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Abstract

Lane detection is of critical importance to both the self-

driving cars as well as advanced driver assistance systems.

While current methods use a range of features from low-

level to deep features extracted from convolutional neural

networks, they all suffer from the problem of occlusion and

struggle to detect lanes with low or no evidence on the

road. In this paper, we use a lane boundary marker net-

work to detect keypoints along the lane boundaries. An

inverse perspective mapping is estimated using road ge-

ometry which is then applied to the detected markers and

lines/curves are fitted jointly on the rectified points. Fi-

nally, missing lane boundaries are predicted using lane ge-

ometry constraints i.e., equidistant and parallelism. Re-

ciprocal weighted averaging ensures lane boundaries with

strong evidence dominate their predicted alternatives. The

results show a significant improvement of +7.8%, +6.8%

and +1.2% of F1 scores over the state-of-the-art on CU-

Lane, Caltech and TuSimple datasets, respectively. This

proves our algorithm’s robustness against both occluded

and missing lanes cases. Furthermore, we also show that

our algorithm can be combined with other lane detectors to

improve their lane retrieval potential.

1. Introduction

Fully autonomous vehicles in the form of self-driving

cars are gradually appearing on the scene and we have

Google Waymo [17], Tesla’s Auto-pilot [19], Comma.Ai’s

OpenPilot kit [16] and Intel’s MobileEye solutions [18] just

to name a few. Along with self-driving cars, Advanced

Driver Assistance Systems (ADAS) have also captured a

surge in the interest. Both self-driving cars and the ADAS

require different levels of autonomy but some aspects of au-

tomation are still common. One of them is road lane detec-

tion and segmentation. Lane detection is critical in identi-

fying and ensuring safe driving practices and an on-board

Curved No Line

Night Crowded

Figure 1. Sample results of our algorithm on examples from four

different classes of CULane dataset [33] are shown here. Cyan

lines are the detected lane boundaries, green region represents the

ego lane and magenta line displays the estimated horizon. In the

No Line class, there is actually no line markings on the road but

the ground truth carries the lines shown.

system with this capability can alert the driver in case of

an unsafe lane change and avoid it in the first place if it

is a self-driving vehicle. Besides, it is also necessary in

understanding the road layout and surrounding scene ge-

ometry for proper route planning for autonomous or semi-

autonomous vehicles.

Lane detection has classically been done using either

low-level edge features, histogram analysis, lane boundary

detection algorithms such as Linear Hough Transform [15]

or a combination. Although such methods are intuitive and

efficient, they are however easily fooled by non-lane edges

or lines appearing in the images such as road curbs, shad-

ows as well as false negatives due to erased or inconsistent

lane boundary markings. Recently, deep learning based so-

lutions have also been proposed that produce more robust
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and reliable results as they tend to learn the context of the

road scene irrespective of occlusions. The advantage of us-

ing deep learning (DL) techniques lies in the discourse from

traditional lane boundary detection approach towards se-

mantic segmentation of the lane region [31]. Several state-

of-the-art algorithms such as VPGNet [24], SCNN [33] and

JLBNet [40] have shown impressive results and have set the

bar very high. But there are challenging scenarios in which

even DL based algorithms struggle to find the lane. One

of the obvious cases is when the evidence of a lane line is

either effaced or there is no lane marking on the road but

the ground truth (GT) carries lane information such as CU-

Lane’s [33] no line class; examples are shown in Figure 1.

To address such cases, we proposed a novel lane de-

tection algorithm that exploits the parallel nature of lane

boundaries and fixed lane widths on the road to validate

the detected lanes and predict lanes that are missed by the

detector due to erased or effaced lane markings. In gen-

eral, these assumptions apply on all through lanes that typ-

ically constitute the major length of the highway and our

main focus in this study was to evaluate the effectiveness of

the proposed approach in such scenarios. Although, the as-

sumption of parallel lanes has been successfully exploited

in earlier works to detect lanes in rectified view [5] but to

the best of our knowledge, we are the first ones who used

equidistant and parallelism property of the lanes jointly to fit

the lanes and our results on no line class of CUlane dataset

highlight the effectiveness of this approach.

