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Abstract

This paper introduces single-image geometric and ap-

pearance reconstruction from water reflection photography,

i.e., images capturing direct and water-reflected real-world

scenes. Water reflection offers an additional viewpoint to

the direct sight, collectively forming a stereo pair. The

water-reflected scene, however, includes internally scat-

tered and reflected environmental illumination in addition

to the scene radiance, which precludes direct stereo match-

ing. We derive a principled iterative method that disentan-

gles this scene radiometry and geometry for reconstructing

3D scene structure as well as its high-dynamic range ap-

pearance. In the presence of waves, we simultaneously re-

cover the wave geometry as surface normal perturbations

of the water surface. Most important, we show that the wa-

ter reflection enables calibration of the camera. In other

words, for the first time, we show that capturing a direct

and water-reflected scene in a single exposure forms a self-

calibrating HDR catadioptric stereo camera. We demon-

strate our method on a number of images taken in the wild.

The results demonstrate a new means for leveraging this ac-

cidental catadioptric camera.

1. Introduction

Water reflection has long been a source of artistic inspi-

ration. Various paintings come to mind that compose re-

flection by a water surface together with direct sight of a

scene, such as Claude Monet’s Autumn in Argenteuil. Wa-

ter reflection has also been an integral part of architectural

design as seen in Taj Mahal and Matsumoto Castle to name

a few. Water reflection has also been used as an artistic ex-

pression in modern photography, for instance, by capturing

a cityscape reflected in a puddle.

It is perhaps much less understood that water reflection

carries visual cues for scene structure recovery. A computer

vision researcher, however, would likely notice that water

reflection would give a different vantage point of the scene

from the camera viewpoint when captured in a single image,

collectively forming a (flipped) stereo pair. This suggests an

Figure 1. We show that we can recover the 3D geometry (right)

and high-dynamic range appearance (middle) of a scene from a

single image (left) capturing it both directly and through reflection

by a water surface.

opportunity for single-image scene geometry recovery. In

fact, Yang et al. [32] applied standard stereo reconstruction

to estimate scene depth from a single water reflection image

after adapting reflected scene appearance to construct a cost

volume robust to their radiometric distortions.

In this paper, for the first time to our knowledge, we

show that a single image capturing both the direct and re-

flected observation through water reflection of a scene re-

sults from a self-calibrating high-dynamic range catadiop-

tric imaging system. That is, in sharp contrast to merely

leveraging the geometric configuration of water reflection,

we show that a high-dynamic range appearance and 3D

shape of the scene can be recovered without any knowledge

about the image formation a priori. We first consider the

case where the water surface is calm and can be modeled as

a planar mirror. As shown in Fig. 1, we derive a method that

recovers high-dynamic range appearance and 3D structure

of the scene. The main challenge lies in the fact that water-

reflected scene radiance is compounded with environmen-

tal light scattered in the water medium and also reflected by

the bottom surface. Scene radiance must be sifted out from

this superposition in order to match against the direct ob-

servation for triangulation. In other words, radiometry and

geometry recovery are inherently intertwined.

We derive a canonical iterative method to recover scene

geometry from the direct and water-reflected observations.

We also show that high-dynamic range scene radiance can

be estimated in the process and water reflection even en-

ables calibration of the camera. That is, we do not need

to know anything about the camera; its intrinsic parame-
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ters can be recovered by seeking agreements in angular-

dependent Fresnel effects in the reflected observation, and

its extrinsic parameters can be estimated by identifying the

water surface. In other words, we show that capturing di-

rect and water-reflected scenes in a single exposure forms a

self-calibrating HDR catadioptric stereo camera.

The water surface in the image is not always calm and

can have waves that lead to noticeable displacements in the

reflected observation. We show that this can be modeled

as surface normal variations of the water surface and derive

an iterative approach to simultaneously recover the shape

of both the scene structure and the water surface. For this,

we introduce a principled method for incorporating realis-

tic prior knowledge such as piecewise planarity for scene

geometry and a Fourier-domain wave representation.

We experimentally validate our method both quantita-

tively and qualitatively by reconstructing scene structure

and radiance from a wide range of real images. The re-

sults agree with the newly derived theory and demonstrate

the effectiveness of its application to arbitrary images taken

in the wild. The proposed method provides a new means for

visually appreciating our 3D world, and enables a new form

of 2D-3D visual media of water reflection photography.

