play an adversarial game in order to obtain an intermediate

feature representation that is indistinguishable whether it is

generated from a real or synthetic input, while being repre-

sentative enough to yield good transcription performances.

In the proposed framework, two different flows are fol-
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Figure 3: Synthetically generated words in English (top), French (mid) and Catalan (bottom) used during training.

lowed. The synthetically generated source words xs
i ∈ Ds

do come with their associated transcriptions ysi ∈ Ys, and

enter both the recognizer and the discriminator branches.

Contrary, the real target word images xt
i ∈ Dt, being unla-

belled, are just processed through encoding and the discrim-

inator block. At inference time, the prediction of the target

texts ŷti is not bounded by any previously defined lexicon,

being totally independent of Ys.

3.2. Rendering Synthetic Sources

The use of synthetically generated word collections that

look like real handwriting to magnify training data volumes

has become a common practice. Although several public

datasets, such as the IIIT-HWS dataset [17], exist, we de-

cided to create our own, in order to include special charac-

ters (e.g. accents, umlauts, punctuation symbols, etc.) that

we want our recognizer to tackle. 387 freely available elec-

tronic fonts that imitate cursive handwriting were selected.

A text corpus consisting of over 430,000 unique words was

collected from free ebooks written in English, French, Cata-

lan and German languages. By randomly rendering those

words with the different electronic fonts, we ended up with

more than 5.6 million word images. In order to add more

variability to the synthetic collection and to act as a reg-

ularizer, we incorporate a data augmentation step, specifi-

cally tailored to produce realistic deformations that one can

find in handwritten data. This augmentation step is applied

online within the data loader, so that each batch is ran-

domly augmented. Pixel-level deformations include blur-

ring, gamma, brightness and contrast adjustments or Gaus-

sian noise. Geometric transformations such as shear, rota-

tion, scaling and an elastic deformation are also randomly

applied. Finally a model generating random background

textures that simulate paper surface is applied. Some sam-

ples of synthetic words are shown in Fig. 3.

3.3. Handwritten Word Recognition Framework

We use an encoder-decoder architecture [5, 31, 15, 22]

topped with an attention mechanism as our handwritten

word recognizer branch. Such architectures are able to pro-

cess and output variable length data, and thus are not re-

stricted to work with a predefined vocabulary.

3.3.1 Encoder

The aim of the encoder is to extract high-level features given

a word image, which can be further adapted in the same

feature hyperspace. In this work we define the encoder

as a Convolutional Neural Network feature extractor fol-

lowed by a Recurrent Neural Network. The initial CNN is

in charge of extracting visual features that characterize the

handwritten words. Concretely, the VGG-19-BN architec-

ture [30] with pre-trained weights from ImageNet has been

chosen. However, the classifier and the last max pooling

layer have been removed to preserve spatial information and

to tackle narrow feature representation of small elements,

such as a single punctuation mark. The VGG network is

followed by a multi-layered Bi-directional Gated Recurrent

Unit (BGRU), which combines mutual information and ex-

tra positional information to the final feature representation

H. We denote hi ∈ H, i ∈ {1, 2, ..., N} as the output se-

quence of the encoder. N is the length of H, which varies

according to the lengths of the input word images. Thus, we

denote Ge : I → R
D×N as the encoder function given an

image I ∈ I with parameters θe.

3.3.2 Attention-based Decoder

The decoder is a one-directional multi-layered GRU, which

predicts one character ŷsi,k at each time step k until reach-

ing the maximum number of steps T or meeting the end of

sequence symbol 〈end〉. Thus, let Gr denote the decoder

function given the output of encoder H ∈ R
D×N with pa-

rameters θr, and its output is a sequence of characters ŷsi ,

which is the concatenation of ŷsi,k, where k ∈ {1, 2, ..., T}.

