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Abstract

We present the design and implementation of Two-Grid

Preconditioned Bundle Adjustment (TPBA), a robust and ef-

ficient technique for solving the non-linear least squares

problem that arises in bundle adjustment. Bundle adjust-

ment (BA) methods for multi-view reconstruction formulate

the BA problem as a non-linear least squares problem which

is solved by some variant of the traditional Levenberg-

Marquardt (LM) algorithm. Most of the computation in LM

goes into repeatedly solving the normal equations that arise

as a result of linearizing the objective function. To solve

these system of equations we use the Generalized Minimal

Residual (GMRES) method, which is preconditioned using

a deflated algebraic two-grid method. To the best of our

knowledge this is the first time that a deflated algebraic two-

grid preconditioner has been used along with GMRES, for

solving a problem in the computer vision domain. We show

that the proposed method is several times faster than the

direct method and block Jacobi preconditioned GMRES.

1. Introduction

Recent work in Structure-from-Motion (SfM) problem

has moved towards three-dimensional (3D) reconstruction

from large-scale photo collections of high quality and high

resolution images [2, 8, 12]. Given that the feature match-

ing is already done by the existing bundlers [6], bundle ad-

justment (BA) is the key component in most of the SfM

systems. The bottleneck in SfM systems is the BA process,

which is the joint non-linear optimization of camera param-

eters, and the 3D points to minimize the mean reprojection

error.

By formulating the BA problem as a non-linear least

squares problem, classical algorithms can be used for solv-

ing these problems. One of the most commonly used al-

gorithm is the Levenberg-Marquardt (LM) algorithm, with

some variations. Each iteration of the LM algorithm in-

volves solving a system of normal equations, which is

the most expensive step. Thus, making this computation

cheaper has become a very important problem.

In this paper, we use the restarted generalized minimal

residual (GMRES) method as the iterative solver. Similar to

Conjugate Gradient (CG), GMRES alone does not converge

fast for these problems, and thus, requires a suitable pre-

conditioner. The reason for using preconditioned GMRES

instead of Preconditioned Conjugate Gradient (PCG) is that

the preconditioned operator is unsymmetric. We propose a

deflated algebraic two-grid method [35] for constructing the

preconditioner. A two-grid method consists of two compo-

nents: a coarse grid correction and a smoother. The coarse

grid correction damps the low frequency part of the error

and the smoother damps the high frequency part of the er-

ror.

We replace the coarse grid correction with a deflation

preconditioner which explicitly removes the high frequency

components from the error. Furthermore, the smoother

damps the remaining high frequency components from the

error. Hence our two-grid approach is different from the

ones used in the scientific computing domain. When cou-

pled with an inexact Levenberg-Marquardt algorithm [22],

our preconditioned solver gives state of the art performance

on the BAL dataset [1].

The rest of the paper is organized as follows. Section 2

presents a brief overview of the bundle adjustment problem

and recent work on the use of preconditioned iterative meth-

ods for solving it. Section 3 describes the design and imple-

mentation of deflated algebraic two-grid preconditioner for

GMRES. Section 4 compares our new preconditioning tech-

nique to the state of the art methods using problems from the

BAL dataset. We conclude with a discussion in section 5.

2. Bundle Adjustment

Given a set of measured image feature locations and cor-

respondences, bundle adjustment aims to find the 3D point

positions and camera parameters that minimize the repro-

jection errors. For more details, see Triggs et al. [3].

Let us assume that the SfM problem consists of p points
and q cameras and the parameter vector x has the block
structure x = [y1 · · · yp, z1 · · · zq] where y and z corre-
spond to the point and camera parameters, respectively. Let
rk(x),where k ∈ 1 · · · q, be the measurement function of a
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Figure 1. Multigrid preconditioning with Jacobi as smoother

3D point in a camera k. Let mk be the measurement of a
3D point in camera k. Define a cost function fk(x) as

fk(x) = rk(x)−mk, k = 1 · · · q

Define F (x) = [f1(x), · · · , fq(x)]
T . Then, the bundle adjust-

ment problem can be stated as

x
∗ = argmin

x

1

2
||F (x)||2 (1)

The objective function in (1) is non-linear and can be mini-

mized by the standard non-linear least squares algorithm described

below.