2. Related works

To our knowledge, the work by Yang et al. [32] is the

only other work that recovers 3D from an image of water

reflection. This work modifies a standard stereo algorithm

to compute two cost volumes, one for direct and another

for reflected views, whose filtered disparities are later fused

to produce a depth map. The method uses automatically

established keypoint pairs between the direct and reflected

views to adapt the appearance and also limit the range of

disparities. This inevitably necessitates the automatically

detected keypoints to uniformly span both the spatial and

depth variations of the scene, which hinders the method’s

applicability–their results are all on well-textured natural

scenes. The radiometric distortions in the reflected view are

assumed to be rectifiable with simple linear adaptation both

locally and globally. This assumption is simply incorrect

due to the compound angular-dependent mixture of light as

we later show and model. In contrast, instead of treating

them as nuisance that needs to be corrected, we exploit the

unique radiometric properties of water reflection as a rich

source for true scene appearance recovery and show that it

also enables self-calibration of the camera. That is, we show

how to recover not just the geometry but also the radiometry

of a scene, which are inherently intertwined, from a single

water reflection image.

Appearance and shape from water reflection can be in-

terpreted as accidental catadioptric stereo imaging in which

the water surface serves as the catoptric view that forms a

stereo pair with the direct dioptric view. Examples of ac-

cidental imaging include the use of occluders as pinspeck

(anti-pinhole) cameras that capture surroundings as shad-

ows [28], which can be used to estimate the scene behind the

occluders [5, 4]. Accidental micro motions due to, for ex-

ample, heart beating, can provide scene depth cues that can

be used for image refocusing and synthetic parallax gener-

ation [33, 10, 9].

Catadioptric imaging [2, 25] in computer vision has

been applied to a variety of tasks including omnidirec-

tional imaging [22], reflectance acquisition [16], shape-

from-silhouette [7], structured light [13, 26], kaleidoscopic

imaging [20, 27], and stereo reconstruction [1, 17, 24].

Gluckman and Nayer [8], in particular, proposed a catadiop-

tric stereo system with two planar mirrors. As the first ex-

ample of an accidental catadioptric system, Nishino and Na-

yar [18, 19] showed that capturing eyes form a catadioptric

imaging system in which the cornea serves as the reflector.

Stereo matching with translucency [29, 31] or image-

based reflection separation [14, 21, 12, 23] explicitly model

transmission through semi-translucent surfaces. They uti-

lize either 3D recovery or models in the Fourier domain for

blind separation of reflected and transmitted images. They

cannot, however, be applied to non-planar surfaces such as

wavy water surfaces.

3. Assumptions

Let us first clarify the assumptions we make. As we con-

sider an image capturing both a direct view of a scene and

its reflection by a water surface, we can safely make the

following assumptions without loss of generality.

• The water medium (e.g., pond or puddle) is homoge-

neous and has a known index of refraction.

• The reflected scene as well as the bottom of the water

medium consist of Lambertian surfaces.

• The reflection is purely specular at the water surface.

• The sun is not captured in the reflection.

• We can either manually or automatically isolate the

image region capturing water reflection.

We do not require knowledge of the camera parameters

neither intrinsic nor extrinsic. If EXIF information is avail-

able, we use it to initialize the intrinsic camera parameters.

We show that these camera parameters can be estimated

from the image.

When the water surface has waves, we assume that they

satisfy the following properties.

• The wave amplitude (i.e., height) is comparatively

smaller than the camera height from the water surface.

• Any interreflection on the water surface is negligible in

intensity and one water surface point reflects one (but

not necessarily unique) object surface point.
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Figure 2. A scene point p
w

is observed directly (u) and also

through reflection u
′ by the water surface. Unlike the direct ob-

servation Ic(u) the reflected radiance Ic(u
′) contains not just the

direct radiance from the scene point Ic0(u
′) which gets specularly

reflected by the water surface, but also the radiance of light that

has scattering through the water medium Is0 and that reflected off

the bottom surface of it Ig0 that is refracted into the camera.

4. Planar Water Reflection

We begin by deriving the key steps for recovering ap-

pearance and shape from planar water reflection which are

also shared when dealing with wavy water reflection. As

depicted in Fig. 2, a 3D scene point pw is observed twice

in the image: the direct observation Ic(u) and the reflected

observation Ic(u
′). Note that both observations of scene

points are captured in a single image and represented by

their positions on the image plane, u = (ux, Uy, 1)
⊤ and

u′ = (u′
x, U

′
y, 1)

⊤, respectively.