We use a simple encoder-decoder based Convolutional

Neural Network (CNN) to detect keypoints or markers

(used interchangeably) along the lane boundaries. Inverse

Perspective Mapping (IPM) estimated using scene geome-

try is then applied to the detected markers and lines/curves

are fitted on the rectified points. The estimation of IPM is a

one-off calculation for any given camera which is done over

a small set of initial frames. Unlike earlier approaches that

used single lane evidence to fit a curve for each lane line we

exploited road geometry and jointly fitted lines/curves for

all lanes. Our approach significantly improved the results

on public datasets, specifically for crowded or missing lane

scenarios. Lane region segmentation would descend from

lane boundary detection as a boundary polygon. The sam-

ple results of our lane detection algorithm on four different

classes of CUlane dataset, shown in Figure 1, demonstrate

the efficacy of our approach.

The breakdown of the paper is as follows: Section 2 pro-

vides a quick review of currently explored lane detection

techniques. Section 3 discusses our approach in detail with

our keypoint detector in section 3.1 and the estimation of

horizon and IPM in section 3.2.1 and 3.2.2. Our main con-

tribution, the parallel lane fitting along with the missing lane

prediction algorithm, is discussed in sections 3.3.1 and 3.3.2

respectively. Section 4 outlines the datasets, training and
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Figure 2. (a) The figure shows the architecture of the lane bound-

ary marker network. (b) The sampled keypoints from the ground

truth lane line are shown here.

testing frame work. Results are presented in sections 4.1,

4.2 and 4.3. Section 5 concludes the paper.

2. Related Work

In literature, the problem of lane detection has been ad-

dressed through a variety of sensor data. Taking into ac-

count the variation of ambient light owing to the time of the

day and weather which may render passive color imaging

useless, active sensors such as radars and lidars (Light/Laser

Detection and Ranging) have also been explored [21, 9, 26].

With this approach, generally the white/colored lane bound-

ary is identified in the range point cloud as having a differ-

ent reflectance w.r.t the road surface. The identified lane

boundary is then used to fit a line model on top of it. But

this is not a very popular approach since the Lidar can be ex-

pensive with complex installation along with the challenges

posed by road surface conditions such as the fading color of

the lane boundary over time which is quite common across

the globe.

The most straightforward approach, therefore, is using

a forward looking monocular dashcam installed inside the

driver cabin. Generally, images thus acquired are processed

for low-level features. Veit et al. [37] presented a compre-

hensive overview of features used to detect road markings

up till 2008. Most commonly, edge detection filters such

as Canny and Sobel [32, 20, 38] were employed for detect-

ing lane boundaries followed by model based approaches

such as Hough Transform [6]. Bertozzi et al. used Inverse

Perspective Mapping to rectify the image removing the per-
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spective distortion to improve lane detection by employ-

ing parallel line constraint of the road lane boundaries [5].

But under all the constraints, these methods still suffered

from occlusion and the false negatives generated by strong

shadows. Vanishing Point (VP) constraint was imposed in

[29, 6] to reduce the false positive rate. Shang et al. [34]

used steerable filters to guide the edge orientation of the

lane boundary markers and introduced a VP guided Parallel

Hough transform which showed improved performance un-

der complex lighting and weather conditions. To sum up the

handcrafted features and model based lane boundary extrac-

tion, Narote et al. [30] compiled a very recent and a com-

prehensive literature review. The prime limitations in these

algorithms remain illumination invariance and occlusion.

With the advent of deep learning for image classifi-

cation [23] the landscape of algorithms quickly changed

and supervised CNNs snatched the top slots in tasks re-

lated to image classification [23], semantic segmentation

[27] and object detection [12]. Lane detection, similarly,

also witnessed a significant improvement with deep CNNs

[35, 10, 22, 7, 28]. Pan et al. [33] used Spatial CNNs to

detect lane boundaries as line segments. They employ a

cascade of convolutional kernels across the height, width

as well as the depth of the input images. Using a sequen-

tial propagation scheme to integrate information from every

pixel, they reduce the memory and computational burden

in contrast to dense Markov Random Field (MRFs), Con-

ditional Random Fields (CRFs) and Recurrent Neural Net-

works (RNNs). The output is a class specific probability

map of lane boundaries which are then sampled horizon-

tally every 20 rows to produce a set of points. The cubic

splines are fitted on sampled points to estimate lane bound-

ary curves. Their algorithm is the top performing one at

TuSimple benchmark [36] (accuracy 96.53%). They also

introduced their dataset (CULane) and reported 71.6% F1

measure on its test set.