2.1. Levenberg Marquardt Algorithm

The Levenberg-Marquardt (LM) [10, 11] method has become

a standard algorithm for solving the nonlinear least-squares prob-

lem, and widely adopted in various disciplines. It has become very

popular due to its relative ease of implementation, and its use of

an effective damping strategy that lends it the ability to converge

promptly from a wide range of initial guesses.

For solving the non-linear least squares problem in (1), each it-

eration of the LM algorithm forms an affine approximation of the

cost function F (x) at the current iterate xt and takes a step to-

wards the minimizer of this approximation. The first order Taylor

approximation of F (x) in a neighbourhood ∆x around xt is given

by

F (xt +∆x) ≈ F (xt) + J∆x,

where J = ∂F
∂x

|x=xt
is the Jacobian of F (x). The next iterate

xt+1 is then taken to be the minimizer of ||F (xt +∆x)||2. How-

ever, this minimizer may be far from the current iterate xt, in

which case the approximation F (xt) ≈ F (xt + ∆x) does not

hold. Thus, for minimizing ||F (xt + ∆x)||2 as well as keep-

ing ∆x small, the next iterate is taken to be the minimizer of
1

2
||F (xt + ∆x)||2 + µt||diag(JTJ)∆x||2, where µt is a non-

negative damping parameter for the tth iteration. The µt term is

updated after each LM iteration based on how well J approxi-

mates F (x). Then, the next iterate of the LM algorithm is updated

as shown below.

xt+1 = xt − (JT
J + µ

t
diag(JT

J))−1
J
T
F (xt) (2)

The quality of this fit is measured by the ratio of the actual de-

crease in the objective function to the decrease in the value of the

linearized model l(∆x) = 1

2
||F (xt +∆x)||2.

Further, from (2), let

HLM = J
T
J + µ

t
diag(JT

J) (3)

and

g = J
T
F (xt)

Here, the construction of HLM approximates the Hessian of

F (x). Then, it can be seen that solving (2) is equivalent to solving

the following system of normal equations.

HLM∆x = −g, where ∆x = xt+1 − xt. (4)

Solving (4) is the dominant computational cost in each itera-

tion of the LM algorithm. In general, for small to medium scale

problems it is recommended to use QR factorization for solving

(4). But it is not scalable for large problems. As the Hessian in

the BA problem has a sparse block structure, it can be exploited to

construct a more efficient and scalable scheme for solving (4).

2.2. Structure of the Hessian

As mentioned at the beginning of section 2, it is as-

sumed that the SfM problem consists of p points and q cam-

eras, and the parameter vector x has the block structure x =
[y1, · · · , yp, z1 · · · zq] where y and z are the point and camera pa-

rameter vectors, respectively. Each point block is of size s and

each camera block is of size c (where c ∈ {6, 7, 8, 9} and s = 3
for most problems). Using these block sizes, it is possible to par-

tition the Jacobian J into a point part Js and camera part Jc as

J = [Js; Jc], which gives

HLM =

[

JT
s Js JT

s Jc

JT
c Js JT

c Jc

]

=

[

D LT

L G

]

, (5)

where, D ∈ R
ps×ps is a block diagonal matrix with p blocks of

size s × s and G ∈ R
qc×qc is a block diagonal matrix with q

blocks of size c × c. The matrix L ∈ R
qc×ps is a general block

sparse matrix. Then, (4) can be re-written as a block structured

linear system as follows

[

D LT

L G

] [

∆xs

∆xc

]

=

[

gs
gc

]

, (6)

where ∆x = [∆xs; ∆xc],∆xsand∆xc correspond to point pa-

rameter blocks and camera parameter blocks of ∆x, respectively,

and g = [gs; gc], gs and gc correspond to point parameter blocks

and camera parameter blocks of g, respectively. Various ap-

proaches have been proposed for solving (6), by exploiting the

special structure of the Hessian as described below.

