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Abstract

We present a domain adaptation based generative frame-

work for zero-shot learning. Our framework addresses the

problem of domain shift between the seen and unseen class

distributions in zero-shot learning and minimizes the shift

by developing a generative model trained via adversarial

domain adaptation. Our approach is based on end-to-end

learning of the class distributions of seen classes and un-

seen classes. To enable the model to learn the class distri-

butions of unseen classes, we parameterize these class dis-

tributions in terms of the class attribute information (which

is available for both seen and unseen classes). This pro-

vides a very simple way to learn the class distribution of

any unseen class, given only its class attribute informa-

tion, and no labeled training data. Training this model with

adversarial domain adaptation further provides robustness

against the distribution mismatch between the data from

seen and unseen classes. Our approach also provides a

novel way for training neural net based classifiers to over-

come the hubness problem in zero-shot learning. Through a

comprehensive set of experiments, we show that our model

yields superior accuracies as compared to various state-of-

the-art zero shot learning models, on a variety of bench-

mark datasets. Code for the experiments is available at

github.com/vkkhare/ZSL-ADA

1. Introduction

In the conventional image classification tasks, examples

from all classes are available during the training of the

model. This assumption rarely holds in real-world prob-

lems, where we do not have the corresponding ubiquity of

representative images from each class. Also, it is common

knowledge that humans do not require prior visual evidence

of a category to recognize an example from that category.

∗VK and DM contributed equally
†DM and HB contributed while being part of IIT Kanpur

Given that a child sees a picture of a horse and reads a

description about zebra’s appearance, he/she would more

likely than not be able to easily recognize a zebra when

an image is shown. The zero-shot learning (ZSL) prob-

lem [26, 36] in machine learning is motivated by similar

considerations and seeks to exploit the existence of a la-

beled training set of ‘seen’ classes and the knowledge about

how each ‘unseen’ class relates semantically to the seen

classes.

The success of ZSL lies in learning an effective semantic

representation (e.g. attributes / textual features) for the suc-

cessful transfer of knowledge from the seen to the unseen

classes. In Sec. 3, we provide a detailed overview of the

prior work on ZSL, but in particular generative ZSL meth-

ods [37, 33, 31, 30] have become quite popular recently,

by the virtue of their ability to generate labeled examples

for the unseen classes. However, a key requirement in such

methods is the reliable estimation of the class distribution

of seen and unseen classes. Even then, zero-shot learning

suffers from hubness problem [40] mostly because of the

use of nearest neighbor classifiers exploiting different dis-

tance metrics. It can be mitigated by using neural nets or

any classifier which does not explicitly compare the inter-

class distances in high dimensional data for label prediction.

Hence, a generative model makes it plausible to train deep

classifiers on synthesized data from the unseen classes.

A simple, yet principled, way to construct generative

models for ZSL is to learn the class distributions for the seen

and unseen classes [31, 33]. While this is straightforward

for seen classes (for which we have access to labeled data),

it can’t be done for the unseen classes. In recent work, [31]

used exponential family to model the distributions of the

class conditionals in terms of learnable parameters. This

is an effective model; however, their approach does not

extend to non-exponential family distributions. Moreover,

they used offline learning techniques to learn the parame-

ters of seen classes, and rely on kernel-based regression to

estimate the class parameters, given the class attributes. The

model also requires careful tuning of hyperparameters. Our
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Figure 1: The overall architecture of the proposed approach. All the notations are consistent with that described in Section 2.

Ac denotes the class attributes for all classes i.e. {ac}
S+U
c=1 .

model, on the other hand, exploits the advantages of neural

nets and end-to-end training to provide stability during the

learning phase and remains less susceptible to hyperparam-

eter variations.