Lee et al. [24] used a Vanishing Point Guided network

(VPGNet) by annotating VP in their training data. The

VP constraint improves the lane detection as previously

found by Changzheng et al. [6] but their data is not pub-

licly available. Recent works, such as LaneNet by Neven

et al. [31] introduced a CNN for lane boundary segmenta-

tion. They cluster class-specific semantic segmentation of

the lane boundaries into the available number of lanes. In

contrast to previous approaches such as [5, 24] that estimate

IPM with the assumption of a fixed camera pose, Neven

et al. learned a small network, HNet, to estimate it at run

time. On TuSimple dataset their algorithm performs almost

as good as VPGNet (accuracy 96.4%) but its performance is

limited by the fact that deep learning approaches have inher-

ent dependence on training data domain, therefore, change

in camera hardware, pose and scene will greatly influence

prediction of HNet and hence the outcome.

Figure 3. The block diagram of our end2end lane detection algo-

rithm is shown here.

Deep learning is specifically good at learning context

and semantic information of objects in the scene. Lane re-

gions occupy more area than lane boundaries and hence are

semantically strong contenders. With state-of-the-art per-

formance in segmentation through Fully Convolutional Ne-

towrks (FCN) [27] and Segmentation Networks (SegNets)

[4], lane region segmentation has also been applied, but

with not much success. A lane occupies a large region in

the image and identifying all the pixels correctly, especially

the boundary pixels becomes challenging. Generally, it is

difficult to weight the training loss such that it penalizes

the network more if border pixels get misclassified as they

are more crucial in defining the lane boundary. Therefore,

Zhang et al. [40] integrated both lane region segmentation

and boundary pixel detection into two separate networks

and combined them into a multi-task loss. The algorithm

exceeded the performance of [33] with a total F1 measure

of 73.1% on CULane. Recently, Hou et al. introduced Self

Attention Distillation networks for lane detection that vary

in performance (6 to 74 fps) and accuracy depending on the

network architecture [14].

3. Our Approach

We believe that lane boundary detection can be gen-

eralized easily on a rather small dataset as compared to

lane region. Tying boundary detection to region segmen-

tation is not much helpful as is obvious from the reported

F1 scores (71.6%) of Pan et al. [33] who used pure lane

boundary detection contrast to Zhang et al. [40] (F1 73.6%)

who complemented lane boundary and region detection in

a joint framework on CULane dataset. Therefore, we fo-

cused only on lane boundaries. As generally is the case

with deep learning methods for lane detection that output

lane boundary maps which are sampled to produce bound-

ary markers, we instead take motivation from keypoint de-

tection in Mask-RCNN [12] and predict these lane markers

directly instead of sampling them from segmentation maps.

The main contribution of this paper is the post processing

pipeline, shown in Figure 3, following the lane boundary

markers detection. We fit lines to predicted keypoints and

initialize lane width and camera rotation using the equidis-
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tant and parallelism properties of the road lanes. At infer-

ence, if we are able to fit two lane boundaries (lines/curves)

jointly using the initialized lane width within a reasonable

tolerance (30%) and parallelism, only then we predict any

missing lane boundaries and handle multiple predictions

through weighted averaging. This pipeline greatly improves

the lane detection accuracy and qualitative results are shown

in Figure 1.

3.1. Lane Boundary Keypoint Detection

We represent each lane boundary using a fixed number

of keypoints. The accurate estimation of horizon (which is

critical for determining the IPM) is dependent upon the cor-

rect localization of Vanishing Point (VP). Therefore, dur-

ing training, we sample more markers near the VP. Another

reason for this is that points near the VP represent larger

distance in the real world, so accurate localization of these

points is crucial for precise line/curve fitting. The selected

distribution of these markers along lane boundary on a sam-

ple TuSimple image is shown in Figure 2(b). To sample

keypoints, we fit a cubic spline curve on the ground truth

points for each lane boundary and then divide it vertically

into three equal segments, where 50% of the total markers

are sampled from a segment that is closer to the VP and

1/4th of the total markers from the rest of the two segments

each.