2.3. Related Work

Direct methods for solving (6) has been well studied in litera-

ture [3, 4]. Brown, in [20], introduced the method of the reduced

bundle system, which is motivated by the special structure of the
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Hessian, as shown in (5). Using this method, the system in (6) is

split into a reduced camera system, which involves constructing

the Schur complement of HLM , and a reduced structure system.

A common method [4] is to use Cholesky factorization to solve

the reduced camera system and use back-substitution to solve the

reduced structure system. However, this method does not scale

satisfactorily for large scale problems.

In recent works, the use of iterative methods such as the con-

jugate gradient (CG) method for solving large scale bundle adjust-

ment problems has been observed. It requires less memory than

direct methods as it involves only matrix-vector multiplications.

However the success of CG method depends on the number of it-

erations required to converge, which in turn depends on how well-

conditioned the original problem is. Therefore, recent research has

focused on obtaining efficient preconditioners for CG.

Agarwal et al. [1] examined the performance of several stan-

dard preconditioners and implementation strategies on large-scale

datasets. Bryöd and Aström avoided the computation of HLM and

S, and instead ran CG on J directly with an incomplete QR fac-

torization based preconditioner [7]. Jeong et al. proposed using

the band block diagonals of the Schur complement matrix S as

preconditioners. They observed that amongst the various banded

preconditioners, the block-Jacobi preconditioner was a cheap and

robust choice [14]. Wu et al. [24] extended the work in [1] to a

multicore Jacobian free bundle adjustment method.

More recently, Avanish et al. [18], using the visibility informa-

tion in the scene, cluster the cameras into tightly interacting clus-

ters. These clusters formed the basis of block diagonal and block

tridiagonal preconditioners. Dellaert et al. [19] explored gener-

alized subgraph preconditioning (GSP) technique which is based

on the combinatorial structure of the bundle adjustment problem.

Motivated by the work in combinatorial preconditioning, the au-

thors have proposed using a low-stretch spanning tree approxima-

tions to HLM as preconditioners for (6). However, as pointed out

in [19]: “when the additional edges are added to the subgraph,

not only the subgraph takes longer time to build, but also the pre-

conditioner becomes more expensive to apply in the CG method.”

Moreover, domain decomposition based methods [44] have been

tried recently for such problems in [43].

Usually direct methods converge faster than these methods for

small to medium size problems. In this paper, we show that our

method converges faster than direct methods and traditional pre-

conditioned iterative methods even for these sizes, to achieve a

comparable mean reprojection error.

3. Two-Grid Preconditioned GMRES

In the following sections, sometimes, we use the notation A

to denote HLM . The Generalized minimal residual method [25,

26] is very popular for solving large linear system of equations,

Ax = b, A ∈ R
n×n, b ∈ R

n, and x ∈ R
n. The kth GMRES

iterate xk minimizes, with x0 = 0, the norm of the kth residual

vector rk = b − Axk over all vectors in the Krylov subspace

Kk(A, b) ≡ span{b, Ab, ..., Ak−1b}. Therefore, residual norms

are non-increasing and satisfy

‖rk‖ = min
p∈πk

‖p(A)b‖2,

where πk is the set of polynomials of degree k with the value one

at origin.

3.1. Deflated TwoGrid Preconditioner

Two-grid or multigrid preconditioning has been known for a

long time, dating back at least to the 1930s. Its potential was first

exploited by Fedorenko and Bakhalov in the 1960s, and later by

Brandt [30] and Hackbusch [33], which paved the way to the birth

of multigrid methods. We refer to [31, 32] and references therein

for more details. It was shown that adding a coarse-grid correction

or a second level correction can lead to a significant improvement

in the convergence rate.

In multigrid there exist several ways of incorporating the

coarse-grid correction [36]. We propose a new deflation based

two-grid method, where the coarse grid correction is achieved by

a deflation preconditioner. In our deflation based two-grid method,

eigenvectors or approximations to eigenvectors associated with

unfavorable eigenvalues are used as interpolation and restriction

operators between the coarse to fine grid and vice-versa.