However, such a model alone is not sufficient as there

may be a domain shift between the original unseen class

data and the synthesized unseen class data. The presence

of acute domain shift between the seen and unseen classes

hinders the performance of ZSL models [15]. Since the pre-

dictions for the unseen classes rely on the transfer of knowl-

edge learnt from the seen classes, we might have poor per-

formance on unseen classes due to the domain shift. We

note that by enforcing domain adaptation to tackle prob-

lem settings where the train and test distributions are far

apart, the model’s performance can be greatly improved. An

earlier approach [15] used the idea of joint sparse coding

for minimizing domain shift between the seen and unseen

class data, however, since then there have been develop-

ments in adversarial domain adaptation that enable robust

detection and resolution of domain shift [29, 13]. Adver-

sarial learning and adaptation methods have found applica-

bility in a wide range of fields from robotics navigation [5]

to recommender systems [4, 32]. Several adversarial adap-

tation techniques like ADDA[29] require explicit source-

target pairs of data points. Such a luxury is not present

in Zero-Shot transductive setting where the test data is un-

labelled. Similarly, unsupervised domain matching meth-

ods like CycleGAN[42] use cyclic consistency to find the

data point most similar to the source sample and then mini-

mize the gap between these two. Though this is effective in

maintaining the inherent clusters, it can match the unrelated

class clusters together in the source and target domain if the

classes are close enough.

Motivated by these desiderata, in this work, we develop

an Adversarial Domain Adaptation framework for ZSL that

leverages a generative ZSL model to improve upon the clas-

sification for unseen classes. Our model can transform

the synthesized samples for unseen classes into the true

test/unseen class domain while maintaining the data clus-

ters associations. We first learn a generative model for the

class conditional distribution of the seen and unseen classes

by utilizing labeled data from the seen classes. Then, by

domain adaptation, we explicitly bring closer the learnt dis-

tribution and the true distribution of the unseen class con-

ditionals. We employ a scheme of cyclically consistent ad-

versarial domain adaptation [13] to minimize domain shift

without assuming any particular parametric form of the

source and target distributions.

To the best of our knowledge, there is no adversarial

framework for semi-supervised domain matching where ex-

plicit pairs of data points are not given but an external agent

associates noisy labels to the samples. In addition, since

we leverage neural nets for classification, we overcome the

hubness issue, by virtue of not classifying based on explicit

distances (unlike classical KNN type algorithms).

2. The Proposed Approach

Our approach consists of a pre-training phase followed

by adversarial domain adaptation (ADA). We first describe

the generative model and then elaborate on the ADA setting.

A detailed illustration of our method is shown in Figure 1.

2.1. The Generative Model

We model the data from class c by a class conditional

probability p(x|c,Θ) where Θ denotes the global parame-

ters of the model. We do not have any restriction on the the

type of distribution chosen. Let us denote the total number

of classes whose examples are seen during training by S,

and the classes, none of whose examples are seen during

training by U . For the sake of defining the prediction rule
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formally, assume the unseen classes are known. Then, for

an observation x from either a seen or unseen class c, where

c ∈ [1, S + U ], we have yn = c, and, assume the input to

be generated as xn ∼ p(x|c,Θ)
Under this framework, given test example x+, the pre-

dicted class ŷ+ can be given by computing the most-

probable class as follows ŷ+ = argmaxc p(c|x+,Θ) and

using Baye’s Rule we have,

p(c|x+,Θ) =
p(x+|c,Θ)p(c|Θ)

∑

c∈[1,S+U ] p(x+|c,Θ)p(c|Θ)
(1)

Thus

ŷ+ = argmax
c

p(x+|c,Θ)p(c|Θ) (2)

For the sake of simplicity, we ignore the estimation of

class prior probabilities and choose to treat them as equal

for all the classes. However, their correct estimation can

in principle provide better results. The prediction rule then

becomes:

ŷ+ = argmax
c

p(x+|c,Θ) (3)

If labeled training data for all the classes are available, then

standard inference techniques like Maximum Likelihood

Estimation (MLE), Maximum-a-Posteriori (MAP) Estima-

tion, or fully Bayesian inference can be used to determine

the class conditional distributions. However, since the un-

seen classes do not have labeled training examples, we need

a way to “extrapolate” the seen class distribution parameters

to unseen class distribution parameters. This will be done

via the class attribute vectors as described ahead (2.1.1).

First, assuming X and C (ck ∈ S ∪ U ) denote the in-

puts and the associated output class labels respectively, a

standard generative approach seeks to maximize their joint

distribution P[XS∪U,CS∪U|Θ].
Assuming i.i.d. observations, we have

P[XS∪U,CS∪U|Θ] = P[XS ,CS|Θ]P[XU,CU|Θ] (4)

Since, XU ,CU are unavailable for Θ estimation, usually

P[XS,CS|Θ] is maximized instead, expecting the learnt Θ
to behave as a proxy to true value.