Inspired by the well known image segmentation net-

works (i.e. FCN [27] and SegNets [4]), our lane detection

network is fully convolutional and consists of two blocks:

an encoder block, responsible to encode all relevant low

and high level features from the input image, and a decoder

block that learns the relationship between provided low and

high level features and makes the decision on top of it. The

architecture diagram of our keypoint detector is shown in

Figure 2(a). We used ResNet50 architecture [13] as back-

bone for information encoding while our decoder network

consists of four convolution layers, a single transpose con-

volution layer, that upsamples the feature map by 4× for

precise localization of lane markers, and a final output con-

volution layer. In the output layer, we generate a one-hot

mask for each marker just like Mask-RCNN, where only

the marker’s pixel is marked as foreground or one. To avoid

inter-class competition among multiple keypoints, a per-

mask cross-entropy loss is computed. The total loss of this

network is the average of the loss for all K keypoints. At

inference time, unique marker in each output map is com-

puted by selecting the one with the highest score.

3.2. Camera Initialization

Camera initialization involves using camera intrinsics

and road geometry to find Inverse Perspective Mapping

(IPM) to synthetically rotate the viewpoint and lane width

to fit equidistant parallel lanes in rectified view after the ini-

IPM

Figure 4. (Left) Perspective lane image demonstrating the right-

hand camera system (Right) rectified camera view w.r.t road sur-

face using IPM. hc is the camera height, LWr is the lane width in

real world in meters while LWp is the lane width on image plane

in pixels given by Equation 1.

tialization.

Our approach is aimed at a forward looking dashcam in-

stalled inside the driver’s cabin. Configuration is done in a

right-handed frame of reference. The road plane normal is

along the Z-axis (upwards), Y-axis is in the driving direction

and X-axis towards the right side of the vehicle. As shown

in Figure 4(a), the camera is expected to have some tilt w.r.t

X-axis whereas the pan angle w.r.t Y-axis is negligible and

therefore, the image mainly has perspective distortion [25].

IPM is used to remove the perspective distortion in an

image. Application of the IPM synthetically rotates the

camera into a top (bird’s eye) view thus rendering the in-

tersecting lines as parallel; the way they actually are in the

real world. The use of IPM improves the curve fitting as ex-

plained in earlier works such as [5, 24]. Recently, Neven

et al. [31] trained a small CNN (HNet) to estimate IPM

but its performance is limited by the fact that deep learning

approaches have inherent dependence on training data do-

main, therefore, change in camera hardware, pose and scene

will greatly influence the outcome. On the other hand, for

a geometric approach, knowing camera pose could be chal-

lenging as it may vary from time to time. Therefore, we

introduce a novel, accurate and robust way of estimating an

IPM without any prior knowledge of the camera pose. We

instead use road geometry to find camera pose and in-turn

find the IPM. The following subsections explain all modules

in the initialization block of the Figure 3.

3.2.1 Horizon Estimation

The estimation of IPM assumes a planar road scene hav-

ing no elevation and more than one lanes (3 or more lane

boundaries), such as a typical highway scenario. We start

by fitting lines to the detected markers. A best fit line must

have a minimum number of inlier markers (i.e., 25% of total

number of markers for each lane boundary). Inlier markers

are those having horizontal distance of under 8 pixels to the

best 1st degree line fit through RANSAC [8].

Critical part of initialization is the estimation of a vanish-

ing line (horizon) from these lines. This requires two sets of

vanishing points (VPs), forward and lateral VPs. Forward
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VPs can be found from the cross product of the world par-

allel lines whereas the process of finding lateral vanishing

point is a bit involved. For that we use cross-ratios of three

real-world parallel lines which are the lane lines as used

by Ali et al. [2]. Once a set of forward and lateral VPs is

found, we use their horizon estimation algorithm to find the

best fitting horizon lh.

3.2.2 IPM and Image Rectification

After estimating horizon, we compute plane normal n̂ using

camera intrinsic matrix K and horizon lh [11] by n̂ = KT lh.

The IPM is then computed using HIPM = KRK−1, where

R = [lh × n̂; (lh × n̂)× −̂n; −̂n] is the rotation matrix and

HIPM is the rectification homography which will rotate the

camera view to align its Z-axis with the road’s normal.

Estimation of horizon and IPM on a short video clip

completes the initialization of camera. Frames can then be

simply rectified into a bird’s eye view by applying this IPM

(Figure 4). As long as the camera intrinsics or pose do not

change, re-initialization is not required. Therefore, it is a

one-off calculation for every camera setting.

3.2.3 Lane Width Initialization

A frame is considered an inlier frame if it has at least one

forward and one lateral vanishing point. A pair of consecu-

tive parallel lines are selected and the distance between the

lines is calculated per frame through:

LWp =

∑

f
|c2−c1|√
a2+b2

f
. (1)

where f is the number of inlier frames and LWp is the aver-

age initialized lane width in pixels.