Let the coarse grid matrix be defined as follows

Ac = RAP, Ac ∈ R
nc×nc ,

where nc is the number of eigenvectors of A to be deflated, here

P ∈ R
n×nc is the prolongation operator, and R ∈ R

nc×n is the

restriction operator.

Our proposed two-grid preconditioner as combination of Ja-

cobi and deflated preconditioner is given as follows

B
−1
tg = B

−1

jac +B
−1

def −B
−1

def AB
−1

jac , (7)

where the smoother Bjac is defined as follows

B
−1

jac = [(BlockDiag(A)]−1
, (8)

where the inverse of the blocks of Jacobi can be computed using

well knownLU factorization [26], and the deflation preconditioner

is defined as follows

B
−1

def = PA
−1
c R, where we define R = P

T
. (9)

From (7), we immediately observe that the iteration matrix corre-

sponding to fixed point iteration I −B−1
tg A is given as follows

I −B
−1
tg A = (I −B

−1

jac A)(I −B
−1

def A), (10)

which is a product of the iteration matrices corresponding to Bjac

and Bdef. Hence the preconditioner Btg is a multiplicative combi-

nation of the smoother Bjac and the coarse grid correction Bdef.

In the following lemma, we show that HLM is Symmetric and

Positive Definite (SPD), hence all its eigenvalues will be real and

positive.

Lemma 1. If the Jacobian J is full rank, and µ > 0 in (3) ac-

cording to LM method, then the coefficient matrix A = HLM is

SPD.

Proof. We have from (3),

A = J
T
J + µ diag(JT

J)

3601



J being full rank implies that JTJ is full rank, and SPD. Also

diag(JTJ) being the diagonal of a SPD matrix JTJ is also SPD,

hence,

x
T
Ax = x

T (JT
J + µdiag(JT

J))x

= x
T (JT

J)x+ x
T (µ diag(JT

J))x

> 0

In the following Lemma, we show that if Bdef is constructed

from the k−largest eigenvectors, then those eigenvectors becomes

the eigenvectors corresponding to eigenvalue one for the precondi-

tioned operator B−1

defA, i.e., Bdef “deflates” the largest eigenvalue

to one.

Lemma 2. Let A ∈ R
n×n be SPD, then it has n linearly in-

dependent orthogonal eigenvectors. Let those eigenvectors be

{v1, . . . , vn} corresponding to eigenvalues λ1, . . . , λn, where

λ1 > λ2 > · · · > λn.

Let the deflation preconditioner Bdef be defined as in (9). Let P =
[v1, v2, . . . , vk], where vi ∈ R

n, i = 1, . . . , k are eigenvectors

corresponding to k-largest eigenvalues to be deflated. Then the

following holds

B
−1

defAvi = vi, i = 1, . . . , k.

and

B
−1

defAvi = 0, i = k + 1, . . . , n.

Proof. We have

(I −B
−1

defA)vi = vi −B
−1

defAvi

= vi − PA
−1
c P

T
Avi

= vi − PA
−1
c P

T
λivi

= vi − P











λ−1

1 0 0 · · · 0
0 λ−1

2 0 · · · 0
...

. . . · · · · · ·
...

0 · · · · · · · · · λ−1

k



























0
...

λi

...

0

















= vi − vi = 0

Similarly, from above

(I −B
−1

defA)vi = vi − PA
−1
c P

T
λivi

= vi − PA
−1
c 0, since P

T
vi = 0, i > k,

where 0 ∈ R
n is a zero vector.

Theorem 3. If A is SPD, then Bjac defined in (8) exists.

Proof. Since A is SPD, the principal blocks of A is also SPD,

hence Bjac being the block diagonal of the principal diagonal

blocks of A remains SPD.

As a consequence of Lemma 2, we now show that the largest

eigenvector components of the error will be damped or removed.

This in turn helps in faster convergence of iterative scheme.

Theorem 4. Let A be SPD. Let Bjac and Bdef be defined as in

(8) and (9) respectively. Also, assume that P in Bdef is defined

as P = [v1, . . . , vk], where v1, . . . , vk are the eigenvectors cor-

responding to k largest eigenvalues of A, then during the fixed

point iteration, the deflation preconditioner Bdef damps compo-

nents v1, . . . , vk of the error.