P[XS,CS|Θ] =
∏

x,c∼S

p(x, c|Θ) (5)

⇒ log(P[XS,CS|Θ]) =
∑

x,c∼S

log(p(x, c|Θ))

=
∑

x,c∼S

log(p(x|c,Θ)) + log(p(c|Θ)) (6)

Since we are not modelling the class probability distribution

p(c|Θ), the objective becomes

argmax
Θ

E
x,c∼S

[log(p(x|c,Θ))] (7)

This sub-optimal Θ produces an inherent domain shift

between the true unseen class distribution and the learnt

distribution. We mitigate this by using adversarial domain

adaptation to bring the unseen distribution and learnt distri-

butions closer (refer 2.2).

2.1.1 Mapping Class Attributes to Class Parameters

Since each class is described in terms of attribute vectors

ac, we condition the class distribution on their respective

attribute vector ac. Let these class-specific parameters be ζc
which can be uniquely determined from the class attribute

vector ac and global parameters Θ by a functional map-

ping f . This mapping for most purposes will be a compli-

cated relationship and using a linear mapping (e.g., as done

in [31]) here would severely affect the generation quality of

the network. We model this function f : {ac} → {ζc} us-

ing neural networks with trainable weights Θ bringing ex-

tensive expressiveness and hierarchical relationships among

attribute features. Thus, the class parameters can be written

as

ζc = fΘ(ac) (8)

Figure 2: Samples of seen/unseen classes xn generated

by the class conditional distribution defined by parame-

ters ζc which in turn are the outputs of neural network

fΘ with ac as input

Such an approach leads to a stable training procedure

w.r.t hyperparameters and enables us to perform the joint

learning of fΘ and consequently, class parameters {ζc}
in an end to end fashion. This is an important difference

between our approach and the generative approach used

by [31]. Their approach first learns the class conditional

parameters and then learns the attribute to class parameter

mappings. We provide empirical justification for the stabil-

ity of our approach in the Results section.

For simplicity, we take p(x|c,Θ) to be a Gaussian dis-

tribution with parameters mean and co-variance, ζc =
{µc,Σc} where c ∈ S. We model µc and Σ

−1
c as non-linear

functions of the attribute vector ac with neural networks of

weights Θ = {θµ, θΣ} in the following manner,

µc = fθµ(ac), Σc
−1 = diag(fθΣ(ac)), x ∼ N (µc,Σc)
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To ensure the condition of the covariance matrix (Σc) be-

ing a positive semi-definite matrix we model the inverse co-

variance to a diagonal matrix with positive diagonal entries.

Thus fθΣ outputs a vector in R
d
>0 where d is the dimen-

sion of mean vector (equivalently the dimension of semantic

space). The overall objective function becomes:

argmax
θµ,θΣ

E
(x,c)∼S

[

log(Σc
−1)− (x− µc)

T
Σc

−1 (x− µc)
]

(9)

We again emphasize the fact that choosing Gaussian dis-

tribution is only for expositional purposes and one can also

try other non-exponential family distributions as a part of

inductive bias. The model does not restrict the choice of

class conditional distribution to exponential family distribu-

tionsWe take xn as the features extracted from dataset im-

ages by resnet-101[12] pre-trained on the Imagenet dataset

[25]. For the rest of the paper, {xn}c denotes the entire test

data comprising of samples from all the classes. Similarly,

{yn}c denotes the samples generated from the generative

model (as defined here) for all the classes. For the rest of

the paper, we refer to the generative model defined above as

the base ZSL model.

2.2. Adversarial Domain Adaptation

The procedure described in the previous section only

leverages the data from seen classes to estimate the class

conditional distributions of all the classes. However, if there

is a domain shift between the seen and unseen classes, then

the estimated unseen class conditional distribution would

also suffer from this domain shift due to reliance on the

seen class data. Hence, to mitigate the issue of domain

shift, we propose to incorporate the unlabelled data from the

unseen classes. In our overall architecture, we denote the

process of learning the ZSL model parameters Θ as ‘pre-

training.’ Based on the generative framework learned dur-

ing pre-training, we can sample the class-conditional distri-

bution for unseen classes to generate the unseen samples.