In handwriting recognition, the attention should be or-

dered, for example, from left to right for germanic and ro-

man languages. Although we have already applied BGRU

in the encoder to add the positional information, we must

give the attention a strong constraint: images should be

read from left to right. For this reason, we have chosen the

Location-based attention mechanism [6], because it takes

into account the location information explicitly. At the cur-

rent time step k, we extract p vectors lk,i ∈ R
p for every

position i of the previous attention mask αk−1 by convolv-
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ing it with a matrix F ∈ R
p×r. Formally,

lk = F ∗ αk−1. (1)

So we can obtain the attention mask αk by

αk = Softmax(ek), (2)

where

ek,i = f ′(hi, sk−1, lk)

= wT tanh(Whi + V sk−1 + Ulk,i + b), (3)

where w, W , V , U and b are trainable parameters.

3.4. Temporal Pooling for Unsupervised Writer
Adaptation

Text being a sequential and variable-length signal, state-

of-the-art adversarial domain adaptation methods can not be

straightforwardly used, since they all rely on having fixed

length feature vectors. We propose to explore several Tem-

poral Pooling strategies in order to transfer the variable

length feature representation H into a fixed size feature rep-

resentation F within the discriminator module:

Column-wise Mean Value (CMV) treats H as a

column-wise sequence feature. The mean value is calcu-

lated as follows

F =
1

N

N∑

i=1

hi. (4)

Spatial Pyramid Pooling (SPP) [13] is a flexible solu-

tion for handling different scales, sizes and aspect ratios of

images. It severs the images into divisions from finer to

coarser levels and aggregates local features in a fixed-size

feature vector.

Temporal Pyramid Pooling (TPP) [35] is an one-

directional SPP. It is considered to be more suitable for

handwriting recognition tasks, because words are composed

of a sequence of characters, and they are read in a specific

direction.

Gated Recurrent Unit (GRU) are used to process the

sequential signal H to output a fixed size feature represen-

tation F . In our model, we simply apply a 2-layered one-

directional GRU.

Once we have obtained a fixed representation, F is fed

into the domain classifier, which consists of three fully con-

nected layers with batch normalization and ReLU activa-

tion. θd is used to represent the parameters of the discrimi-

nator Gd. The output of Gd is binary, either predicting that

the features F come from source or target samples.

3.5. Learning Objectives

Until now, we have a recognition loss Lr from the de-

coder and a discriminator loss Ld from the domain classi-

fier. Since our model is trained in end-to-end fashion, the

overall loss for the training scheme is defined as

Table 1: Overview of the different datasets used in this work

depicting its characteristics.

Dataset Words Writers Period Language

GW [19] 4,860 1 Historic English

IAM [20] 115,320 657 Modern English

Rimes [3] 66,978 1,300 Modern French

Esposalles [7] 39,527 1 Historic Catalan

CVL [16] 99,902 310 Modern English/German

L(θe, θr, θd) =
∑

xi∈Ds

Lr (Gr (Ge(xi)) , yi)−

λ
∑

xj∈Ds∪Dt

Ld (Gd (Ge(xj)) , dj) ,
(5)

where λ is a hyper-parameter to trade off the two losses

Lr and Ld. In Section 4.2, different λ methods have been

studied.

As stated before, the source data consists in synthetic

word images plus their corresponding labels. The target

data corresponds to real word images, but without labels.

The parameters of the discriminator are randomly ini-

tialized during the writer adaptation process. For the for-

ward pass, the synthetic word images can be transferred

through both the recognizer and the discriminator, while

the real word images can only contribute to the discrimi-

nator loss. The backward propagation follows the same but

reverse flow of the model by applying a Gradient Reversal

Layer (GRL) [8] between the encoder and the discriminator.

This layer applies the identity function during the forward

pass but during the backward pass it multiplies the gradients

by the parameter −λ. Thus, this layer reverses the gradient

sign that flows through the model. By doing so, the model

can be trained in a min-max optimization fashion. Mini-

mizing the discriminator loss means to train a better dis-

criminator for distinguishing between the synthetic and real

data. In contrast, maximizing the discriminator loss for the

encoder means to eliminate the differences of data feature

distribution between the synthetic and real data. The goal

of the optimization process is to find a saddle point that

θ̂e, θ̂r = argmin
θe,θr

L(θe, θr, θd) (6)

θ̂d = argmax
θd

L(θe, θr, θd). (7)

In short, synthetic data contributes to both the recognizer

and the discriminator, whereas real data only contributes to

the discriminator.