In real world, standard lane width typically vary across

countries and is usually decided by state or federal depart-

ment of transportation. Lane widths are commonly nar-

rower on low volume roads and wider on higher volume

roads and depends on the assumed maximum vehicle width.

The Interstate Highway standards for the U.S. Interstate

Highway System use a 3.7 meter standard lane width while

in Europe, the minimum widths of lanes are generally be-

tween 2.5 to 3.25 meters [39]. Hence the ratios of these

lanes widths vary within nearly 0.7 to 1.3. Therefore, an

empirically selected threshold on lane width ratio (initial-

ized:detected) LWR = 0.3 should suffice.

3.3. PostInitialization

In the post initialization phase, we use the computed ho-

mography and estimated lane width to rectify keypoints and

fit equidistant parallel lines/curves on them. Following sub-

sections explain all the modules shown in post-initialization

block of Figure 3.

3.3.1 Equidistant Parallel Line/Curve Fitting

The lane boundary markers detected by CNN are rectified

using the HIPM found in Section 3.2.2. Second degree

quadratic curves are fitted to randomly selected subset of

markers. Three constraints are imposed on the curves in or-

der to ensure correctness. First, the number of inliers, which

have to be more than a minimum numbers (generally 25%

of the total number of markers for lines and 50% for curves).

For this, the perpendicular distance between the curve and a

given marker is used as a measure. This process is repeated

until the number of inliers cross a threshold or maximum

iterations are reached. If it fails, then straight lines are tried.

After line/curve fitting, the second and the third con-

straints, parallelism and equidistant nature of lane lines, are

ensured. If the two lines are straight, the parallelism is esti-

mated from the difference between their slopes and the dis-

tance between them is computed using the Equation 1. In

case of curved lane boundaries, the difference between the

slopes of their tangents is used to judge parallelism and the

lane width is calculated by intersecting a line perpendicular

to the tangent of first curve to a point at the second curve

and then finding the distance between the two points.

In its current form, our lane detector is trained for four

lane boundaries (three lanes, i.e. left, center and right). If

four lane boundaries do not satisfy all the three constraints,

three lane boundaries are fitted and then two. At less than

two lines/curves, the frame is ignored. Algorithm 1 explains

this process for two lane boundaries.

3.3.2 Detecting Weak or Missing Lane Boundaries

In order to estimate the missing lanes, we used the initial-

ized lane width in pixels (LWp). We calculate the lane

boundary offset for the missing or low confidence lanes

from Equation 1 as:

co = LWp

√

a2 + b2 (2)

where co is the required offset in x-intercept for the miss-

ing lines. Adding co to the x-intercept of the detected lane

boundaries in the rectified view, we predict the missing lane

boundaries. For example, for a detected first lane’s first

boundary, we predict the number of missing lane boundaries

on each side, i.e. x = − b
a
y+(c+ co), x = − b

a
y+(c− co)

(see Figure 5 (a)) .

After the missing lane boundary prediction, we perform

a reciprocal weighted average of their x-coordinates near

the forward VP and bottom of the image. If there are

two predicted boundaries on the right side of a initial lane

boundary as shown in Figure 5 (a), we use:

x′
1 =

(w′x1 + wx′
1)

w + w′ , x′
2 =

(w′x2 + wx′
2)

w + w′ (3)

where the weights w,w′, w′′ are {0,1,2} respectively

and are selected, based on the distance of the predicted
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Algorithm 1: Lane boundary detection algorithm

Input: Detected markers from lane detector for a pair of

consecutive lanes boundaries, fit2

Output: Detected lane boundaries

1 initialize;

2 inlierstot = 0

3 Fit lines to lane boundaries:

4 Set M = min num of inliers;

5 while iter ≤ MAX ITER do

6 Set inliers1 = 0;

7 Set inliers2 = 0;

8 Rectify lane markers using HIPM ;

9 Randomly sample n markers per line;

10 if fit2==1 then

11 Fit 2nd degree curve (Section 3.3.1);

12 else

13 Fit line;

14 end

15 end

16 Count inliesr1 and inliers2 (Section 3.3.1);

17 Check Constraint1:

18 if inliers1 ≥ M & inliers2 ≥ M then

19 Get slopes m1 = |a1/b1|, m2 = |a2/b2| (from

Equation anx+ bny + cn = 0);

20 Get detected lane width LWD(Section 3.2.3);

21 Read Initialized lane width LWp (Equation 1);

22 Check Constraints 2 and 3:

23 if |m1 −m2| ≤0.1 & |1− LWD

LWp
| ≤LWR &

inliersntot > inliersn−1

tot then

24 Set lane detected = True;

25 Update inlierstot = inliers1 + inliers2;

26 end

27 end

28 end

lane boundary from detected lane boundary. Predicted lane

boundary that is one lane width distance away is assigned

a weight of 1, detected lane boundary is given a weight of

0 and so on. This enables robust retrieval of missing lane

boundaries.