4.1. Planar Water Surface Reconstruction

For a calm water surface, or as an initial estimate of the

global surface normal of a wavy water surface, we estimate

the surface normal of the water surface nw from a small set

of corresponding pairs of direct and reflected observations

(u,u′) satisfying

u′⊤A−⊤[nw]×A
−1u′ = 0 , (1)

where A is the intrinsic parameter matrix of the camera and

[nw]× is the skew-symmetric matrix of nw. This is a linear

constraint on the normal nw, and we can estimate nw from

two or more corresponding pairs. Intrinsic camera parame-

ters A can be initialized with EXIF information, when avail-

able, or with reasonable values common in outdoor photog-

raphy, which are then refined by the radiometric recovery

process as we detail in Sec. 5.5.

We obtain these correspondences semi-automatically.

We first segment the image into direct and reflected obser-

vation regions, which can often be done by just specifying

the line where the direct and reflected observations meet in

the image. We then run generic feature detection and match-

ing methods in these two regions. For a calm water surface,

we found this process to be sufficient for all cases. For a

moderately wavy water surface, we conduct this automatic

feature matching on a downsampled and blurred image to

obtain the global surface normal of the water surface. Note

that we only need a few correspondences as we are only

recovering the water surface normal.

4.2. Direct–Reflected Stereo Reconstruction

For a calm water surface that can be modeled as a pla-

nar reflector, once we estimate its normal, the direct and

reflected observations in the image form a stereo image pair

(albeit folded). For a wavy water surface, the stereo corre-

spondence pairs are locally perturbed by the varying surface

normal at each water surface point. In either case, if the dis-

placements due to waves are undone and correspondences

are established as we later show, we may recover the 3D

coordinates of scene points via regular stereo reconstruc-

tion (i.e., triangulation) from the direct–reflected observa-

tion point pairs:

{

u = λcApw ,

u′ = λ′
cA(Hwpw + tw)

⇔









uxM3 −M1

uyM3 −M2

u′
xM

′
3 −M ′

1

u′
yM

′
3 −M ′

2









pw = 0,

(2)

where Hw = (I − 2nwn
⊤
w) is a householder matrix, and

tw = 2dnw. M = (A 0), M ′ = A(Hw tw) are projection

matrices for each viewpoint.

This stereo reconstruction requires the intrinsic and ex-

trinsic parameters of the camera. The extrinsic camera pa-

rameters can be described by the mirrored camera pose H

and translation tw w.r.t. the original viewpoint defined by

the water surface normal nw and distance d of the cam-

era from the water surface as depicted in Fig. 2. Since the

global scale is not known, we assume d = 1 and the recov-

ered scene geometry is scaled accordingly.

5. Appearance from Water Reflection

As we show in Fig. 2, the reflected observation of a

scene point Ic(u
′) is a superposition of specular reflection

by the water surface Ir(u
′) of the Lambertian scene radi-

ance Ic0(u
′), environmental light scattered through the wa-

ter medium Is(u
′), and also bouncing off the bottom sur-

face Ig(u
′)

Ic(u) = Ic0(u
′) ,

Ic(u
′) = Ir(u

′) + Ig(u
′) + Is(u

′) .
(3)

We need to separate these components and recover the scene

radiance Ic0(u
′), so that correspondences can be estab-

lished between the reflected and direct observations.
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5.1. Reflected Scene Radiance

The reflected scene radiance by the water surface Ir can

be described by the Fresnel power reflectance F

Ir(u
′) = F (u′)Ic0(u

′) . (4)

The power reflectance F under natural light is

F (u′) =
1

2
(Rs +Rp) , (5)

where Rs and Rp are the power reflection coefficients for

s-polarized and p-polarized light given respectively by

Rs =

(

sin(θr − θt)

sin(θr + θt)

)2

, Rp =

(

tan(θr − θt)

tan(θr + θt)

)2

.

(6)

The angle of incidence θr, which is also the angle of

specular reflection, is

θr = cos−1
(

(A−1u′)⊤nw

)

, (7)

and the angle of refraction θt becomes

θt = sin−1

(

µa

µw

sin(θr)

)

, (8)

from Snell’s law. µa, µw are the refraction indices of the air

and water respectively.