Proof. For fixed point iteration, i.e., Richardson iteration, we have

the following error iteration

e
t+1 = (I −B

−1

tg A)et, where e
t ∈ R

n
.

Here, et is the error at iteration t. Since from Lemma 1, A =
HLM is symmetric positive definite matrix, A has n linearly in-

dependent eigenvectors which forms a basis for Rn. Thus, we can

write et as a linear combination of eigenvectors vi, i = 1, . . . , n
as follows

e
t =

n
∑

i=1

civi,

where ci’s are scalars. From (10), we have

I −B
−1
tg A = (I −B

−1

jac A)(I −B
−1

def A).

Multiplying both sides by et, we get

(I −B
−1
tg A)et = (I −B

−1

jac A)(I −B
−1

def A)et (11)

We have

(I −B
−1

defA)et = (I −B
−1

defA)
n
∑

i=1

civi.

From Lemma 2, we have

B
−1

defAvi = vi, i = 1, . . . , k,

B
−1

defAvi = 0, i = k + 1, . . . , n,

Hence,

(I −B
−1

defA)et =

n
∑

i=k+1

civi

From (11), we have

(I −B
−1

tg A)et = (I −B
−1

jacA)
n
∑

i=k+1

civi (12)

Remark 5. In theorem above, in (12), the remaining components

of the error are efficiently damped by Jacobi [31, p30 ], which is a

well known smoother.
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Contrary to typical two-grid method, where coarse grid cor-

rection damps the low frequency components of the error, the de-

flation preconditioner explicitly removes the error corresponding

to very high frequency components (large eigenvectors) of the er-

ror as proved above. This is achieved by defining P such that

it contains the eigenvectors corresponding to large eigenvalues.

The Jacobi preconditioner further smoothens the remaining high

frequency components of the error. We remark here that com-

puting eigenvectors corresponding to largest eigenvalues is much

cheaper compared to computing eigenvectors corresponding to

smallest eigenvalues. Consequently, as we will show in the numer-

ical experiments section, this combination of deflation with Jacobi

smoothing proves to be very effective.

Apart from Jacobi many other classical solvers such as Gauss-

Seidel, SSOR, and ILU are typically used as smoothers in Multi-

grid Methods, on the other hand, for coarse grid correction, aggre-

gation based schemes have been proposed in [36, 37].

Following the construction of the two-grid preconditioner

above, we present a sketch of the algorithm (corresponds to a V -

cycle) to solve with the preconditioner.

Algorithm 1 Preconditioner Solve (a V-cycle) Btgx = b

Require: Bjac, Ac, P, A, b

1: // Relax with the smoother

2: s = B−1

jac b

3: // Compute residual

4: r = b−As

5: // Restrict residual

6: rc = PT r

7: // Coarse grid correction

8: Solve the coarse grid system Acec = rc
9: // Prolongate the coarse grid correction

10: x = s+ Pec
Ensure: x

4. Experimental Evaluation

4.1. Configurations

We use a freely available sparse Levenberg-Marquardt C++

implementation (SSBA) 1, which has several cost functions that

are used by the LM algorithm for the bundle adjustment step.

We use the following cost functions for our experiments: (1)

bundle large and (2) bundle large lifted schur im-

plemented in SSBA package. The details of these cost functions

have been discussed in detail in [38].

The stopping criteria for the LM algorithm are either of the

following

• the number of iterations of LM exceeds 100.

• the difference in two consecutive residuals is less than 10−12

in magnitude.

1We selected the simple sparse bundle adjustment (SSBA) package,

http://www.cvg.ethz.ch/research/chzach/

opensource.html

For solving the augmented normal equations (6) in each LM it-

eration, SSBA uses LDL factorization [39, p. 157], a Cholesky

like factorization method for sparse symmetric positive defi-

nite matrices. The appropriate column reordering is done with

COLAMD. Both LDL and COLAMD have been adopted from the

SuiteSparse package [40].