4. Evaluations and Discussion

We evaluated our algorithm on a number of publicly

available lane datasets, namely, CULane [33], TuSimple

[36] and Caltech [3]. In order to match lane boundaries

with the ground truth we followed the TuSimple’s criteria

[1] for all datasets which allows prediction of up to two ex-

tra lane boundaries. The computational times listed in Table

1 were noted with GPU: GTX-1080 Ti 11 GB RAM and

CPU: Core i7 6900K 3.20 GHz, except for the SAD-Nets

[14] which where computed on GTX Titan X GPU by their

authors.

(b)

(c)

(a)

Horizon

Detected

Predicted

Retrieved line

After 

weighted 

averagging

Figure 5. Detecting missing lane boundries. (a) Rectified view.

Lane boundaries are predicted in red using co from section 3.3.2.

(b) Filtered lane boundaries after weighted averaging (c) Recov-

ered perspective view with all the four lane boundaries.

4.1. Results on CULane

CULane dataset consists of 55 hours of traffic video pro-

viding a total of 133,235 images. The training set contains

88,880 images, while the validation and test sets contains

9,675 and 34,680 each respectively. Depending on the scene

categories, the test set is divided into eight subsets. Our lane

marker detector was trained on the training set. We created

lane boundaries in prediction and ground truth masks each

of 30 pixels as used by [33] and [40], unless stated other-

wise. Our results on the CULane test set and their compari-

son is given in Table 1.

As can be observed in the table, our method Ours50 out-

performed the state-of-the-art in lane boundary detection

i.e. JLBNet [40], SCNN [33] and SAD-Nets [14] by an

order of magnitude. In the Normal, Crowded, Night, Arrow

and Dazzle Light categories, we had an improvement in F1

scores from 4 to 12% while in the No Line and Shadow cat-

egories, there had been an increase of almost 25% and 17%

respectively. One odd case though was the Curve category

in which we performed slightly better than SCNN but 3%

lower than JLBNet and 5 to 6% lower than SAD-Nets. We

will discuss the cause in the ablation studies. But we were

able to improve the overall performance from 73.1% [40]

and 72% SCNN [33] to almost 81%.

4.1.1 Ablation Studies

For the sake of ablation studies, we modified the lane

boundary keypoint detector’s architecture by changing the
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Figure 6. Results comparison (CULane samples: a to f, CalTech samples g to j). Detections in red and ground truth in blue and horizon

line in green (a,d) Ours40 (b,e) SCNN (c,f) SCNN lane boundary map + Ourspp post processing. (g,i) SCNN trained on CULane tested on

Caltech. (h,j) Ours40 trained on CULane and tested on CalTech.