4. Experiments

In order to carry our writer adaptation experiments, we

will use five different publicly available datasets with differ-
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ent particularities: single or multiple writers, coming from

historic or modern documents or written in English, French,

Catalan or German. We provide the details of such datasets

in Table 1. To evaluate the system’s performance, we will

use the standard Character Error Rate (CER) and Word Er-

ror Rate (WER) metrics. In the tables, these values are in

percentage ranging from [0-100].

4.1. Implementation Details

All our experiments were run using PyTorch [25] on a

cluster of NVIDIA GPUs. The training was done using the

Adam optimizer with an initial learning rate of 2 · 10−4 and

a batch size of 32. We have set the dropout probability to

be 50% for all the GRU layers except the last layer of both

the encoder and decoder. During training, we have kept a

balance in the total number of samples shown for both syn-

thetic source words and real unlabelled target data. How-

ever, the training set is shuffled at each epoch and source

and target data balancing is not guaranteed within a batch.

4.2. Ablation Study

Before assessing the performance of the proposed unsu-

pervised writer adaptation model, we want to validate the

adequacy of several hyper-parameters involved in our sys-

tem. The following experiments are carried out using the

IAM validation set as target dataset, except the last one,

where the GW dataset was used instead. First, we evalu-

ate which is the best temporal pooling strategy to recast the

variable-length features of the encoder to the fixed-length

features needed by the discriminator. In Table 2, we ob-

serve that the GRU achieves the best performance. The

GRU module has trainable parameters, so, contrary to the

other aggregation strategies, it can learn how to effectively

pool the variable-length features into a meaningful fixed-

length representation, and consequently, obtain a better per-

formance. For the rest of experiments we will use the GRU

as our temporal pooling strategy.

Table 2: Study on the different Temporal Pooling ap-

proaches of the discriminator, evaluated on the IAM vali-

dation set.

CMV SPP TPP GRU

CER 14.83 15.76 14.55 13.58

WER 36.83 38.86 36.44 33.99

Second, we analyze three different approaches to set the

hyper-parameter λ, which controls the trade-off between

the recognition loss Lr and the discriminator loss Ld. We

choose to either set it as a constant λ = 1, increase its value

linearly from 0 to 1 at each epoch, or increase its value from

0 to 1 in an exponential way. Although a gradual increase of

the weight of the discriminator loss could potentially benefit

the overall performance, in Table 3 we appreciate that sim-

ply setting λ as a constant value provides the best results.

Table 3: Study on the different λ strategies, evaluated on

the IAM validation set.

λ Constant Linear Exponential

CER 13.58 13.79 14.43

WER 33.99 35.42 36.65

Finally, we explore the effect of providing different

amounts of unlabelled target data to the system during

writer adaptation. In this experiment we use the GW

dataset, since it contains almost 5, 000 words from the same

writer. We observe in Fig. 4 that the higher the amount of

unlabelled target data, the lower the error rate. Thus, for

the subsequent experiments, we will use all the available

target data at hand during the adaptation, no matter if the

scenario concerns a single writer or several of them. For

multi-writer collections, we could thus choose among two

options: (i) the system is adapted to a particular writer, us-

ing just a subset of the collection; (ii) the system is adapted

to the whole collection style (rather than to the individual

writing characteristics) by providing the whole dataset dur-

ing the adaptation.

Figure 4: Influence of the amount of unlabeled real word

images over the performance, evaluated on the GW dataset.

4.3. From synthetic to real writer adaptation

For the unsupervised writer adaptation experiments, we

will use all the available images from each dataset during

the unsupervised writer adaptation process, in order to have

as much real word instances as possible. According to the

experiments in the previous section, this should yield the

best performance. It should be noted that these datasets are

always used in an unsupervised manner, i.e. the system has

access to the word images, but never to their transcriptions

(labels). However, the CER and WER results are computed

on the official test set partitions in all datasets, so that those

results are comparable with the literature.