We then minimize the domain gap between the generated

distribution of the unseen classes and the actual distribution

of the unseen classes.

In this section, we denote the source domain as S and

the target domain as T . Through adversarial adaptation,

we aim to bring the target distribution of {yn}c (referred

as ync) closer to the source distribution of {xn}c (referred

as xnc); hence we learn a function GT (ync) that maps class

conditionals from the generated distribution yn to the real

test distribution xn for all unseen classes {c}Uc=1. Hence,

GT : S → T is a mapping from source S to target T . Simi-

larly, we define another function GS : T → S that maps the

class conditionals from the real test distribution to the same

latent space as the class conditionals from the generated dis-

tribution. DT and DS are the corresponding discriminators.

Our design is inspired by CycleGAN [42] and we make

modifications to its base architecture for supporting zero

shot learning. We consider a cyclic consistency loss instead

of the vanilla adversarial loss (and variants) primarily be-

cause we want to learn as constrained a latent space for the

Generator as possible. Cyclic consistency is an additional

constraint on top of the adversarial loss that acts as an ap-

propriate regularizer for transfer learning, as motivated in

the original paper [42] . We also justify the cyclic consis-

tency loss empirically in the Ablation Study section 4.4

2.2.1 Label Augmentation

Inspired by conditional GAN[23], we augment the input to

the generators GT and GS with the respective class labels,

which facilitates the preservation of relationships between

the synthesized data and their correct class labels. For GS

the input data (test data) is unlabeled, hence we use the pre-

dictions from our pre-trained ZSL model as the guiding la-

bels. Note that these labels are noisy labels and both the

generators and discriminators should be capable of handling

data corruption during the training phase. This is yet again

a problem with the conventional GAN architectures.

2.2.2 Classifiers

We handled label recovery by adding two classifiers

(CT , CS) in parallel with the discriminators. The parame-

ters of the classifiers are trained jointly with the correspond-

ing discriminators. Recently, parallel to our work, [28] gave

theoretical support to the use of external classifier with con-

ditional GAN architecture to counter noisy data labels. The

classifiers provide an additional benefit of enforcing linear

separability for the generator but the impact is reduced if the

classifier is multilayered. We justify clustering in the next

section.

2.2.3 Optimization Function

Let the loss defined in CycleGAN which consists of cyclic

consistency loss (Lcyc) and the adversarial loss (Ladv) for

domains T and S be L

L = Lcyc + LT
adv + LS

adv (10)

For our case, L1 norm worked the best for cyclic consis-

tency loss[42] Lcyc, while Wasserstein loss [3] was found

suitable for Ladv . Additionally, identity regularizer with l1
norm (see eq 12) was added to the generator to ensure that

the output domains for each generator remain unmodified if

given as input. We add the classification loss (Lclf ) of the

real data (not generated by G) to the discriminator loss dur-

ing adversarial training. We ensured that the classification

loss is not added at the beginning for data transformed by
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generators in accordance with mismatch loss addition for

only real images [23]. We evaluated cross entropy loss for

both the correct and mismatched pairs of label-image. This

enforces a stronger clustering than considering the loss term

for only mismatched pairs, as in [23]. However once the

GAN training has converged and the classification accuracy

over the generated data becomes close or greater than the

accuracy of pseudo-labels, we do a corruption recovery by

training the classifiers over both the transformed samples

GT (ync) and true data samples xnc (refer eq (15))

With χ, ξ, β as tune-able hyper parameters, the overall

loss function then becomes

L = LT
adv + LS

adv + χLcyc + ξLT
clf + ξLS

clf (11)

where L
{T,S}
adv = {LG + LD}{T,S} with

LT
G = E

c∼pc

[β‖GT (xnc)− xnc‖p −DT
w ◦GT (ync)] (12)

LT
D = E

c∼pc

[DT
w ◦GT (ync)]− E

c∼pc

[DT
w(xnc)] (13)

Here, Dw is the Wasserstein loss [3] and c denotes the class

label.