5.2. Water-Scattered Environmental Illumination

We assume that the environmental illumination is uni-

form across the water surface, i.e., the incident environmen-

tal illumination to the water surface points in the reflected-

observation region does not vary. This is a reasonable as-

sumption as long as the sun is not directly imaged via water

reflection. Part of this environmental light is transmitted

into water, scattered in the medium, and then transmitted

back into the viewpoint.

The scattered environmental illumination is the sum of

scattered light from all points along the transmitted path

observed at u′. On the other hand, the bottom of the wa-

ter medium at which the light path intersects will have a

comparatively weaker radiance, which suggests that we can

limit the contribution of water-scattered environmental illu-

mination to that from near the water surface. We model

this near-surface water-scattered environmental illumina-

tion based on the dipole method [11], which describes the

process of environmental illumination I(θi) from θi trans-

mitted into water with T (θi) = 1 − F (θi), attenuated with

Rd(τ), then transmitted again into the camera T (θr(u
′))

for all angle θi and distance τ :

Is(u
′) =

∫

τ

∫

θi

T (θi)Rd(τ)T (θr(u
′))I(θi)dτdθi ,

≃ T (θr(u
′))Is0 ,

(9)

Figure 3. The Fresnel reflection on the water surface, in effect,

provides scene radiance captured with spatially varying exposures

that are different from the camera. By combining these two radi-

ance exposures, we reconstruct high-dynamic range appearance of

the scene (right), which reveals scene details in saturated regions

in the original direct view (left).

where Is0 is the homogeneous scattered radiance. Note that,

for water, the BSSRDF is simply T (θi)Rd(τ)T (θr(u
′)),

since the scattering attenuation only depends on the distance

τ between the incident and exitant surface points.

Note that, when the medium is shallow, the bottom sur-

face reflection will be comparatively strong and instead be

transmitted into the viewing direction almost without any

scattering. This effect will be accounted for by the bottom

surface reflection model described in Sec. 5.3.

5.3. Reflection From The Bottom Surface

The reflected observation also includes environmental

illumination reflected by the bottom surface of the water

medium. Since the incident environmental illumination

would be scattered to and from the water bottom, and as

we assume a Lambertian bottom surface, this light can be

denoted as

Ig(u
′) = T (θr(u

′))Ig0 , (10)

where Ig0 is the uniform Lambertian reflection at the bot-

tom, and T (θr(u
′)), or abbreviated as T (u′), is the trans-

mittance into the camera.

It is important to note that this component is negligible

when considering reflected observations by ponds and lakes

that have sufficient depth. It becomes dominant only for

shallow water media such as puddles.

5.4. Scene Radiance and HDR Recovery

To recover the scene radiance from the reflected obser-

vation, we first estimate the sum of diffuse bottom surface

reflectance Ig0 and subsurface scattering Is0 from each of

N pairs of direct and reflected image coordinates (ui,u
′
i)

and their observations (Ic(ui), Ic(u
′
i)) (i = 1, . . . , N) and

average them using Eqs. 4, 9, 10

Ic(u
′
i) = F (u′

i)Ic(ui) + T (u′
i)(Ig0 + Is0) ,

Ig0 + Is0 =
1

N

N
∑

i=1

{

T (u′
i)

−1 (Ic(u
′
i)− F (u′

i)Ic(ui))
}

.

(11)
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We can then sift out the scene radiance from the reflected

observation of each u′ by subtracting these additive compo-

nents and by undoing Fresnel reflection

Ic0(u
′) = F (u′)−1 (Ic(u

′)− T (u′)(Ig0 + Is0)) . (12)

The recovered scene radiance in the reflected observation is

then used for stereo matching with its direct observation.

The reflected observation consists of a darkened scene

radiance due to Fresnel reflection combined with scattered

and bottom-reflected environmental illumination. The lat-

ter components are usually less dominant compared to the

Fresnel-reflected scene radiance component. Once we elim-

inate those components, we are basically left with the scene

radiance modulated by the angular-varying Fresnel effect,

which reduces the scene radiance more as we look at closer

water surface in a general image capture setting. In other

words, we are left with the scene radiance captured with a

varying neutral density filter, which suggests that we can

combine the scene radiance values captured in the direct

and reflected observations to estimate high-dynamic range

appearance of the scene. Although this is HDR recovery

from only two different exposures, as shown in Fig. 3, it

lets us recover scene appearance details particularly in sat-

urated regions of the direct view or underexposed regions

of the reflected view. In Sec. 7, we demonstrate this HDR

scene recovery and show tone-mapped results [3].