In Table 4 we present our writer adaptation results on

the five different datasets. For each dataset we also pro-
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Table 4: Unsupervised writer adaptation results for handwritten word recognition. The gap reduction shows the improvement

when the HTR, trained on synthetic data, is adapted to real data.

GW IAM Rimes CVL Esposalles

CER WER CER WER CER WER CER WER CER WER

Real target only 4.56 13.49 6.88 17.45 2.80 8.51 3.64 7.77 0.47 1.68

Synth. source only 26.05 56.79 26.44 54.56 21.46 52.48 26.30 55.64 30.78 66.33

Uns. adaptation 16.28 39.95 14.05 34.86 14.39 39.21 19.19 44.29 20.96 50.00

Gap reduction (%) 45.46 38.89 63.34 53.09 37.89 30.18 31.38 23.71 32.40 25.26

vide two baseline results. Training using target labels and

training just using the synthetic samples provide baselines

for the best and worst case scenarios respectively, either us-

ing ground-truth labels or ignoring any labelled informa-

tion. The gap reduction is an measurement used to measure

the effectiveness of the adaptation method which is defined

as:

gap reduction =
error(synth.)− error(adapted)

error(synth.)− error(real)
(8)

We appreciate that, in general, the difference in CER be-

tween these two baselines, lower bound error(synth.) and

upper bound error(real), is about 20 points, with the ex-

ception of the Esposalles dataset, which presents a much

higher gap. This difference is most likely justified because

it is the dataset in which the handwriting style differs more

from a visual point of view from the synthetically generated

samples.

a) Before adaptation b) After adaptation

Figure 5: The distribution of source (blue) and target (red)

domain samples before (a) and after (b) the adaption to the

GW dataset for the ten most common words.

Concerning the unsupervised writer adaptation results

(in Table 4, Uns. adaptation), we appreciate a significant

improvement when compared with the sole use of synthetic

training samples. The gap reduction ranges from 20% in the

worse case (CVL), up to 60% in the best case (IAM). It is

true that these results are worse than the ones obtained by a

recognizer trained on labelled target data. However, the loss

in accuracy is compensated by the fact that our approach is

more generic and flexible: it is trained with synthetically

generated data and it does not require any manually anno-

tated target data for writer adaptation. In Fig. 5 we provide

a tSNE visualization of the sample distribution before and

after the unsupervised writer adaptation in the single-writer

GW dataset.

4.4. Writer adaptation with few samples

This experiment is devised to evaluate whether the adap-

tation ability of our approach decreases when there are few

samples in the target domain. Indeed, in the experiments

presented in Table 4, the system is adapting to a partic-

ular individual handwriting style for the GW and Espos-

alles datasets, because they are single writer. Given that the

IAM, Rimes and CVL datasets contain samples from multi-

ple writers, the system is adapting from synthetic samples to

the overall collection style. Since in the IAM dataset we do

have groundtruth information about which specific writer

produced each word, we choosed it for this writer specific

adaptation experiment, taking into account that the volume

of words per writer that we can use as target domain is very

reduced. Within the IAM validation set, each writer has

written between 13 and 602 words. As source domain we

randomly selected 600 synthetic words (images and labels)

for every single writer specific adaptation experiment.

From the results shown in Table 5, we appreciate that our

model boosts the recognition performance on every writer

even though when there is a very reduced amount of both

source and unlabelled target samples. Due to the limited

space, we only show the top five best and worse cases

ranked by the improvement percentage between the CER

measure obtained with a system trained with just synthetic

data or after writer adaptation using this low amount of sam-

ples. We observe that for all the writers in the IAM valida-

tion set, the CER measure is enhanced after the proposed

unsupervised adaptation. By inspecting the qualitative re-

sults, we observe that the writers that present the lowest im-

provement corresponded to specimens with writing styles

that are visually very dissimilar to our synthetically gener-

ated source material.
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Table 5: Writer adaptation results, in terms of the CER,

ranked by the improvement percentage with respect to the

synthetic training.