Lcyc(G
T , GS) = Ec∼pc

[‖GS ◦GT (ync)− xnc‖p]

+ Ec∼pc
[‖GT ◦GS(xnc)− ync‖p]. (14)

Here, || · ||p denotes the Lp norm.

LT
clf = Ec∼pc

[L(CT
clf ◦GT (ync), Y

T )]

+Ec∼pc
[L(CT

clf (xnc), Ȳ
U )] (15)

Similarly, we can define LS
clf , L

S
D, LS

G. Please refer to sup-

plementary material for exact equations and training algo-

rithm.

3. Related Work

Due to its ability to overcome the drawbacks of conven-

tional classification problems, ZSL has attained tremendous

recent interest for a wide range of AI problems, includ-

ing those in computer vision. Earlier works [18, 19] on

ZSL were based on directly or indirectly mapping the in-

stances of specific examples to their class-attributes. The

learned mapping was then used during inference; this map-

ping works by first projecting the unseen data to the class-

attribute space and then using the nearest neighbor search

to classify the unseen image. Another approach for ZSL

focuses on learning the map of bi-linear compatibility be-

tween the visual space and the semantic space. ALE [1],

DEVISE [9], SJE [2], ESZSL [24], and SAE [17] are based

on the approach of measuring the bi-linear compatibility.

Generative models [21, 8, 37, 31, 11, 6, 33] have shown

promising results for both ZSL and GZSL setups. Another

advantage of the generative approach is that by using syn-

thesized samples, we can convert the ZSL problem to the

conventional supervised learning problem that can handle

the biases towards the seen classes. The [31] used a simple

generative model based on the exponential family frame-

work while [11] synthesize the classifier. While recent gen-

erative approaches for the ZSL are deep generative mod-

els based on the VAE [14] and GAN [10]. The approach

[30, 6, 21] is based on the VAE architecture while [37, 8, 20]

used the adversarial sample generation based on the class

conditioned attribute.

In ZSL, the train and test classes are disjoint and hence

there is a high probability of domain shift for the unseen

classes. This is another challenge in the ZSL setup and

needs to be handled. Previously, very few works have han-

dled the domain shift problem and worked on both the trans-

ductive as well as inductive settings. [31] adapted to the

new domain by simple Gaussian mixture model updates.

[27] used the unbiased embedding in the transductive set-

ting. [16, 39] proposed unsupervised domain adaption for

the ZSL. [41] used the structural SVM formulation for do-

main adaption.

In this paper, we propose the design of a deep generative

model that has many differences as compared to the pre-

viously proposed VAE/GAN based deep generative models

for ZSL. The VAE based architecture minimizes the ELBO

[14] by using a scheme of approximate optimization, mak-

ing it less robust in handling domain shift. This also ap-

plies to the latent class distributions learned by VAE. While

we explicitly estimate the class conditional distributions,

VAE based methods learn these distributions as latent vari-

ables via approximate inference. Thus the complexity of

our model in representing the class conditionals is on par

with VAE based models but on the other hand, we reap

the benefits of direct optimization. The GAN based gen-

erative approach is difficult to train, requiring a lot of seen

class examples during training. Moreover, they need the

attribute vectors of unseen classes at the beginning of the

procedure while our model can handle on the fly addition of

new classes. To this end, we propose a simple CNN based

architecture that can learn any parametric distribution with

exact optimization, and unlike the GAN based approach,

has stable training. This makes it especially suitable for do-

main shift minimization by adapting the distribution of the

unseen classes.

4. Experiments and Results

To demonstrate the effectiveness of the proposed ap-

proach we performed extensive experimentation on the

three standard datasets for ZSL, namely AWA2 [36], CUB-

200 [34] and SUN [38]. In all the experiments, we follow

the newly proposed train test split suggested by [36]. Since

we are using the pre-trained resnet-101 model, therefore,
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(a) (b) (c)