5.5. Intrinsic Camera Parameter Estimation

In regular stereo reconstruction, changes in intrinsic

camera parameters do not alter the fundamental matrix,

which in turns means that the camera intrinsics cannot be re-

covered. In contrast, in shape from water reflection, the re-

flected scene radiance is altered by the Fresnel water surface

reflection whose magnitude depends on the viewing angle

θr(u
′) (equivalently the incident angle). This suggests that

we may estimate intrinsic camera parameters, most notably

the focal length fc, when recovering the reflected scene ra-

diance from the reflected observation.

Eq. 7 indicates that the viewing angle θr is also a func-

tion of the intrinsic camera matrix A. The focal length fc
together with the environmental illumination components

Ig0 + Is0 can be estimated by minimizing errors of Eqs. 11

and 12

argmin
fc,Ig0+Is0

∑

〈u,u′〉

(Ec0 + λEgt) , (13)

Ec0 = ‖Ic0(fc,u
′, Ig0 + Is0)− Ic(u)‖ , (14)

Egt = ‖Ig0 + Is0 − T (u′)−1 (Ic(u
′)− F (u′)Ic(u)) ‖ ,

(15)

where λ is a weighting parameter. The second term Egt

evaluates the uniformity of the estimated environmental il-

lumination.

u

u’

pw

d

nw

p (u’n )p (u’n )^

n  (u’w )^ ^

u’^

Figure 4. By estimating waves as surface normal variations of the

water surface, we can remove the effects of waves and recover the

reflection point and image coordinates of the reflected observation

for a planar water surface.

6. Wavy Water Reflection

When the water surface has noticeable waves, we simul-

taneously estimate the geometry of the waves and the scene.

6.1. Wavy Water Surface

As we can safely assume that the wave amplitude is suffi-

ciently small compared to the height of the camera, we can

model them as surface normal perturbations to the other-

wise flat water surface. This surface normal variation causes

changes in projected image coordinates and their radiance

(i.e., reflected observations). Using notations depicted in

Fig. 4, we model this by expressing the reflected observa-

tion for a corresponding pair of direct and reflected obser-

vations (u, û′) using the local normal n̂w(û
′) of the water

surface point from where that reflected observation comes

Ic(û
′) =F (û′, n̂w(û

′))Ic(u)

+ T (û′, n̂w(û
′))(Ig0 + Is0) .

(16)

We model the reflected observation as that taken by

a collection of reflected viewpoints, i.e., pixel-wise mir-

rored cameras with mirrored poses Hw(û
′) and translations

tw(û
′)

û′ = λ′
cA (Hw(û

′)pw + tw(û
′)) , (17)

which makes explicit the relationship of the 3D image co-

ordinates u and û′ in terms of a sum of deformation and

disparity on the 2D image plane.

6.2. Waves as 2D Deformations

Our goal is to remove the effects of water surface defor-

mation and associated radiometric change in reflected ob-

servation (i.e., image intensity change) by comparing di-

rect and reflected observations independent of the disparity.

The main challenge for this is that the angular dependency

of the reflected observation only results in a subtle change

in image intensity which, in general, is not large enough

to robustly separate the water surface normal variation and
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Figure 5. Quantitative evaluation using structured-light stereo to acquire ground truth depth. From (a) a single image with bottom surface

reflection and waves, we recover (b) HDR appearance and (c,d) dense 3D geometry (shown in two views) which agree well with ground

truth as (e) the percentile error map w.r.t. scene depth range shows. Our method also recovers the wave structure as surface normal

variations as shown with (f) ten-times amplified normal maps.

disparity. To simultaneously estimate the wavy water sur-

face and the scene geometry, we formulate it as a 2D im-

age alignment and employ prior knowledge about the scene

structure and the wavy water surface.

We first project the direct and reflected observations to

a common image plane on which we can achieve 2D im-

age alignment between the observations. While we may

use arbitrary virtual planes, for simplicity, we use the wa-

ter surface seen fronto-parallel as the common image plane.

Let us denote the common image plane with {u′}. Note

that the 3D image coordinates {u′} are unknown because

we only know Ic(u) and Ic(û
′). We denote the direct ob-

servations in the actual input image with ID(u′) and those

projected onto the common image plane with Ic(u). Sim-

ilarly, we denote the wave-removed reflected observation

(i.e., the estimated reflected scene appearance for a planar

water surface) with IM (u′) and its recovered radiometry

(i.e., estimated scene radiance) with Ic(û
′).