Writer ID Words Synth. Adapt. Improv.(%)

ID202 396 13.65 3.96 71.0

ID521 48 21.68 7.39 65.9

ID278 129 7.71 3.66 52.5

ID625 80 23.18 11.76 49.3

ID210 136 9.41 5.29 43.8

. . . . . . . . . . . . . . .

ID533 52 37.50 32.50 13.3

ID182 69 29.89 26.05 12.8

ID515 74 38.29 34.20 10.7

ID527 127 24.86 22.20 10.7

ID612 55 29.83 28.57 4.2

Mean 135 24.32 18.34 27.4

In general, this experiment depicts a realistic scenario

in which our generic handwritten word recognizer, fully

trained with synthetic data, is adapted to a new incoming

writer by just providing a very reduced set of his handwrit-

ing. From the results, we can conclude that the recognition

performance for this new writer is significantly boosted in

most cases, in an unsupervised and efficient manner.

4.5. Comparison with the state of the art

Supervised fine-tuning. In order to put into context our

reached results, we compare in Table 6 our model with

the state-of-the-art approaches that propose to pre-train a

handwriting recognizer with a large dataset, e.g. IAM, and

then fine-tune the network to transfer the learned parame-

ters to a different collection, e.g. GW, with a disparate style.

We compare against the recent works proposed by Nair et

al. [23] and Arandillas et al. [2]. They achieve CER values

of 59.3% and 82%, respectively with their models trained

on IAM and tested over the GW test set. Our baseline

model, pre-trained just using a synthetically produced data,

already achieves a 26.05% CER on the GW dataset. This

backs up the intuition that the use of a synthetic dataset,

which can contain as many training samples as desired, pro-

vides better generalization than training with a much shorter

amount of real data.

Our unsupervised writer adaptation reaches a 16.28%

CER while Nair et al. and Arandillas et al. reach a 8.26%

and 5.3% CER respectively when fine-tuning, at the ex-

pense of requiring a fair amount of manually labeled data.

Obviously, our unsupervised approach does not reach the

same performance as these supervised approaches, because

they use labelled GW words. Although it is not the main

scope of our paper, if we do use labels for the target domain

Table 6: Comparison with supervised fine-tuning.

Method Train
Fine-tuning

adaptation
CER

Nair [23]
IAM None 59.30

IAM Sup. GW 8.26

Arandillas [2]
IAM None 82.00

IAM Sup. GW 5.30

Proposed

Synth. None 26.05

Synth. Uns. GW 16.28

Synth. Sup. GW 2.99

Table 7: Comparison with sequence-to-sequence domain

adaptation on IAM dataset.

Method CER WER Average

Zhang et al. [38] 8.50 22.20 15.35

Proposed 6.75 17.26 12.01

(last row in Table 6), i.e. we adapt to the new incoming

writer in a supervised manner, our approach outperforms

the above methods, reaching a 2.99% CER.

Unsupervised domain adaptation. To the best of our

knowledge, only the work of Zhang et al. [38] report results

for unsupervised writer adaptation at word level. However,

for the case of handwriting words, they propose to use la-

belled IAM training data as source and unlabelled IAM test

data as target domains. In our opinion, such experiment

does not present any significant domain shift. When using

their same experimental setting, shown in Table 7, our ap-

proach achieves a significant better performance.

5. Conclusion

We have proposed a novel unsupervised writer adap-

tation application for handwritten text recognition. Our

method is able to adapt a generic HTR model, trained only

with synthetic data, towards real handwritten data in a com-

pletely unsupervised way. The system mutually makes the

high-level feature distribution of synthetic and real hand-

written words align towards each other, while training the

recognizer with this common feature distribution.

Our approach has shown very good performance on dif-

ferent datasets, including modern, historical, single and

multi-writer document collections. Even when compared

to supervised approaches, our approach demonstrates com-

petitive results. Moreover, since our unsupervised approach

only requires to have access to a few amount of word im-

ages from the target domain, but not their labels, we believe

that it is a promising direction towards a universal HTR for

unconstrained scenarios, e.g. industrial applications.
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