Figure 3: (a) shows the t-SNE plot for the output of the generative model as compared to the test data. Crosses represent

the test data while dots represent the generated data. The domain shift is visible in this plot. (b) shows the t-SNE plot

after domain shift minimization with our model. The scale for the axes in (a) and (b) is kept constant for comparison. The

model can allot the clusters correctly except those where the prediction of pseudo-labels suffered a lot and recovery was

difficult. (c) shows the stability of the generative model wrt regularization coefficients on the AWA2 dataset. The x-labels

and y-labels are the weight decay in Adam optimizer for learning the NN parameters predicting the Mean and Sigma of

the class-conditional distributions respectively. The shaded grid values represent the top-1 accuracy obtained for the given

configuration of hyperparameters. Note that even on a logarithmic scale the changes in accuracy are about 1-3%

we first sought to make sure that any class that belongs to

the test classes is not present in the ImageNet [25] training

samples. This was already rectified in the split proposed by

[36] for ZSL. For reference, the network architecture and

training procedure is provided in the supplementary mate-

rial.

Dataset Attribute/Dim #Image Seen/Unseen Class

AWA2 A/85 37322 40/10

CUB A/1024 11788 150/50

SUN A/102 14340 645/72

Table 1: Datasets used in our experiments, and their statis-

tics

Animal with Attribute (AWA2): The dataset has 50

classes of animals, with 40 classes used for training data

and the rest 10 as test data. Each class also has a human an-

notated 85-dimensional attribute vector associated with it.

CUB-200: This is a fine-grained dataset, containing 200

classes of birds, with 150/50 as the train/test ZSL class split.

It has 11788 data points and 1024-dimensional human-

annotated attribute vectors for each class. The attribute

vector comprises of 312-dimensional CUB vector appended

with word vectors of class names as proposed by [36].

SUN Seen Recognition: There are a total of 14340 im-

ages from 717 classes. Hence, every class has nearly 20

samples. Each class is associated with a 102-dimensional

human-annotated attribute vector.

4.1. Zero­Shot Learning (ZSL)

We report per class accuracy as is the convention in stan-

dard ZSL. It is a better metric to report the accuracy of the

model as compared to the overall (across classes) accuracy

when the classes are unbalanced. We use the newly pro-

posed splits [36] for dividing the train and test examples to

ensure that the Imagenet classes (used for training ResNet)

and the test classes are disjoint. We use the corresponding

attribute vector provided against each dataset. Please refer

to table-1 for details on the dataset.

The results of the ZSL setting are shown in the table-2.

As apparent from the table, the proposed approach shows

a significant improvement over the previous state-of-art ap-

proaches. On the SUN dataset and the AWA2 dataset, we

have our top-1 accuracies 63.3% and 70.4% respectively,

which are better than its close competitor [31]. Also, their

top-1 accuracy on the fine-grained CUB dataset is signif-

icantly reduced to 49.2%, compared to our model’s top-1

accuracy of 70.9%. Our model thus performs consistently

well and beats other models on all the three benchmark

datasets.

Additionally, our approach is more stable to hyperpa-

rameter variations as compared to the other competing gen-

erative approaches like GFZSL[31]. We get only 2-4%

drops in accuracy on a logarithmic scale, unlike GFZSL[31]

(figure 3,c). ADA model has three hyperparameters ξ, χ, β

and we chose χ = 10, β = 0.5χ as used by the original

Cycle GAN [42]. Random search was used for ξ = 0.0001.
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SUN CUB AWA2

Method PS PS PS

DAP[18] 39.9 40.0 46.1

IAP [19] 19.4 24.0 35.9

CONSE [22] 38.8 34.3 44.5

CMT [26] 39.9 34.6 37.9

SSE [41] 51.5 43.9 61.1

LATEM [35] 55.3 49.3 55.8

DEVISE [9] 56.5 52.0 59.7

SJE [2] 53.7 53.9 61.9

ESZSL [24] 54.5 53.9 58.6

SYNC[7] 56.3 55.6 46.6

SAE [17] 40.3 33.3 54.1

DEM [40] 61.9 51.7 67.1

GFZSL[31] 63.1 49.2 67.0

CVAE-ZSL[21] 61.7 52.1 65.8

W/O ADA (Ours) 63.3 70.9 70.4

Table 2: Zero Shot Learning Accuracy on the SUN, CUB,

and AWA2 dataset. Here PS is the proposed split recently

adopted in the ZSL community after [36]. The results re-

ported in the table for the other approaches were taken from

the Table 3 of [36]

Method SUN CUB AWA2

DSRL[39] 56.8 48.7 72.8

ALE [1] 55.7 54.5 70.7

GFZSL [31] 64.2 50.5 78.6

With ADA (Ours) 65.5 74.2 78.6

Table 3: Transductive Zero-Shot Learning results on the

SUN, CUB, and AWA2 dataset. Transductive setting for

our model corresponds to ADA. We note that the compared

results are reported using the same ResNet101 feature and

same train-test split. The results are taken from [36] paper

which has evaluated the models with ResNet101 features.