We have implemented a two-grid preconditioned GMRES as

an iterative solver in the SSBA package for the augmented normal

equations arising in each LM iteration to solve (6). The stopping

criteria for the GMRES method are (1) the number of iterations

exceeds 500 with number of restarts equal to 20 (2) the norm of

the relative residual is less than 10−3. The GMRES method is

implemented using the dfgmres routine available in the INTEL

MKL library version 2019.4.243.

All the experiments are performed on the BAL dataset released

by Agarwal et al.[1]. Since BAL contains many datasets, and some

of them cannot fit into the memory of a regular PC due to RAM

constraints, we select ten appropriate datasets from BAL which

have 7K to 700K points (see Table. 3). We run all of the exper-

iments on a machine with Intel(R) Xeon(R) CPU E5-2640 v4 @

2.40GHz and 16GB RAM.

4.2. Implementation Details

As mentioned before, the implementation of the two-grid de-

flated preconditioner has two main ingredients (1) Construction

of smoother, and (2) Coarse grid correction. For constructing the

smoother Bjac, we explicitly combine the D and G blocks of (6)

to form a block diagonal matrix as follows

Bjac = LU

([

D

G

])

.

On the other hand, coarse grid correction requires the setup of pro-

longation and restriction operators and the construction of a coarse

grid matrix using these grid transfer operators. The columns of

the prolongation operator P are the eigenvectors corresponding

to the 5 largest eigenvalues of HLM. These eigenvectors of A are

computed using the double precision routine mkl sparse d ev,

which requires the input matrix to be in CSR format with one

based indexing.

Usually the construction of the coarse grid matrix Ac =
RHLMP requires two matrix-matrix products. In our case, since

P contains eigenvectors of HLM, the coarse grid matrix Ac =
diag(λ1, λ2, · · · , λk) is a k × k diagonal matrix. Here we fix

k = 5 in all our experiments.

The application of B−1

def in (7) for the preconditioner solve is

implemented as

B
−1

def x = (P (A−1
c (Rx))), where R = P

T
,

for some vector x ∈ R
n, where n is the number of rows in

HLM, generated by the GMRES algorithm. Here, Rx requires one

matrix-vector product. Since the diagonal matrix A−1
c is stored as

a vector, A−1
c (Rx) is just a simple scaling of the elements of Rx.

This resultant vector is then multiplied with P . Thus the construc-

tion of B−1

def requires just two matrix-vector products.

4.3. Results

Here we compare the direct solve, specifically, the sparse LDL

factorization method and the generalized minimal residual method
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(GMRES) with two preconditioners: (1) Block Jacobi precondi-

tioner and (2) Multiplicative deflated two-grid preconditioner. All

the preconditioners are implemented as part of the same SSBA

package.

We also experimented using block SSOR preconditioner and

standard coarse grid correction, where interpolations are con-

structed using strength of connection based aggregation method

[37], but as shown in Table 2, they do not perform well compared

to the results shown in Table 3. We note here that classical multi-

grid method such as AGMG were designed for scientific comput-

ing applications, where the coefficient matrices are usually either

diagonally dominant or has so-called M -matrix property. For the

problems considered in this paper, the matrix HLM is found to be

neither diagonally dominant nor an M -matrix. This explains why

traditional multigrid methods fail.

In Table 1, we show the memory required by these methods.

We observe that our method requires same order of memory as

Jacobi method. On the other hand, as the problem size increases,

the two-grid method requires only 54% of the memory required by

the direct method.

In Table 3, we compare various methods. In the table, the best

times are shown in bold. We observe that for smaller problems,

the direct method is fastest. However, for larger problems, the

two-grid method converges roughly two to three times faster than

both the direct solve and block Jacobi methods.

One of the main reasons for fast convergence of our proposed

two grid deflation technique is that we explicitly deflate the large

eigenvalues instead of small eigenvalues. As shown in Table 4,

we observe that deflating the smaller eigenvalues still leads to a

Table 1. Memory usage in bytes of the three methods on ten BAL

datasets.