Method Normal Crowded Night No Line Shadow Arrow Dazzle Light Curve Total FPS

SCNN[33] 0.883 0.753 0.686 0.365 0.593 0.821 0.531 0.594 0.72 9

JLBNet[40] 0.897 0.765 0.687 0.351 0.655 0.822 0.674 0.632 0.731 —

ENet-SAD[14] 0.901 0.688 0.660 0.416 0.659 0.840 0.602 0.657 0.708 74

R-18-SAD[14] 0.898 0.681 0.642 0.425 0.675 0.839 0.598 0.655 0.705 40

R-34-SAD[14] 0.899 0.685 0.646 0.422 0.677 0.838 0.599 0.660 0.707 20

R-101-SAD[14] 0.907 0.700 0.663 0.435 0.67 0.844 0.599 0.657 0.718 6

Ours20 0.925 0.790 0.753 0.564 0.782 0.898 0.738 0.572 0.796 4.8

Ours30 0.935 0.812 0.760 0.586 0.822 0.910 0.746 0.587 0.804 4.5

Ours40 0.934 0.808 0.762 0.586 0.794 0.911 0.745 0.604 0.806 7.8

Ours40c4 0.931 0.801 0.759 0.581 0.799 0.911 0.747 0.573 0.802 4.2

Ours50 0.936 0.815 0.769 0.592 0.826 0.915 0.751 0.607 0.809 3.7

SCNN0.3,18 + Ourspp 0.898 0.736 0.722 0.395 0.645 0.839 0.626 0.476 0.7500 4.3

Diff. with SCNN (%) +1.48 -1.71 +3.58 +3.0 +5.19 +1.76 +9.54 -11.79 +3.09 –

SCNN0.2,40 + Ourspp 0.930 0.797 0.775 0.556 0.803 0.902 0.735 0.572 0.808 3.8

Diff. with SCNN (%) +4.73 +4.38 +8.9 +19.11 +21.03 +8.13 +20.4 -2.25 +8.94 –

Table 1. F1 score for lane boundary detection on CULane [33]. Both Ground Truth (GT) and prediction were mapped to 30 pixel wide

masks with IoU threshold of 0.5 or higher for True Positives. The lane detector used ResNet50 backbone. Ours20: Conv5 → Deconv block

and 20 markers/boundary. Ours30: Conv5 → Deconv block and 30 markers/boundary and so on. Ours40c4 : Conv4 → Deconv block and

40 markers/boundary. F1 scores of SCNN and JLBNet were copied from JLBNet’s paper [40] while for SAD-Nets from their paper [14].

total number of markers/boundary as well as the depth

of the backbone to observe the effect on the lane detec-

tion results. We varied the number of markers/boundary

to 20, 30 and 40 as well. Although the best results

were achieved by Ours50 (subscript represent the number

of markers/boundary) as shown in Table 1, Ours40 and

Ours30 also closely follow. These results show that re-

duction or increment in the number of points within the

range 30 to 50 had no significant effect on the F1 scores

but just a subtle improvement is observed with increas-

ing the number of markers. We also reduced the depth of

backbone and attached the decoder after the fourth block of

ResNet architecture instead of the last block. This reduced

the efficiency due to the removal of one max-pooling layer

which increased the size of the output feature map while

also marginally reducing the F1 scores. Ours20 showed

some reduction in overall F1 score (still higher than SCNN,

JLB and SAD-Nets). This implies that with reduction in the

number of markers below 30, our lane detection algorithm

started to struggle. Ours30 has the best trade-off between

accuracy and efficiency. Please note that our algorithm was

not optimized for efficiency and therefore, the FPS in the

table is primarily for reference.
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SCNN with Our Lane Prediction Algorithm

We also experimented by replacing lane detector (lane

boundary marker detection block in Figure 3) in our

pipeline with SCNN model [33] shared by the authors.

The output lane boundary masks were sampled using cri-

teria mentioned in [33] i.e., 18 points from every boundary

with confidence ≥ 0.3. Results are shown in the table as

SCNN+Ourspp=0.3,18. The results were a bit of a mixture.

F1 score improved from +1.48% in Normal to +9.54% in

Dazzle Light. While it reduced by -1.71% in Crowded and

-11.79% in Curve. Due to unbalanced dataset, the influence

of compromised categories was mitigated and an overall F1

of 75% was achieved which was an improvement of about

3% from solo SCNN.

We also customized the sampling criteria in SCNN and

used 40 samples at a threshold ≥ 0.2. Results are re-

ported in the table as SCNN+Ourspp=0.2,40, where No

Line/Shadow/Dazzle Light showed improvements between

19.11% to 20.4%. An example of general improvement can

be seen in Figure 6 (b and e) where the second lane bound-

ary from the left was not correctly detected and marked as

FN with solo SCNN. Our post processing of the markers de-

tected the line with evidence (c) and without evidence (f).

Although the overall F1 score reached close to our best

of 80.9%, the Curve category still remained 2% below the

score of solo SCNN. The problem with the Curve category

was that there were primarily fewer images (Curved: 421

images and for example Normal: 9621) and therefore they

had less representation in the training. Secondly, during

marker detection, occlusions reduce the number of detected

markers. Therefore, during the parallel lane boundary fit-

ting (section 3.3.1), the combined inliers remain fewer and

such cases were labeled as FNs.