4.2. Domain Adaption

In ZSL, since S ∩U = φ, there is a high probability that

the seen and unseen data do not come from the same under-

lying domain. This implies that the estimated parameters

for the unseen classes, based on the training data of the seen

class are likely to deviate from their optimal values. To this

end, we propose an Adversarial Domain Adaptation (ADA)

method (refer section 2.2) to explicitly handle the domain

shift problem.

In Table-3 we show the results of the proposed ADA

method and compare against the previous transductive set-

ting approaches. The result of ALE [1] and GFZSL [31] are

taken from the Figure 8 of [36]. Here we observe that using

the domain adaption method boosts the generative model’s

performance. In the case of the AWA2 dataset without do-

main adaption, the top-1 accuracy was 70.4% while with the

domain adaption it rises to 78.6%. A similar pattern is ob-

served for the CUB (3.3% improvement) and SUN dataset

also. The domain shift in SUN dataset is ameliorated by the

presence of a large number of training and testing classes

and hence we see a smaller increment after ADA.

Moreover, our ADA method can minimize the domain

shift (apparent in the Figure 3 (a),(b)) in accordance with the

clusters allotted by the base ZSL model. We can see that the

model associates wrong clusters for only two classes owing

to the low prediction accuracy of the base ZSL model for

these classes which, itself is due to a strong overlap in test

clusters of these classes. Thus, a reduction in label corrup-

tion will further improve the domain matching.

4.3. Ablation Study

In this section, we compare variants of our proposed ap-

proach through an ablation study to empirically analyze the

benefits of each component. In particular, we check whether

enforcing cyclic consistency leads to better performance

than the vanilla adversarial loss, whether incorporating deep

classifiers in architecture leads to improved performance,

and whether adversarial domain adaptation is required for

domain shift minimization for training the deep classifiers.

4.3.1 Experimental Setup

We have kept the pre-trained base ZSL model the same for

consistent ablation results. The different variants of our

model for the ablation study are described below:

• Std DA: To test the relative importance of adversarial

domain adaptation and hence domain shift minimiza-

tion, we trained a deep classifier (with the same archi-

tecture as other variants) on the labeled samples syn-

thesized from our generative model (base ZSL model)

and the unlabelled test data with its pseudo labels.

• Vanilla ADA: This domain adaptation model com-

prises of a single generator and discriminator aug-

mented with a classifier, where the generator maps the

source domain to the target domain. For effective com-

parison, we used the same architecture of generators,

discriminators and classifiers for ablation and experi-

mental evaluations.

• CycleGAN w/o: In this variant, we removed the clas-

sifiers CT and CS associated with our proposed ADA

model. Hence, the adversarial architecture is similar

to CycleGAN which comprises of two generators and

associated two discriminators.

• Ours: This is our proposed ADA model, defined in

section 2.2

We employ two different techniques for predicting the

class labels. For the above-defined variants which have a

trainable classifier in them like vanilla ADA and Ours, we

report the class averaged top-1 accuracy of the predictions
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from the classifier attached to the discriminator (referred as

M1 in table 4). For the approach Ours, classifier CT ( map-

ping the source domain to the target domain ) is used for

class label predictions.

We also report the 1 nearest neighbor classification ac-

curacies using the Gaussian distance between the class con-

ditionals mapped to the target domain by the generator and

the test data feature (referred to as M2 in Table 4). This

method predicts the most probable class via the mixture

of class conditionals, in a similar way like the base ZSL

model in the inductive setting. To generate the mapped

cluster prototypes for each class conditional, we sample the

data points from its class conditional distribution, transform

them into another target domain (test domain) via the gen-

erator of ADA and then extract the required statistics (mean

of the cluster for our case) from the new distribution. Like

ADA experimental setup, the learned covariance matrix is

not changed after domain adaptation.