Our objective is to estimate the waves as local surface

normals of the water surface such that

ID(u′) = IM (u′) . (18)

The geometric projection of 3D image coordinates of the

direct observation u to that on the common image plane u′

in ID is

u′ = Hdisp(pw)u , (19)

where Hdisp(pw) is a homography matrix determined by

the 3D scene point pw and the local water surface normal

nw for each pixel u.

On the other hand, the geometric transformation 3D im-

age coordinates of the reflected observation û′ to that on the

common image plane u′ in IM is

u′ = g(û′) . (20)

We estimate this displacement field g with a generic 2D

non-rigid image registration method [30].

6.3. Wavy Water Surface Reconstruction

The estimated displacement field on the common im-

age plane provides correspondences between direct and re-

flected observations (u,u′) and the water surface normals

nw and scene geometry pw can be recovered from Eq. 19.

As depicted in Fig. 4, the displacement estimate tells us that

the reflected observation û′ is moved to u′ on the input im-

age for the same scene point pw. The corresponding reflec-

tion point on the water surface is moved to pn(u
′) after

removing the wave

pn(u
′) =

d

cos(θr(u′))
vc(u

′) . (21)

By using the estimated 3D scene coordinates pw, we ob-

tain the surface normal at each reflecting point of the wavy

water

n̂w(û
′) =

1

2

(

−
pn(û

′)

|pn(û
′)|

+
pw − pn(û

′)

|pw − pn(û
′)|

.

)

(22)

When the waves are erroneously recovered, the recov-

ered scene geometry will subsume the errors in water sur-

face geometry resulting in a wavy 3D scene structure. Since

real-world surface geometry is, in general, not wave-like,

we can impose a geometric prior on the scene. We em-

ploy a piecewise planar geometry prior, that encourages the

recovered scene geometry to consist of locally planar sur-

faces. In particular, we segment the direct observation of

the scene into superpixels and impose this piecewise pla-

narity on each superpixel (i.e., a locally connected set of

{u}). We impose this prior in a coarse-to-fine fashion, in

which the superpixel size is iteratively refined. This, in ef-

fect, allows smoothly curved scene geometry while nudging

the wave pattern to be explained by the water surface instead

of the scene structure.

Since 2D non-rigid image registration on the common

image plane can also erroneously absorb disparity errors as

surface normal variations, we also impose a prior on the
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Figure 6. The effect of self-calibration: reconstructed 3D model

without (left) and with (right) focal length estimation. The si-

multaneous focal length estimation (i.e., self-calibration) clearly

results in more accurate geometry.

wave geometry. Inspired by simple computer graphics mod-

els for water waves [6, 15], we employ a Fourier domain

prior model. The height map h(pn, t0) for a 3D wavy water

surface point pn at a single time instance is given as

h(pn) = p0 +
∑

i

aie
ikpn−φi , (23)

where ai is the amplitude of a Fourier component, and k is a

wave vector. The surface normals of the wavy water surface

is computed by differentiation of the wave heights. We use

a pre-determined number of Fourier components and apply

inverse Fourier transform to recover the wave.

7. Experimental Results

We thoroughly evaluate and demonstrate the effective-

ness of our method with controlled experiments and with

arbitrary images taken in the wild.

To quantitatively evaluate the accuracy of the recovered

3D scene geometry, as shown in the left most of Fig. 5, we

setup a dual-camera imaging system in the lab. Although

only one camera is used for capturing the input image for

our method, we use the other camera and a projector to re-

construct ground truth depth with structured light stereo re-

construction. The two cameras are calibrated beforehand

and we also obtained global scale by capturing a checker-

board in the direct and reflected area of the camera image.

This provides per-pixel ground truth depth at the main cam-

era. In addition, we create waves by perturbing the water

surface to evaluate the method’s robustness to reasonably

large waves (Fig. 5, the second row).

Fig. 5(c) and (d) show that our method recovers 3D ge-

ometry from the single input image (a) with sufficient accu-

racy as can be seen in the error maps (e) computed against

the ground truth. The average depth errors are 6.3% and

3.2% for the calm water surface and the wavy water sur-

face, respectively. Note how dark the reflected observations

of the scene in the input images are, which renders any sim-

ple appearance adaptation for direct stereo reconstruction

impossible. The results show that our method successfully

extracts the true scene radiance from the reflected observa-

tion which enables robust matching against the direction ob-

servation for both cases. The recovered scene appearance,

Figure 7. The effect of wave surface recovery: reconstructed 3D

model without (left) and with (right) wave geometry estimation.