BAL dataset parameters memory usage

Images Points Obs. Direct Jacobi Two-

Grid

49 7776 31843 2.4e+07 2.1e+07 2.2e+07

73 11032 46122 3.8e+07 3.1e+07 3.2e+07

138 19878 85217 8.2e+07 6.0e+07 6.2e+07

372 47423 204472 3.0e+08 1.7e+07 2.2e+07

412 52215 224242 3.9e+08 1.9e+08 2.0e+08

460 56811 241877 4.2e+08 2.0e+08 2.1e+08

598 69218 304170 4.7e+08 2.6e+08 2.7e+08

707 78455 349940 5.7e+08 3.0e+08 3.1e+08

783 84444 377052 7.9e+08 3.3e+08 3.4e+08

969 105826 474627 7.4e+08 3.9e+08 4.0e+08

Table 2. Results for Aggregation based algebraic Multigrid

Dataset Iterations Time(s) Tolerance

L372 1000 160.4 10−2

L598 1000 247.093 10−2

L1031 1000 379.718 10−2

V427 1000 539.41 10−2

D356 1000 427.03 10−2

very slow convergence of the linear solves in LM iterations. The

largest eigenvalues of the HLM as shown in Figure 2, contribute to

its high condition number and therefore deflating the largest eigen-

values in our two-grid approach leads to faster convergence of the

GMRES. We point out that some of the largest eigenvalues are well

separated, and deflating them led to faster convergence. Thus our

deflation strategy is different from the traditional deflation, where

smallest eigenvalues are deflated. For these problems, we recom-

mend deflating largest eigenvalues for faster convergence as is ev-

ident from our test results.

Moreover, in Figure 4, we show the total time of LM iteration

for a cost function namely bundle large lifted schur,

implemented in the SSBA package, and for this cost function as

well we observe that the two-grid method converges the fastest

compared to other two methods for a comparable mean reprojec-

tion error. So our proposed preconditioning technique is robust

and easily scalable to large scale bundle adjustment problems.

5. Conclusions and Future Work

We proposed a new two-grid approach. The proposed method

is found to be fairly robust and fast compared to direct method

and block Jacobi method proposed in literature. Moreover, the

proposed method requires less memory compared to direct method

as the problem size increases.

One direction of future work is to explore more sophisticated

deflation techniques, and to do extensive comparison with other

methods for solving bundle adjustment problems.
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Table 3. Average time (in seconds) per iteration in the LM solver of the three methods on ten BAL datasets using

bundle large lifted schur cost function routine in SSBA. The first column corresponds to the name and index in the

original bal: "L" - "LadyBug", "D" - "Dubrovnik", "V" - "Venice" and "F" - "Final". Here HLM

Size is the number of rows of HLM .

BAL Dataset Parameters Direct Solve Block Jacobi Two-Grid

Set Dataset HLM Size Cameras Points Observations Time Error Time Error Time Error

1 L-49 23769 49 7776 31843 0.10 0.733 0.55 0.707 0.15 0.665

2 L-73 33753 73 11032 46122 0.26 0.686 2.44 0.642 0.32 0.675

3 L-138 60876 138 19878 85217 0.45 0.893 0.85 0.826 0.56 0.876

4 L-598 213036 598 69218 304170 8.23 0.761 20.9 0.784 2.20 0.769

5 L-969 326199 969 105826 474627 12.9 0.716 29.5 0.737 4.73 0.751

6 L-1723 485013 1723 156502 678718 50.4 0.758 72.6 0.758 13.1 0.758

7 D-356 683394 356 226730 1255268 11.3 0.801 41.5 0.794 8.20 0.796

8 V-427 934995 427 310384 1699145 16.6 0.754 37.0 0.762 11.9 0.752

9 F-871 1590279 871 527480 2785977 49.1 0.995 68.5 1.127 38.2 1.023

10 F-1936 1966443 1936 649673 5213733 129.4 0.956 114.7 0.947 60.9 0.958

Table 4. Time per iteration (secs) of LM with deflation of small

eigenvalues.

Dataset Condition No. Eigen 1 Eigen 3 Eigen 5

L49 1.83e20 67.07 66.048 65.96

L138 3.47e19 245.75 247.82 246.03

V52 4.44e15 529.80 537.71 538.54

V89 2.46e16 800.32 809.41 813.02
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