For the variant without a trainable classifier, CycleGAN

w/o, we only use the later method (method M2) for evalu-

ating the accuracies. Also, note that due to the absence of

any adversarial generator in the variant Std DA, the M2 ac-

curacy is computed in the exact same way as in our base

inductive ZSL model.

SUN CUB AWA2

Variant M1 M2 M1 M2 M1 M2

Std DA 64.8 NA 72.2 NA 71.3 NA

Vanilla ADA 64.9 47.1 71.5 57.8 77.3 56.1

CycleGAN w/o NA 57.2 NA 68.4 NA 75.8

Ours 65.5 55.8 74.2 67.5 78.6 74.9

Table 4: Ablation study on ZSL with splits proposed in [36]

4.3.2 Analysis

When we compare the performance of Std DA with the base

inductive ZSL model (results in Table 2), we only see a

marginal performance increase. During the experiments,

the classifiers initially came close to our benchmark model

(Ours), but soon converged to a sub-optimum where they

mimicked the accuracy of pseudo-labels provided by the

base ZSL model. Owing to the domain shift, the classi-

fier was not able to transfer the supervision from generated

samples to the test data. This supports the claim that ad-

versarial networks reduce domain mismatch, precluding the

classifiers from converging at pseudo-labels.

The addition of trainable classifiers with ADA gave a

heavy accuracy boost. This is mostly because of the higher

expressivity and generalizability of such neural net clas-

sifiers as compared to nearest neighbor based classifiers.

This is empirically suggested by diminished performance of

about 3-10% on various datasets in CycleGan w/o wrt M1

accuracy of Ours. The addition of classification loss term

does reduce the linear separability (reduction in M2 score

of Ours vs CycleGAN w/o) but the performance gain from

classifiers overshadows this degradation.

Cyclic consistency further restrains the output space of

the generator which drastically improves the linear separa-

bility of the generated data points (M2 score of Ours). This

causes the proposed model to perform better than standard

adversarial architecture using a similar classifier. This is

apparent when we compare M2 accuracies of vanilla ADA

with ours. Even though the M1 accuracies of these two

models differ by about 1-2%, the drop in M2 accuracies are

severe. Since nearest neighbor models rely on linear sepa-

rability they suffer with as large as 10-30% drop.This is also

apparent in figure 3 t-SNE plots.

We can safely conclude, adding adversarial domain

adaptation to the generative ZSL framework allows us to

leverage the expressivity of neural net classifiers to clas-

sify novel classes while being trained only using the labels

from seen classes. The adversarial adaptation minimizes the

domain shift which is a crucial requirement for classifiers

to transfer knowledge from the synthesized data and hence

helps to train incisive classifiers that do not face the hubness

issue, unlike distance-based nearest neighbor classifiers.

5. Conclusion

In this paper, we address the issue of domain shift be-

tween the distributions of the seen and unseen classes in

zero-shot learning. We adopt an end-to-end approach for

generative modeling that captures non-linear dynamics bet-

ter as compared to previous state-of-the-art approaches. The

proposed approach first learns the class conditional distri-

butions for both the seen and unseen classes by leverag-

ing the data from only the seen classes. Following this,

we explicitly minimize the domain shift between the esti-

mated unseen class distributions and the true unseen class

distributions by using a cyclic consistency based adversar-

ial scheme. We show through detailed experimentation, that

our proposed generative model, although much simpler than

GAN/VAE based frameworks, outperform existing models

in the ZSL setting. Also, we show that our scheme of min-

imizing domain shift significantly improves performance,

as compared to the transductive setting methods adopted

by previous approaches. The generative framework can in

principle assume any form, some of the popular ones being

GAN and VAE based models. However, they lack explain-

ability and they require further sampling to extract statistics

like class variance. A larger intra-class variance would be

an outcome of larger variations in the visual appearances of

class attributes and hence the samples would be harder to

classify together. An interesting future direction can be to

use these statistics to model selective attention mechanisms

or training with hard negative mining.
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