By explicitly recovering the wave surface, our method achieves

accurate scene geometry recovery from wavy water reflection.

including the saturated intensities of the cup in Fig. 5(b),

also show that our method successfully reconstructs high-

dynamic range radiance. The missing areas in the recon-

struction are occluded from the camera. The simultaneously

reconstructed waves shown as an exaggerated surface nor-

mal map in Fig. 5(f), also look reasonable, although there

are no means to know the ground truth, suggesting success-

ful disentanglement of scene and wave structures.

To quantitatively evaluate the accuracy of self-

calibration, i.e., intrinsic parameter recovery, we randomly

sampled N pairs of corresponding point pairs u and u′

from the input image in the first row of Fig. 5(a), and recov-

ered the focal length using the method described in Sec. 5.5.

We found that with more pairs the relative error decreased

rapidly and with 100 pairs it already reached less than 5%
error. Note that, since our method achieves dense matching

in the process of radiometry and geometry reconstruction,

many more than 100 point pairs can easily be furnished. In

Fig. 6, we also quantitatively demonstrate the effect of self-

calibration. The results clearly show that the focal length

estimation undoes the skew and results in more visibly ac-

curate geometry.

Fig. 7 shows results of reconstructing the Golden Temple

with and without estimation of the waves on the pond re-

flecting it. The results clearly show that by explicitly mod-

eling the waves as 2D deformations of the proxy plane and

imposing natural priors on their shape, they can be disen-

tangled from the target geometry.

Fig. 8 shows comparisons of our method and our imple-

mentation of [32]. We compare on two images taken from

[32] and two images we have captured. The results clearly

show that our method achieves more accurate geometry es-

timation, in addition to the fundamental difference of also

recovering HDR appearance. In general, the recovered ge-

ometry by the method in [32] is fragmented, which is a di-

rect result of being inherently restricted to very sparse depth

layers due to the heavy reliance on sparse keypoint corre-

spondence pairs that governs the depth range and appear-

ance adaptation. In sharp contrast, by disentangling the ra-

diometric and geometric properties of water reflection, our

method is able to achieve dense and clean per-pixel geome-
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Figure 8. Comparison with Yang et al. [32]. From left to right, input images, results by Yang et al. [32], and results by our method. Our

method successfully reconstructs a dense accurate 3D model of the scene, together with its high-dynamic range appearance. (Image credits

for the third and fourth input images: Yuji Wada and Ko Nishino.)

Figure 9. Results on arbitrary images found on the Internet. For each example, we recover an HDR-texture mapped mesh model shown

from two different viewing directions. More results can be found in the supplementary video. The results demonstrate the effectiveness of

our method on arbitrary already-taken images. (Image credits for the left and right input images: Andrés Nieto Porras and Edwin Giesbers.)

try reconstruction.

We apply our method to various images either taken by

our phone cameras or found on the Internet. Fig. 9 shows

the single input images and recovered 3D models with high-

dynamic range appearance. The supplementary video con-

tains more results. The results show that the 3D scene

structure can be recovered despite waves and complex wa-

ter surface reflection. It is also interesting to see how the

method applies to a wide range of scene scales, ranging

from a small bird to a large architecture. Images taken with

long focal length tend to result in flatter surface with lim-

ited depth variation as one expects. The results also include

various types of water reflection, ranging from a puddle to

a lake demonstrating its successful application to images

truly taken in the wild.

8. Conclusion

In this paper, we introduced appearance and shape from

water reflection to recover 3D geometry and high-dynamic

range appearance of a scene from an image capturing both

direct and water-reflected views in a single exposure. The

method can recover camera parameters and waves in ad-

dition to the scene structure and appearance, enabling its

application to unconstrained, already-taken images. Exper-

imental results demonstrate its robustness to waves and its

effectiveness when applied to arbitrary images taken in the

wild. We believe the method has strong implications in a

wide range of domains, not just in vision and graphics, but

also in photography as a new visual media, as well as in im-

age forensics analysis in which direct and water-reflected

geometry and radiometry, even with waves, can now be

used as visual cues of image tampering.
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