4.2. Results on CalTech

CalTech data has four video sets with a total of 1224 im-

ages. It’s an old database (2008) and due to inconsistent

ground truth, we only test it for one lane, preferably ego-

lane as the annotations are there for at least two lanes in

worst cases. Ego-lanes were identified through the slopes

of their boundaries or their tangents (in case of curves) as in

a perspective view, they have the steepest slopes in any di-

rection. Since only SCNN’s model was available, we tested

SCNN and Ours40 both trained on CULane. We mapped

ground truth and predicted lanes each to 15 pixels and then

to 30 pixels for two different tests. Results are shown in Ta-

ble 2 (Left). Once again, our algorithm out performs SCNN

noticeably in both tests with F1 scores of 89.90% (15:15)

and 96.8% (30:30) respectively. Some sample images for

comparison are shown in Figure 6 (g to j).

Data Algorithm F1 Data Algorithm Acc.

C
al

T
ec

h SCNN(30:30) 0.900

T
u

S
im

p
le SCNN 0.967

Ours40(30:30) 0.968 ENet-SAD 0.966

SCNN(15:15) 0.520 Ours40 0.955

Ours40(15:15) 0.899 Ours40−gtRef 0.979

Table 2. (Left) F1 score on CalTech data. GT and predicted bound-

aries were mapped to 15 pixel (15:15) and 30 pixel (30:30) wide

masks (Right) TuSimple Accuracy. SCNN results copied from

[33]. In TuSimple, for Ours40−gtRef only, pixels along the ground

truth lines marked as background are also kept as background in

predicted lines.

4.3. Results on TuSimple

TuSimple [36] data contains 3626 training and 2782 test

images. We trained Our40 on the training data and the re-

sults on the test set are shown in Table 2 (Right), where

the results for SCNN were obtained from their paper [33].

As we can observe, Ours40 accuracy (95.5 %) is 1% lower

than SCNN (96.5%). We designed our framework to be

occlusion robust, so that lane boundaries across the road

users and obstacles can also be detected. This was the

idea behind using lane boundary markers and line fitting

as argued in section 3.1 followed by missing lane boundary

prediction in section 3.3.2. But in the TuSimple’s ground

truth, lane boundary occlusions are marked as background

producing a discontinued ground truth. If we also treat

those pixels as background for prediction during evaluation

(Ours40−gtRef ), then our accuracy reaches almost 98% sur-

passing SCNN and SAD-Nets by more than 1.5%.

5. Conclusion

In this paper we have presented a robust and effi-

cient lane detection algorithm. We have shown that using

equidistant parallel lines constraint on detected lane lines,

retrieval of missing and occluded lanes can be greatly en-

hanced. The results on three different publicly available and

diverse datasets show substantial improvement from state-

of-the-art which is a proof in itself that assumption holds.

Our approach is modular and the missing lane detection

block can be appended to any lane boundary detection net-

work by sampling markers from lane boundaries.

For future work, we want to address auxiliary and load-

ing lanes where the assumption of parallelism does not ap-

ply. We also want to improve the detection of curved lane

boundaries. In its current form, our research takes the state-

of-the-art forward and highlights new ways of dealing with

one of the most critical challenges in autonomous driving

by unifying deep learning and geometric computer vision

to build a system utilizing best of both the worlds.

1841



References

[1] https://github.com/TuSimple/tusimple-

benchmark/tree/master/doc/lane detection. TuSimple

evaluation criteria, 2017.

[2] A. Ali, A. Hassan, A. Rafaqat, H. Khan, W. Kazmi, and

A. Zaheer. Real-time vehicle distance estimation using sin-

gle view geometry. IEEE Winter Conference on Applications

of Computer Vision (WACV), 2020.

[3] M. Aly. Real time detection of lane markers in urban streets.

Intelligent Vehicles Symposium, pages 7–12, 2008.

[4] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A

Deep Convolutional Encoder-Decoder Architecture for Im-

age Segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(12):2481–2495, dec 2017.

[5] M. Bertozzi and A. Broggi. Real-time lane and obstacle de-

tection on the GOLD system. In Proceedings of Conference

on Intelligent Vehicles, pages 213–218, 1996.

[6] H. Changzheng, H. Jin, and Y. Chaochao. An efficient lane

markings detection and tracking method based on vanishing

point constraints. 35th Chinese Control Conference (CCC),

pages 6999–7004, 2016.

[7] S. Chougule, N. Koznek, A. Ismail, G. Adam, V. Narayan,

and M. Schulze. Reliable Multilane Detection and Clas-

sification by Utilizing CNN as a Regression Network. In
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